1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Python and Oracle Database Tutorial: The New Wave of Scripting</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="resources/base.css" type="text/css"/>
<link rel="shortcut icon" type="image/x-icon" href="resources/favicon.ico"/>
</head>
<body bgcolor="#ffffff" text="#000000">
<div class="oracleHeader">
<div class="container">
<a class="oracleLogo" href="https://www.oracle.com/">Oracle</a>
</div>
</div>
<header class="header" role="banner">
<div class="container">
<div class="headerLogoContainer">
<img class="headerLogo" alt="python-oracledb logo" src="resources/logo.png" />
</div>
<div class="headerContent">
<h1 class="headerTitle">Python and Oracle Database Tutorial: The New Wave of Scripting</h1>
<nav class="headerNav" role="navigation">
</nav>
</div>
</div>
</header>
<h1></h1>
<h2>Contents</h2>
<ul>
<li><a href="#overview" >Overview</a></li>
<li><a href="#preface" >Setup</a></li>
<li><a href="#connecting">Connecting to Oracle</a>
<ul>
<li>1.1 Creating a basic connection</li>
<li>1.2 Indentation indicates code structure</li>
<li>1.3 Executing a query</li>
<li>1.4 Closing connections</li>
<li>1.5 Checking versions</li>
<li>1.6 Using the ConnectParams builder class</li>
<li>1.7 Checking Connection Health</li>
</ul>
</li>
<li><a href="#pooling">Connection Pooling</a>
<ul>
<li>2.1 Connection pooling</li>
<li>2.2 Connection pool experiments</li>
<li>2.3 Creating a DRCP Connection</li>
<li>2.4 Connection pooling and DRCP</li>
<li>2.5 More DRCP investigation</li>
</ul>
</li>
<li><a href="#fetching">Fetching Data</a>
<ul>
<li>3.1 A simple query</li>
<li>3.2 Using fetchone()</li>
<li>3.3 Using fetchmany()</li>
<li>3.4 Tuning with arraysize and prefetchrows</li>
</ul>
</li>
<li><a href="#binding">Binding Data</a>
<ul>
<li>4.1 Binding in queries</li>
<li>4.2 Binding in inserts</li>
<li>4.3 Batcherrors</li>
</ul>
</li>
<li><a href="#plsql">PL/SQL</a>
<ul>
<li>5.1 PL/SQL functions</li>
<li>5.2 PL/SQL procedures</li>
</ul>
</li>
<li><a href="#handlers">Type Handlers</a>
<ul>
<li>6.1 Basic output type handler</li>
<li>6.2 Output type handlers and variable converters</li>
<li>6.3 Input type handlers</li>
</ul>
</li>
<li> <a href="#lobs">LOBs</a>
<ul>
<li>7.1 Fetching a CLOB using a locator</li>
<li>7.2 Fetching a CLOB as a string</li>
</ul>
</li>
<li> <a href="#rowfactory">Rowfactory functions</a>
<ul>
<li>8.1 Rowfactory for mapping column names</li>
</ul>
</li>
<li><a href="#subclass">Subclassing connections and cursors</a>
<ul>
<li>9.1 Subclassing connections</li>
<li>9.2 Subclassing cursors</li>
</ul>
</li>
<li><a href="#thick">Python-oracledb Thick mode</a>
<ul>
<li>10.1 Review the Oracle Client library path</li>
<li>10.2 Review the configuration files for thick mode</li>
</ul>
</li>
<li><a href="#scrollable">Scrollable cursors</a>
<ul>
<li>11.1 Working with scrollable cursors</li>
</ul>
</li>
<li><a href="#bindnamedobj">Binding named objects</a>
<ul>
<li>12.1 How to bind named objects</li>
</ul>
</li>
<li><a href="#typehandlers">Input and Output Type Handlers with named objects</a>
<ul>
<li>13.1 Input type handlers with named objects</li>
<li>13.2 Output type handlers with named objects</li>
</ul>
</li>
<li><a href="#aq">Advanced Queuing</a>
<ul>
<li>14.1 Message passing with Oracle Advanced Queuing</li>
</ul>
</li>
<li><a href="#soda">Simple Oracle Document Access (SODA)</a>
<ul>
<li>15.1 Inserting JSON Documents</li>
<li>15.2 Searching SODA Documents</li>
</ul>
</li>
<li><a href="#summary" >Summary</a></li>
<li><a href="#primer" >Appendix: Python Primer</a></li>
<li><a href="#resources" >Resources</a></li>
</ul>
<h2><a name="overview">Overview</a></h2>
<p>This tutorial is a primary guide on using Python with Oracle Database. It contains both beginner and advanced materials. Choose the content that interests you and your skill level. The tutorial has scripts to run and modify, and has suggested solutions.</p>
<p>Python is a popular general purpose dynamic scripting language. The python-oracledb driver provides Python APIs to access Oracle Database. It is an upgrade for the hugely popular <a href="https://oracle.github.io/python-cx_Oracle/">cx_Oracle</a> interface.
</p>
<p>If you are new to Python, review the <a href="#primer">Appendix: Python Primer</a> to gain an understanding of the language. </p>
<p>When you have finished this tutorial, we recommend reviewing the <a href="http://python-oracledb.readthedocs.org/en/latest/index.html" >python-oracledb documentation</a>.</p>
<p>The original copy of these instructions that you are reading is <a
href="https://oracle.github.io/python-oracledb/samples/tutorial/Python-and-Oracle-Database-The-New-Wave-of-Scripting.html"
>here</a>.</p>
<h3><a name="architecture">Python-oracledb Architecture</a></h3>
<p>The python-oracledb driver enables access to Oracle Database using either
one of two modes. Both modes have comprehensive functionality supporting the
Python Database API v2.0 Specification. By default, python-oracledb runs in a
"thin" mode, which connects directly to Oracle Database. This mode
does not need Oracle Client libraries. However, some additional features are
available when python-oracledb uses them. Python-oracledb applications that
load the Oracle Client libraries via an application script runtime option are
said to be in "thick" mode. This tutorial has examples in both
modes.</p>
<p><img src="resources/python-oracledb-arch.svg" alt="Python python-oracledb architecture" width=800/></p>
<p>The database can be on the same machine as Python, or it can be remote.</p>
<h2><a name="preface">Setup</a></h2>
<ul>
<li><h4 id="installsw">Install software</h4>
<p>Install Python 3 if not already available. It can be obtained from
your operating system package library or from <a
href="https://www.python.org/">python.org</a>. On Windows, use Python 3.7
or later. On macOS, use Python 3.7 or later. On Linux, use Python 3.6 or
later.</p>
<p>Install <a
href="https://pypi.org/project/oracledb/">python-oracledb</a> with
a command like <code>pip install oracledb --upgrade</code></p>
<p>Ensure you can access an Oracle Database.</p>
<!--
<p>To get going, follow either of the quick start instructions:</p>
<ul>
<li><p><a href="https://www.oracle.com/database/technologies/appdev/python/quickstartpythononprem.html" >Quick Start: Developing Python Applications for Oracle Database (On-Premises)</a></p></li>
<li><p><a
href="https://www.oracle.com/database/technologies/appdev/python/quickstartpython.html"
>Quick Start: Developing Python Applications for Oracle Autonomous Database</a></p></li>
</ul>
-->
</li>
<li>
<h4 id="downloadscripts">Download the tutorial scripts</h4>
<p>The Python scripts used in this example are in the <a href="https://github.com/oracle/python-oracledb/tree/main/samples/tutorial" >python-oracledb GitHub repository</a>.</p>
<p>Download a zip file of the repository from <a href="https://github.com/oracle/python-oracledb/archive/main.zip" >here</a> and unzip it. Alternatively you can use 'git' to clone the repository.</p>
<p><code>git clone https://github.com/oracle/python-oracledb.git</code></p>
<p>The <code>samples/tutorial</code> directory has scripts to run and modify. The <code>samples/tutorial/solutions</code> directory has scripts with suggested code changes. The <code>samples/tutorial/sql</code> directory has all the SQL scripts used by the Python files to create database tables and other objects.</p>
</li>
<li>
<h4>Review the privileged database credentials used for creating the schema</h4>
<p>Review <code>db_config_sys.py</code> in the <code>tutorial</code> directory. This file is included in other Python files for creating and dropping the tutorial user.</p>
<p>Edit <code>db_config_sys.py</code> file and change the default values to match the system connection information for your environment. Alternatively, you can set the given environment variables in your terminal window. For example, the default username is "<em>SYSTEM</em>" unless the environment variable "<em>PYTHON_SYSUSER</em>" contains a different username. The default system connection string is for the "<em>orclpdb</em>" database service on the same machine as Python. In Python Database API terminology, the connection string parameter is called the "data source name", or "dsn". Using environment variables is convenient because you will not be asked to re-enter the password when you run scripts:</p>
<pre>
user = os.environ.get("PYTHON_SYSUSER", "SYSTEM")
dsn = os.environ.get("PYTHON_SYS_CONNECT_STRING", "localhost/orclpdb")
pw = os.environ.get("PYTHON_SYSPASSWORD")
if pw is None:
pw = getpass.getpass("Enter password for %s: " % user)
</pre>
<p>Substitute the admin values for your environment. If you are using Oracle Autonomous Database (ADB), use the <em>ADMIN</em> user instead of <em>SYSTEM</em>. The tutorial instructions may need adjusting, depending on how you have set up your environment.</p>
</li>
<li><h4 id="createdbuser">Create a database user</h4>
<p>If you have an existing user, you may be able to use it for most examples (some examples may require extra permissions).</p>
<p>If you need to create a new user for this tutorial, review the grants created in <code>samples/tutorial/sql/create_user.sql</code> by opening it in your favorite text editor. Then open a terminal window and run <code>create_user.py</code> to execute the <code>create_user.sql</code> script and create the sample user. This tutorial uses the name <code>pythondemo</code>:</p>
<pre>
<strong>python create_user.py</strong></pre>
<p>The example above connects as the <em>SYSTEM (or ADMIN</em> for ADB<em>) </em> user using <code>db_config_sys</code> file discussed in the earlier section. The connection string is "<em>localhost/orclpdb</em>", meaning use the database service "<em>orclpdb</em>" running on localhost (the computer you are running your Python scripts on).</p>
<p>If it runs successfully, you will see something similar below:</p>
<pre>Enter password for SYSTEM:
Enter password for pythondemo:
Creating user...
SQL File Name: D:\python-oracledb\samples\tutorial\sql\create_user.sql
Done.</pre>
<p> The new user <em>pythondemo</em> is created.</p>
<p>When the tutorial is finished, ensure that all the database sessions connected to the tutorial user <em>pythondemo</em> are closed and then run <code>drop_user.py</code> to remove the tutorial user.</p>
</li>
<li>
<h4 id="installsampleenv">Install the tables and other database objects for the tutorial</h4>
<p>Once you have a database user, then you can create the key tutorial tables and database objects for the tutorial by running <code>setup_tutorial.py</code> (the environment setup file), using your values for the tutorial username, password and connection string:</p>
<pre>
<strong>python setup_tutorial.py</strong></pre>
<p>On successful completion of the run, You will see something like:</p>
<pre>Setting up the sample tables and other DB objects for the tutorial...
SQL File Name: D:\python-oracledb\samples\tutorial\sql\setup_tutorial.sql
Done.</pre>
<p>This will call the <code>setup_tutorial.sql</code> file from <code>tutorials/sql</code> directory to setup some sample tables and database objects required for running the examples in the tutorial.</p>
</li>
<li>
<h4>Review the connection credentials used by the tutorial scripts</h4>
<p>Review <code>db_config.py</code> (thin mode), and <code>db_config.sql</code> files in the <code>tutorial</code> and <code>tutorial/sql </code>directories respectively. These are included in other Python and SQL files for setting up the database connection.</p>
<p>Edit <code>db_config.py</code> file and change the default values to match the connection information for your environment. Alternatively, you can set the given environment variables in your terminal window. For example, the default username is "<em>pythondemo</em>" unless the environment variable "<em>PYTHON_USER</em>" contains a different username. The default connection string is for the '<em>orclpdb</em>' database service on the same machine as Python. In Python Database API terminology, the connection string parameter is called the "data source name", or "dsn". Using environment variables is convenient because you will not be asked to re-enter the password when you run scripts:</p>
<pre>
user = os.environ.get("PYTHON_USER", "pythondemo")
dsn = os.environ.get("PYTHON_CONNECT_STRING", "localhost/orclpdb")
pw = os.environ.get("PYTHON_PASSWORD")
if pw is None:
pw = getpass.getpass("Enter password for %s: " % user)
</pre>
<p>Also, change the database username and connection string in the SQL configuration file <code>db_config.sql</code> based on your environment settings:</p>
<pre>
-- Default database username
def user = "<strong>pythondemo</strong>"
-- Default database connection string
def connect_string = "<strong>localhost/orclpdb</strong>"
-- Prompt for the password
accept pw char prompt 'Enter database password for &user: ' hide
</pre>
<p>The tutorial instructions may need adjusting, depending on how you have set up your environment.</p>
</li>
<li><h4> Runtime Naming</h4>
<p>At runtime, the module name of the python-oracledb package is <code>oracledb</code>:</p>
<pre>import oracledb</pre></li>
<li><h4>Python-oracledb defaults</h4>
<p>A singleton <code>oracledb.defaults</code> contains attributes that can be used to adjust the default behavior of python-oracledb. Attributes not supported in a mode (<em>thin</em> or <em>thick</em>) will be ignored in that mode.</p>
<p>Open <code>defaults.py</code> in an editor. This will look like:</p>
<pre>import oracledb
print("Default array size:", <strong>oracledb.defaults.arraysize</strong>)</pre>
Run the script:
<pre><strong>python defaults.py</strong></pre>
It displays:
<pre>Default array size: 100</pre>
<p> This gives the default array size tuning parameter that will be useful in Section 3.4 of this tutorial.</p>
<p>The default values can also be edited using the <code>defaults</code> attribute. All the default values that can be set and read with <code>defaults</code> attribute are available in the <a href="http://python-oracledb.readthedocs.io/en/latest/index.html">python-oracledb documentation</a>.</p></li>
</ul>
<h2><a name="connecting">1. Connecting to Oracle</a></h2>
<p>You can connect from Python to a local, remote or cloud Oracle Database. <em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html"
>Connecting to Oracle Database</a></em>.</p>
<ul>
<li>
<h4>1.1 Creating a basic connection</h4>
<p>Review the code contained in <code>connect.py</code> :</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
print("Database version:", con.version)
</pre>
<p>The python-oracledb module is imported to provide the API for accessing the Oracle database. Many inbuilt and third-party modules can be included in Python scripts this way.</p>
<p> The username, the password and the connection string that you configured in the
<code>db_config.py</code> module is passed to the <code>connect()</code> method. By default, Oracle's Easy Connect connection string syntax is used. It consists of the hostname of your machine, <code>localhost</code>, and the database service name <code>orclpdb</code>. (In Python Database API terminology, the connection string parameter is called the "data source name", or "dsn").</p>
<p>Open a command terminal and change to the <code>tutorial</code> directory:</p>
<pre><strong>cd samples/tutorial</strong></pre>
<p>Run the Python script:</p>
<pre><strong>python connect.py</strong></pre>
<p>The version number of the database should be displayed. An exception is raised if the connection fails. Adjust the username, password, or connection string parameters to invalid values to see the exception.</p>
<p>Python-oracledb also supports "<em>external authentication</em>", which allows connections without needing usernames and passwords to be embedded in the code. Authentication would then be performed by, for
example, LDAP or Oracle Wallets.</p>
</li>
<li>
<h4>1.2 Indentation indicates code structure</h4>
<p>In Python, there are no statement terminators, begin/end keywords, or braces to indicate code blocks.</p>
<p>Open <code>connect.py</code> in an editor. Indent the print statement with some spaces:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
print("Database version:", con.version)
</pre>
<p>Save the script and run it again:</p>
<pre><strong>python connect.py</strong> </pre>
<p>This raises an exception about the indentation. The number of spaces or tabs must be consistent in each block; otherwise, the Python interpreter will either raise an exception or execute code unexpectedly. </p>
<p>Python may not always be able to identify accidental from deliberate indentation. <em>Check if your indentation is correct before running each example. Make sure to indent all statement blocks equally.</em> <b>Note that the sample files use spaces, not tabs.</b> </p>
</li>
<li>
<h4>1.3 Executing a query</h4>
<p>Open <code>query.py</code> in an editor. It looks like:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
</pre>
<p>Edit the file and add the code shown in bold below:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
<strong>cur = con.cursor()
cur.execute("select * from dept order by deptno")
res = cur.fetchall()
for row in res:
print(row)</strong>
</pre>
<p>Make sure the <code>print(row)</code> line is indented. This tutorial uses spaces, not tabs.</p>
<p>The code executes a query and fetches all data.</p>
<p>Save the file and run it:</p>
<pre><strong>python query.py</strong></pre>
<p>In each loop iteration, a new row is stored in
<code>row</code> variable as a Python "tuple" and is displayed.</p>
<p>Fetching data is described further in <a href="#fetching" >Section 3</a>. </p>
</li>
<li>
<h4>1.4 Closing connections</h4>
<p>Connections and other resources used by python-oracledb will automatically be closed at the end of scope. This is a common programming style that takes care of the correct order of resource closure.</p>
<p>Resources can also be explicitly closed to free up database resources if they are no longer needed. This is strongly recommended in blocks of code that remain active for some time.</p>
<p>Open <code>query.py</code> in an editor and add calls to close the cursor and connection like:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
cur.execute("select * from dept order by deptno")
res = cur.fetchall()
for row in res:
print(row)
<strong>cur.close()</strong>
<strong>con.close()</strong>
</pre>
<p>Running the script completes without error:</p>
<pre><strong>python query.py</strong></pre>
<p>If you swap the order of the two <code>close()</code> calls you will see an error.</p>
</li>
<li>
<h4>1.5 Checking versions</h4>
<p>Review the code contained in <code>versions.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
print(oracledb.__version__) # two underscores before and after the version</pre>
<p>Run the script:</p>
<pre><strong>python versions.py</strong></pre>
<p>This gives the version of the python-oracledb interface.</p>
<p>Edit the file to print the version of the database, and the Oracle client libraries used by python-oracledb:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
print(oracledb.__version__)
<strong>print("Database version:", con.version)</strong>
</pre>
<p>When the script is run, it will display:</p>
<pre>
1.0.0
Database version: 19.3.0.0.0</pre>
<p>Any python-oracledb installation can connect to older and newer
Oracle Database versions. By checking the Oracle Database
version numbers, the application can make use of
the best Oracle features available.</p>
</li>
<li>
<h4>1.6 Using the ConnectParams builder class</h4>
<p>
A connection property builder function <code>oracledb.ConnectParams()</code> has been added. It returns a new <em>ConnectParams</em> object. The object can be passed to <code>oracledb.connect()</code> or
<code>oracledb.create_pool()</code>.</p>
<p>Open <code>connect_params2.py</code> in a text editor. It looks like:</p>
<pre>import oracledb
import db_config
params = oracledb.ConnectParams(host="localhost", port=1521, service_name="orclpdb")
con = oracledb.connect(user=db_config.user, password=db_config.pw, params=params)
print("Database version:", con.version)</pre>
When the script is run (<code><strong>python connect_params2.py</strong></code>), it will display:
<pre>Database version: 19.3.0.0.</pre>
<p>
The use of <code>ConnectParams()</code> is optional. Users can continue to use previous approaches. The list of parameters for the <code>ConnectParams</code> class is available in the python-oracledb documentation.</p>
<p>Notes:</p>
<ul>
<li>If the <code>params</code> parameter is specified and keyword parameters are also specified, then the <code>params</code> parameter is updated with the values from the keyword parameters before being used to create the connection. </li>
<li>If the <code>dsn</code> parameter is specified and the <code>params</code> parameter is specified, then the <code>params</code> parameter is updated with the contents of the <code>dsn</code> parameter before being used to create the connection.</li>
</ul>
</li>
<li>
<h4>1.7 Checking Connection Health</h4>
<p>The function <code>Connection.is_healthy()</code> checks the usability of a database connection locally. This function returns a boolean value indicating the health status of a connection.</p>
<p>Connections may become unusable in several cases, such as if the network socket is broken, if an Oracle error indicates the connection is unusable or after receiving a planned down notification from the database.
This function is best used before starting a new database request on an existing standalone connection. Pooled connections internally perform this check before returning a connection to the application. If this function returns <code>False</code>, the connection should be not be used by the application and a new connection should be established instead.</p>
<p>Open <code>connect_health.py</code> in a text editor. It looks like:</p>
<pre>import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
if con.is_healthy():
print("Healthy connection!")
else:
print("Unusable connection. Please check the database and network settings.")</pre>
<p>When the script is run (<code><strong>python connect_health.py</strong></code>), it will display (when the connection is OK):</p>
<pre>Healthy Connection!</pre>
<p>To fully check a connection's health, use <code>Connection.ping()</code> which performs a round-trip to the database.</p></li>
</ul>
<h2><a name="pooling">2. Connection Pooling</a></h2>
<p>Connection pooling is important for performance when multi-threaded applications frequently connect and disconnect from the database. Pooling also gives the best support for Oracle's High Availability (HA) features.
<em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html#connection-pooling">Connection Pooling</a></em>.</p>
<ul>
<li> <h4>2.1 Connection pooling</h4>
<p>Review the code contained in <code>connect_pool.py</code>:</p>
<pre>
import oracledb
import threading
import db_config
pool = oracledb.<strong>create_pool</strong>(user=db_config.user, password=db_config.pw, dsn=db_config.dsn,
min=2, max=5, increment=1, getmode=oracledb.POOL_GETMODE_WAIT)
def Query():
con = pool.<strong>acquire</strong>()
cur = con.cursor()
for i in range(4):
cur.execute("select myseq.nextval from dual")
seqval, = cur.fetchone()
print("Thread", threading.current_thread().name, "fetched sequence =", seqval)
thread1 = threading.Thread(name='#1', target=Query)
thread1.start()
thread2 = threading.Thread(name='#2', target=Query)
thread2.start()
thread1.join()
thread2.join()
print("All done!")
</pre>
<p>The <code>create_pool()</code> function creates a pool of Oracle connections for the user. Connections in the pool can be used by python-oracledb by calling <code>pool.acquire()</code>.
The initial pool size is 2 connections. The maximum size is 5 connections. When the pool needs to grow, then a single new connection will be created at a time based on the <code>increment</code> parameter. The pool can shrink back to the minimum size of 2 when the connections are no longer in use.</p>
<p>The <code>def Query():</code> line creates a method that is called by each thread.</p>
<p>In the <code>Query</code> method, the <code>pool.acquire()</code> call gets one connection from the pool (as long as less than 5 are already in use). This connection is used in a loop of 4 iterations to query the sequence <code>myseq</code>. At the end of the method, python-oracledb will automatically close the cursor and release the connection back to the pool for reuse.</p>
<p>The <code>seqval, = cur.fetchone()</code> line fetches a row and puts the single value contained in the result tuple into the variable <code>seqval</code>. Without the comma, the value in <code>seqval</code> would be a tuple like
"<code>(1,)</code>".</p>
<p>Two threads are created, each invoking the
<code>Query()</code> method.</p>
<p>In a command terminal, run:</p>
<pre><strong>python connect_pool.py</strong></pre>
<p>The output shows the interleaved query results as each thread fetches values independently. The order of interleaving may vary from run to run.</p>
</li>
<li>
<h4>2.2 Connection pool experiments</h4>
<p>Review <code>connect_pool2.py</code>, which has a loop for the number of threads, each iteration invoking the <code>Query()</code> method:</p>
<pre>
import oracledb
import threading
import db_config
pool = oracledb.create_pool(user=db_config.user, password=db_config.pw, dsn=db_config.dsn,
min=2, max=5, increment=1, getmode=oracledb.POOL_GETMODE_WAIT)
def Query():
con = pool.acquire()
cur = con.cursor()
for i in range(4):
cur.execute("select myseq.nextval from dual")
seqval, = cur.fetchone()
print("Thread", threading.current_thread().name, "fetched sequence =", seqval)
<strong>numberOfThreads = 2
threadArray = []
for i in range(numberOfThreads):
thread = threading.Thread(name='#' + str(i), target=Query)
threadArray.append(thread)
thread.start()
for t in threadArray:
t.join()</strong>
print("All done!")
</pre>
<p>In a command terminal, run:</p>
<pre><strong>python connect_pool2.py</strong></pre>
<p>Experiment with different values of the pool parameters and
<code>numberOfThreads</code>. Larger initial pool sizes will make the pool creation slower, but the connections will be available immediately when needed.
</p>
<p>Try changing <code>getmode</code> to
<code>oracledb.POOL_GETMODE_WAIT</code>. When <code>numberOfThreads</code>
exceeds the maximum size of the pool, the <code>acquire()</code> call will now
generate an error such as "<em>ORA-24459: OCISessionGet() timed out waiting for pool to create new connections</em>". </p>
<p>Pool configurations where <code>min</code> is the same as
<code>max</code> (and <code>increment = 0</code>) are often
recommended as a best practice for the optimum performance. Pools with such configurations are referred to as "<em>static pools</em>". This configuration avoids connection storms on the database server.</p>
</li>
<li>
<h4>2.3 Creating a DRCP Connection</h4>
<p>Database Resident Connection Pooling allows multiple Python processes on multiple machines to share a small pool of database server processes.</p>
<p>Below left is a diagram without DRCP. Every application standalone connection (or python-oracledb connection-pool connection) has its own database server process. Standalone application <code>connect()</code> and close calls require the expensive create and destroy of those database server processes.
Python-oracledb connection pools reduce these costs by keeping database server processes open, but every python-oracledb connection pool will require its own set of database server processes, even if they are not doing database work: these idle server processes consume database host resources. Below right is a diagram with DRCP. Scripts and Python processes can share database servers from a pre-created pool of servers and return them when they are not in use.
</p>
<table cellspacing="0" cellpadding="30" border="0" >
<tr>
<td>
<img width="400" src="resources/python_nopool.png" alt="Picture of 3-tier application architecture without DRCP showing connections from multiple application processes each going to a server process in the database tier" />
<div align="center"><p><strong>Without DRCP</strong></p></div>
</td>
<td>
<img width="400" src="resources/python_pool.png" alt="Picture of 3-tier application architecture with DRCP showing connections from multiple application processes going to a pool of server processes in the database tier" />
<div align="center"><p><strong>With DRCP</strong></p></div>
</td>
</tr>
</table>
<p>DRCP is useful when the database host machine does not have enough memory to handle the number of database server processes required. If DRCP is enabled, it is best used in conjunction with python-oracledb's connection pooling.
However, the default 'dedicated' server process model is generally recommended if the database host memory is large enough. This can be with or without a python-oracledb connection pool, depending on the connection rate.</p>
<p>Batch scripts doing long running jobs should generally use dedicated connections. Both dedicated and DRCP servers can be used together in the same application or database.</p>
<h4 id="startdrcp">Start the Database Resident Connection Pool (DRCP)</h4>
<p name="startdrcp">If you are running a local or remote Oracle Database (that is not an ADB), start the DRCP pool. Note that the DRCP pool is started in an Oracle Autonomous Database by default.</p>
<p>Run SQL*Plus with SYSDBA privileges, for example:</p>
<pre>
sqlplus -l sys/syspassword@localhost/orclcdb as sysdba
</pre>
<p>and execute the command:</p>
<pre>
execute dbms_connection_pool.start_pool()
</pre>
<p>Note: If you are using Oracle Database 21c,</p>
<p>Run <code>show parameter enable_per_pdb_drcp</code> in SQL*Plus.</p>
<p>If this shows TRUE,</p>
<p>then you will need to run the <code>execute</code> command in a pluggable database, not a container database.</p>
<h4>Connect to the Oracle Database through DRCP</h4>
<p>Review the code contained in <code>connect_drcp.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn + "<strong>:pooled</strong>",
cclass="PYTHONDEMO", purity=oracledb.PURITY_SELF)
print("Database version:", con.version)
</pre>
<p> This is similar to <code>connect.py</code> but
"<code>:pooled</code>" is appended to the connection string, telling
the database to use a pooled server. A Connection Class "PYTHONDEMO" is also passed into the <code>connect()</code> method to allow grouping of database servers to applications. Note that with Autonomous Database, the connection string has a different form, see the <a
href="https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-drcp.html#GUID-E1337EC6-4A78-4199-84F0-A2739055F3FA"
>ADB documentation</a>. </p>
<p> The "purity" of the connection is defined as the <code>PURITY_SELF</code> constant, meaning the session state (such as the default date format) might be retained between connection calls, giving performance benefits. Session information will be discarded if a pooled server is later reused by an application with a different connection class name.</p>
<p>Applications that should never share session information should use a different connection class and/or use <code>PURITY_NEW</code> to force creation of a new session. This reduces overall scalability but prevents applications from misusing the session information. The default purity for connections created with <code>connect()</code> is <code>PURITY_NEW</code>.</p>
<p>Run <code>connect_drcp.py </code>in a terminal window.</p>
<pre><strong>python connect_drcp.py</strong></pre>
<p>The output is simply the version of the database.</p>
</li>
<li>
<h4>2.4 Connection pooling and DRCP</h4>
<p>DRCP works well with python-oracledb's connection pooling. The
default purity for pooled connections is <code>PURITY_SELF</code>.</p>
<p>Edit <code>connect_pool2.py</code>, reset any changed pool options, and modify it to use DRCP:</p>
<pre>
import oracledb
import threading
import db_config
pool = oracledb.create_pool(user=db_config.user, password=db_config.pw, dsn=db_config.dsn <strong>+ ":pooled"</strong>,
min=2, max=5, increment=1, getmode=oracledb.POOL_GETMODE_WAIT,
<strong>cclass="PYTHONDEMO", purity=oracledb.PURITY_SELF</strong>)
def Query():
con = pool.acquire()
cur = conn.cursor()
for i in range(4):
cur.execute("select myseq.nextval from dual")
seqval, = cur.fetchone()
print("Thread", threading.current_thread().name, "fetched sequence =", seqval)
numberOfThreads = 2
threadArray = []
for i in range(numberOfThreads):
thread = threading.Thread(name='#' + str(i), target=Query)
threadArray.append(thread)
thread.start()
for t in threadArray:
t.join()
print("All done!")
</pre>
<p>The script logic does not need to be changed to benefit from
DRCP connection pooling.</p>
<p>Run the script:</p>
<pre><strong>python connect_pool2.py</strong></pre>
<p>Optionally, you can run <strong>drcp_query.py</strong> to check the DRCP pool statistics.</p>
<pre><strong>python drcp_query.py</strong></pre>
<p>This will prompt for the SYSTEM (or ADMIN user), the password, and the database connection string. For running the file, you will need to connect to the container database in Oracle Database v19 or lower. From Oracle Database 21c onwards, you can enable DRCP in pluggable databases.</p>
<p>Note that with ADB, this view does not contain rows, so running this script is not useful. For other Oracle Databases, the script shows the number of connection requests made to the pool since the database was started ("NUM_REQUESTS"), how many of those reused a pooled server's session ("NUM_HITS"), and how many had to create new sessions ("NUM_MISSES"). Typically the goal is a low number of misses.</p>
<p> If the file is run successfully, you should see something like </p>
<pre>Looking at DRCP Pool stats...
(CCLASS_NAME, NUM_REQUESTS, NUM_HITS, NUM_MISSES)
-------------------------------------------------
('PYTHONDEMO.SHARED', 5, 0, 5)
('PYTHONDEMO.PYTHONDEMO', 4, 2, 2)
('SYSTEM.SHARED', 11, 0, 11)
Done.</pre>
<p>To see the pool configuration, you can query DBA_CPOOL_INFO.</p>
</li>
<li>
<h4>2.5 More DRCP investigation</h4>
<p>To further explore the behaviors of python-oracledb connection pooling and DRCP pooling, you could try changing the purity to <code>oracledb.PURITY_NEW</code> to see the effect on the DRCP NUM_MISSES statistic.</p>
<p>Another experiement is to include the <code>time</code> module at the file
top:</p>
<pre>
import time</pre>
<p>and add calls to <code>time.sleep(1)</code> in the code, for
example in the query loop. Then look at the way the threads execute. Use
<code>drcp_query.sql</code> to monitor the pool's behavior.</p>
</li>
</ul>
<h2><a name="fetching">3. Fetching Data</a> </h2>
<p>Executing SELECT queries is the primary way to get data from Oracle Database. <em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/sql_execution.html"
>SQL Queries</a></em>.</p>
<ul>
<li><h4>3.1 A simple query</h4>
<p>There are several functions you can use to query an Oracle database, but the basics of querying are always the same:</p>
<p>1. Execute the statement.<br />
2. Bind data values (optional).<br />
3. Fetch the results from the database.</p>
<p>Review the code contained in <code>query2.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
cur.execute("select * from dept order by deptno")
for deptno, dname, loc in cur:
print("Department number: ", deptno)
print("Department name: ", dname)
print("Department location:", loc)
</pre>
<p>The <code>cursor()</code> method opens a cursor for statements to use.</p>
<p>The <code>execute()</code> method parses and executes the statement.</p>
<p>The loop fetches each row from the cursor and unpacks the returned
tuple into the variables <code>deptno</code>, <code>dname</code>,
<code>loc</code>, which are then printed.</p>
<p>Run the script in a terminal window:</p>
<pre><strong>python query2.py</strong></pre>
<p>The output is:</p>
<pre>Department number: 10
Department name: ACCOUNTING
Department location: NEW YORK
Department number: 20
Department name: RESEARCH
Department location: DALLAS
Department number: 30
Department name: SALES
Department location: CHICAGO
Department number: 40
Department name: OPERATIONS
Department location: BOSTON</pre>
</li>
<li><h4>3.2 Using fetchone()</h4>
<p>When the number of rows is large, the <code>fetchall()</code> call may use too much memory.</p>
<p>Review the code contained in <code>query_one.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, password=db_config.dsn)
cur = con.cursor()
cur.execute("select * from dept order by deptno")
row = cur.fetchone()
print(row)
row = cur.fetchone()
print(row)
</pre>
<p>This uses the <code>fetchone()</code> method to return just a single row as a
tuple. When called multiple time, consecutive rows are returned:</p>
<p>Run the script in a terminal window:</p>
<pre><strong>python query_one.py</strong></pre>
<p>The first two rows of the table are printed.</p>
</li>
<li><h4>3.3 Using fetchmany()</h4>
<p>Review the code contained in <code>query_many.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
cur.execute("select * from dept order by deptno")
num_rows = 3
res = cur.fetchmany(num_rows)
print(res)
</pre>
<p>The <code>fetchmany()</code> method returns a list of tuples. By default the maximum number of rows that can be returned is specified by the cursor attribute <code>arraysize</code> (which defaults to 100). Here the <code>numRows</code> parameter specifies that three rows should be returned.</p>
<p>Run the script in a terminal window:</p>
<pre><strong>python query_many.py</strong></pre>
<p>The first three rows of the table are returned as a list
(Python's name for an array) of tuples.</p>
<p>You can access elements of the lists by position indexes. To see this,
edit the file and add:</p>
<pre>
<strong>print(res[0])</strong> # first row
<strong>print(res[0][1])</strong> # second element of first row
</pre>
</li>
<li><h4>3.4 Tuning with arraysize and prefetchrows</h4>
<p>This section demonstrates a way to improve query performance by increasing the number of rows returned in each batch from Oracle to the Python program.</p>
<p>Row prefetching and array fetching are internal buffering techniques to reduce round-trips to the database. The difference is the code layer that is doing the buffering, and when the buffering occurs.</p>
<p>The <a href="#installsampleenv">environment setup file</a> has already created the <em>bigtab</em> table with a large number of rows (to be used by the <code>query_arraysize.py</code> file) by internally running the sql script below:</p>
<pre>create table bigtab (mycol varchar2(20));
begin
for i in 1..20000
loop
insert into bigtab (mycol) values (dbms_random.string('A',20));
end loop;
end;</pre>
<p>The setup file has also inserted around 20000 string values in the <em>bigtab</em> table.</p>
<p>Review the code contained in <code>query_arraysize.py</code>:</p>
<pre>
import oracledb
import time
import db_config
con = oracledb.connect(name=db_config.user, password=db_config.pw, dsn=db_config.dsn)
start = time.time()
cur = con.cursor()
cur.prefetchrows = 100
cur.arraysize = 100
cur.execute("select * from bigtab")
res = cur.fetchall()
# print(res) # uncomment to display the query results
elapsed = (time.time() - start)
print(elapsed, "seconds")
</pre>
<p>This uses the 'time' module to measure elapsed time of the query. The <em>prefetchrows</em> and <em>arraysize</em> values are 100. This causes batches of 100 records at a time to be returned from the database to a cache in Python.
These values can be tuned to reduce the number of "round-trips"
made to the database, often reducing network load and reducing the number of context switches on the database server. The <code>fetchone()</code>,
<code>fetchmany()</code> and <code>fetchall()</code> methods will read from the cache before requesting more data from the database.</p>
<p>In a terminal window, run:</p>
<pre><strong>python query_arraysize.py</strong></pre>
<p>Rerun a few times to see the average times.</p>
<p>Experiment with different prefetchrows and arraysize values. For example, edit <code>query_arraysize.py</code> and change the arraysize
to:</p>
<pre>cur.arraysize = <strong>2000</strong></pre>
<p>Rerun the script to compare the performance of different
arraysize settings.</p>
<p>In general, larger array sizes improve performance. Depending on how fast your system is, you may need to use different values than those given here to see a meaningful time difference.</p>
<p>There is a time/space tradeoff for increasing the values. Larger values will require more memory in Python for buffering the records.</p>
<p>If you know the query returns a fixed number of rows, for example, 20 rows, then set arraysize to 20 and prefetchrows to 21. The addition of one extra row for prefetchrows prevents a round-trip to check for end-of-fetch. The statement execution and fetch will take a total of one round-trip. This minimizes the load on the database.</p>
<p>If you know a query only returns a few records,
decrease the arraysize from the default to reduce memory usage.</p>
</li>
</ul>
<h2><a name="binding">4. Binding Data</a></h2>
<p>Bind variables enable you to re-execute statements with new data values
without the overhead of re-parsing the statement. Binding improves code reusability, improves application scalability, and can reduce the risk of SQL injection attacks. Using bind variables is strongly recommended.
<em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/bind.html" >Using Bind Variables</a></em>.</p>
<ul>
<li><h4>4.1 Binding in queries</h4>
<p>Review the code contained in <code>bind_query.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
sql = "select * from dept where deptno = :id order by deptno"
cur.execute(sql, id=20)
res = cur.fetchall()
print(res)
cur.execute(sql, id=10)
res = cur.fetchall()
print(res)
</pre>
<p>The statement contains a bind variable "<code>:id</code>" placeholder.
The statement is executed twice with different values for the
<code>WHERE</code> clause.</p>
<p>From a terminal window, run:</p>
<pre><strong>python bind_query.py</strong></pre>
<p>The output shows the details for the two departments.</p>
<p>An arbitrary number of named arguments can be used in an
<code>execute()</code> call. Each argument name must match a bind
variable name. Alternatively, instead of passing multiple arguments you
could pass a second argument to <code>execute()</code> that is a sequence
or a dictionary. Later examples show these syntaxes.</p>
<p>To bind a database NULL, use the Python value <code>None</code>.</p>
<p>python-oracledb uses a cache of executed statements. As long as the statement you pass to <code>execute()</code> is in that cache, you can use different bind values and still avoid a full statement parse. The statement cache size is configurable for each connection. To see the default statement cache size, edit <code>bind_query.py</code> and add a line at the end:</p>
<pre>
print(con.stmtcachesize)
</pre>
<p>Re-run the file.</p>
<p> You would set the statement cache size to the
number of unique statements commonly executed in your applications.</p>
</li>
<li><h4>4.2 Binding in inserts</h4>
<p>The <a href="#installsampleenv">environment setup file</a> has already created the <em>mytab</em> table (to be used by the <code>bind_insert.py</code> file) by internally running the sql script below:</p>
<pre>create table mytab (id number, data varchar2(20), constraint my_pk primary key (id))</pre>
<p>Now, review the code contained in <code>bind_insert.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
rows = [ (1, "First" ), (2, "Second" ),
(3, "Third" ), (4, "Fourth" ),
(5, "Fifth" ), (6, "Sixth" ),
(7, "Seventh" ) ]
cur.executemany("insert into mytab(id, data) values (:1, :2)", rows)
# Now query the results back
cur2 = con.cursor()
cur2.execute('select * from mytab')
res = cur2.fetchall()
print(res)</pre>
<p>The '<code>rows</code>' array contains the data to be inserted into the <em>mytab</em> table created earlier.</p>
<p>The <code>executemany()</code> call inserts all rows. This call uses "array binding", which is an efficient way to
insert multiple records.</p>
<p>The final part of the script queries the results back and displays them as a list of tuples.</p>
<p>From a terminal window, run:</p>
<pre><strong>python bind_insert.py</strong></pre>
<p>The new results are automatically rolled back at the end of
the script. So, re-running the script will always show the same number of
rows in the table.</p>
</li>
<li><h4>4.3 Batcherrors</h4>
<p>The <code>Batcherrors</code> features allows invalid data to be identified
while allowing valid data to be inserted.</p>
<p>Edit the data values in <code>bind_insert.py</code> and
create a row with a duplicate key:</p>
<pre>
rows = [ (1, "First" ), (2, "Second" ),
(3, "Third" ), (4, "Fourth" ),
(5, "Fifth" ), (6, "Sixth" ),
<strong>(6, "Duplicate" ),</strong>
(7, "Seventh" ) ]
</pre>
<p>From a terminal window, run:</p>
<pre><strong>python bind_insert.py</strong></pre>
<p>The duplicate generates the error "ORA-00001: unique
constraint (PYTHONHOL.MY_PK) violated". The data is rolled back
and the query returns no rows.</p>
<p>Edit the file again and enable <code>batcherrors</code> like:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
rows = [ (1, "First" ), (2, "Second" ),
(3, "Third" ), (4, "Fourth" ),
(5, "Fifth" ), (6, "Sixth" ),
<strong>(6, "Duplicate" ),</strong>
(7, "Seventh" ) ]
cur.executemany("insert into mytab(id, data) values (:1, :2)", rows<strong>, batcherrors=True</strong>)
<strong>for error in cur.getbatcherrors():
print("Error", error.message.rstrip(), "at row offset", error.offset)</strong>
# Now query the results back
cur2 = con.cursor()
cur2.execute('select * from mytab')
res = cur2.fetchall()
print(res)
</pre>
<p>Run the file:</p>
<pre><strong>python bind_insert.py</strong></pre>
<p>The new code shows the offending duplicate row: "ORA-00001: unique constraint (PYTHONDEMO.MY_PK) violated at row offset 6".
This indicates the 6th data value (counting from 0) had a
problem.</p>
<p>The other data gets inserted and is queried back.</p>
<p>At the end of the script, python-oracledb will roll back an uncommitted transaction. If you want to commit results, you can use:</p>
<pre>con.commit()</pre>
<p>To force python-oracledb to roll back the transaction, use:</p>
<pre>con.rollback()</pre>
</li>
</ul>
<h2><a name="plsql">5. PL/SQL</a></h2>
<p>PL/SQL is Oracle's procedural language extension to SQL. PL/SQL procedures and functions are stored and run in the database. Using PL/SQL lets all database applications reuse logic, no matter how the application accesses the database. Many data-related operations can be performed in PL/SQL faster than extracting the data into a program (for example, Python) and then processing it. <em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/plsql_execution.html">PL/SQL Execution</a></em>.</p>
<ul>
<li>
<h4>5.1 PL/SQL function</h4>
<p>The <a href="#installsampleenv">environment setup file</a> has already created the new table named <strong>ptab</strong> and a PL/SQL stored function <code>myfunc</code> to insert a row into <em>ptab</em> and return double the inserted value by internally running the sql script below:</p>
<pre>create table ptab (mydata varchar(20), myid number);
create or replace function myfunc(d_p in varchar2, i_p in number) return number as
begin
insert into ptab (mydata, myid) values (d_p, i_p);
return (i_p * 2);
end;
/</pre>
<p>The <code>myfunc</code> PL/SQL stored function will be used by the <code>plsql_func.py</code> file below.</p>
<p>Review the code contained in <code>plsql_func.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
res = cur.callfunc('myfunc', int, ('abc', 2))
print(res)
</pre>
<p>This uses the <code>callfunc()</code> method to execute the function.
The second parameter is the type of the returned value. It should be one of the types supported by python-oracledb or one of the type constants defined by python-oracledb (such as <em>oracledb.NUMBER</em>). The two PL/SQL function parameters are passed as a tuple, binding them to the function parameter arguments.</p>
<p>From a terminal window, run:</p>
<pre><strong>python plsql_func.py</strong></pre>
<p>The output is a result of the PL/SQL function calculation.</p>
</li>
<li><h4>5.2 PL/SQL procedures</h4>
<p>The <a href="#installsampleenv">environment setup file</a> has already created a PL/SQL
stored procedure <code>myproc</code> to accept two parameters by internally running the sql script below:</p>
<pre>create or replace procedure myproc(v1_p in number, v2_p out number) as
begin
v2_p := v1_p * 2;
end;
/</pre>
<p> The second parameter contains an OUT return value.The <code>myproc</code> PL/SQL stored procedure will be used by the <code>plsql_proc.py</code> file below.</p>
<p>Review the code contained in <code>plsql_proc.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
myvar = cur.var(int)
cur.callproc('myproc', (123, myvar))
print(myvar.getvalue())</pre>
<p>This creates an integer variable <code>myvar</code> to hold
the value returned by the PL/SQL OUT parameter. The input number
123 and the output variable name are bound to the procedure call
parameters using a tuple.</p>
<p>To call the PL/SQL procedure, the <code>callproc()</code>
method is used.</p>
<p>In a terminal window, run:</p>
<pre><strong>python plsql_proc.py</strong></pre>
<p>The <code>getvalue()</code> method displays the returned
value.</p>
</li>
</ul>
<h2><a name="handlers">6. Type Handlers</a></h2>
<p>Type handlers enable applications to alter data that is fetched from, or sent to, the database. <em>Documentation links for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/sql_execution.html#changing-fetched-data-types-with-output-type-handlers"
>Changing Fetched Data Types with Output Type Handlers</a> and <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/bind.html#changing-bind-data-types-using-an-input-type-handler"
>Changing Bind Data Types using an Input Type Handler</a></em>.</p>
<ul>
<li>
<h4>6.1 Basic output type handler</h4>
<p>Output type handlers enable applications to change how data
is fetched from the database. For example, numbers can be
returned as strings or decimal objects. LOBs can be returned as
strings or bytes.</p>
<p>A type handler is enabled by setting the
<code>outputtypehandler</code> attribute on either a cursor or
the connection. If set on a cursor, it only affects queries executed
by that cursor. If set on a connection, it affects all queries executed
on cursors created by that connection.</p>
<p>Review the code contained in <code>type_output.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
print("Standard output...")
for row in cur.execute("select * from dept"):
print(row)
</pre>
<p>In a terminal window, run:</p>
<pre><strong>python type_output.py</strong></pre>
<p>This shows the department number represented as digits like
<code>10</code>.</p>
<p>Add an output type handler to the bottom of the file:</p>
<pre>
<strong>def ReturnNumbersAsStrings(cursor, name, defaultType, size, precision, scale):
if defaultType == oracledb.NUMBER:
return cursor.var(str, 9, cursor.arraysize)
print("Output type handler output...")
cur = con.cursor()
cur.outputtypehandler = ReturnNumbersAsStrings
for row in cur.execute("select * from dept"):
print(row)</strong>
</pre>
<p>This type handler converts any number columns to strings with
maximum size 9.</p>
<p>Run the script again:</p>
<pre><strong>python type_output.py</strong></pre>
<p>The new output shows the department numbers are now strings
within quotes like <code>'10'</code>.</p>
</li>
<li><h4>6.2 Output type handlers and variable converters</h4>
<p>When numbers are fetched from the database, the conversion from Oracle's decimal representation to Python's binary format may need careful handling. To avoid unexpected issues, the general recommendation is to do number operations in SQL or PL/SQL, or to use the decimal module in Python.</p>
<p>Output type handlers can be combined with variable converters
to change how data is fetched.</p>
<p>Review <code>type_converter.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
for value, in cur.execute("select 0.1 from dual"):
print("Value:", value, "* 3 =", value * 3)
</pre>
<p>Run the file:</p>
<pre><strong>python type_converter.py</strong></pre>
<p>The output is like:</p>
<pre>Value: 0.1 * 3 = 0.30000000000000004</pre>
<p>Edit the file and add a type handler that uses a Python decimal converter:</p>
<pre>
import oracledb
<strong>import decimal</strong>
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
<strong>def ReturnNumbersAsDecimal(cursor, name, defaultType, size, precision, scale):
if defaultType == oracledb.NUMBER:
return cursor.var(str, 9, cursor.arraysize, outconverter=decimal.Decimal)
cur.outputtypehandler = ReturnNumbersAsDecimal</strong>
for value, in cur.execute("select 0.1 from dual"):
print("Value:", value, "* 3 =", value * 3)
</pre>
<p>The Python <code>decimal.Decimal</code> converter gets called
with the string representation of the Oracle number. The output
from <code>decimal.Decimal</code> is returned in the output
tuple. </p>
<p>Run the file again:</p>
<pre><strong>python type_converter.py</strong></pre>
<p>Output is like:</p>
<pre>Value: 0.1 * 3 = 0.3</pre>
<p>The code above demonstrates the use of outconverter, but in this particular case, python-oracledb offers a simple convenience attribute to do the same conversion:</p>
<pre>
import oracledb
oracledb.defaults.fetch_decimals = True
</pre></li>
<li>
<h4>6.3 Input type handlers</h4>
<p>Input type handlers enable applications to change how data is bound to statements, or to enable new types to be bound directly without having to be converted individually.</p>
<p>Review <code>type_input.py</code>, with the addition of a new class and converter (shown in bold):</p>
<pre>
import oracledb
import db_config
import json
con = oracledb.connect(user=db_config.user,
password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
# Create table
cur.execute("""begin
execute immediate 'drop table BuildingTable';
exception when others then
if sqlcode <> -942 then
raise;
end if;
end;""")
cur.execute("""create table BuildingTable (
ID number(9) not null,
BuildingDetails varchar2(400),
constraint TestTempTable_pk primary key (ID))""")
# Create a Python class for a Building
<strong>class Building(object):
def __init__(self, building_id, description, num_floors):
self.building_id = building_id
self.description = description
self.num_floors = num_floors
def __repr__(self):
return "<Building %s: %s>" % (self.building_id, self.description)
def __eq__(self, other):
if isinstance(other, Building):
return other.building_id == self.building_id \
and other.description == self.description \
and other.num_floors == self.num_floors
return NotImplemented
def to_json(self):
return json.dumps(self.__dict__)
@classmethod
def from_json(cls, value):
result = json.loads(value)
return cls(**result)
# Convert a Python building object to SQL JSON type that can be read as a string
def building_in_converter(value):
return value.to_json()
def input_type_handler(cursor, value, num_elements):
if isinstance(value, Building):
return cursor.var(oracledb.STRING, arraysize=num_elements,
inconverter=building_in_converter)
building = Building(1, "The First Building", 5) # Python object
cur.execute("truncate table BuildingTable")
cur.inputtypehandler = input_type_handler
cur.execute("insert into BuildingTable (ID, BuildingDetails) values (:1, :2)",
(building.building_id, building))
con.commit()</strong>
# Query the row
print("Querying the row just inserted...")
cur.execute("select ID, BuildingDetails from BuildingTable")
for (int_col, string_col) in cur:
print("Building ID:", int_col)
print("Building Details in JSON format:", string_col)
</pre>
<p>In the new file, a Python class <code>Building</code> is defined, which holds basic information about a building.
The <code>Building</code> class is used lower in the code to create a Python instance:</p>
<pre>
building = Building(1, "The First Building", 5)</pre>
<p>which is then directly bound into the INSERT statement like </p>
<pre>cur.execute("insert into BuildingTable (ID, BuildingDetails) values (:1, :2)", (building.building_id, building))</pre>
<p>The mapping between Python and Oracle objects is handled in
<code>building_in_converter</code> which creates
an Oracle STRING object from the <code>Building</code> Python object in a JSON format. The <code>building_in_converter</code> method is called by the input type handler <code>input_type_handler</code>,whenever an instance of <code>Building</code> is inserted with the cursor.</p>
<p>To confirm the behavior, run the file:</p>
<pre><strong>python type_input.py</strong></pre>
<p>You should see the following output:</p>
<pre>Querying the row just inserted...
Building ID: 1
Building Details in JSON format: {"building_id": 1, "description": "The First Building", "num_floors": 5}</pre>
</li>
</ul>
<h2><a name="lobs">7. LOBs</a></h2>
<p>Oracle Database "LOB" long objects can be streamed using a LOB locator, or worked with directly as strings or bytes. <em>Documentation link
for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/lob_data.html"
>Using CLOB and BLOB Data</a></em>.</p>
<ul>
<li>
<h4>7.1 Fetching a CLOB using a locator</h4>
<p>Review the code contained in <code>clob.py</code>:</p>
<pre>
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
print("Inserting data...")
cur.execute("truncate table testclobs")
long_string = ""
for i in range(5):
char = chr(ord('A') + i)
long_string += char * 250
cur.execute("insert into testclobs values (:1, :2)",
(i + 1, "String data " + longString + ' End of string'))
con.commit()
print("Querying data...")
cur.execute("select * from testclobs where id = :id", {'id': 1})
(id, clob) = cur.fetchone()
print("CLOB length:", clob.size())
clobdata = clob.read()
print("CLOB data:", clobdata)
</pre>
<p>This inserts some test string data and then fetches one
record into <code>clob</code>, which is a python-oracledb character
LOB Object. Methods on LOB include <code>size()</code> and
<code>read()</code>.</p>
<p>To see the output, run the file:</p>
<pre><strong>python clob.py</strong></pre>
<p>Edit the file and experiment reading chunks of data by giving start character position and length, such as <code>clob.read(1,10)</code>.</p>
</li>
<li>
<h4>7.2 Fetching a CLOB as a string</h4>
<p>For CLOBs small enough to fit in the application memory, it
is much faster to fetch them directly as strings.</p>
<p>Review the code contained in <code>clob_string.py</code>. The differences from <code>clob.py</code> are shown in bold:</p>
<pre>
import oracledb
import db_config
<strong>oracledb.defaults.fetch_lobs = False</strong>
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
print("Inserting data...")
cur.execute("truncate table testclobs")
long_string = ""
for i in range(5):
char = chr(ord('A') + i)
long_string += char * 250
cur.execute("insert into testclobs values (:1, :2)",
(i + 1, "String data " + long_string + ' End of string'))
con.commit()
print("Querying data...")
cur.execute("select * from testclobs where id = :id", {'id': 1})
<strong>(id, clobdata) = cur.fetchone()
print("CLOB length:", len(clobdata))
print("CLOB data:", clobdata)</strong>
</pre>
<p>Setting <em>oracledb.defaults.fetch_lobs</em> to False causes python-oracledb to fetch the CLOB as a
string. Standard Python string functions such as <code>len()</code> can be used on the result.</p>
<p>The output is the same as for <code>clob.py</code>. To
check, run the file:</p>
<pre><strong>python clob_string.py</strong></pre>
</li>
</ul>
<h2><a name="rowfactory">8. Rowfactory functions</a></h2>
<p>Rowfactory functions enable queries to return objects other than
tuples. They can be used to provide names for the various columns
or to return custom objects.</p>
<ul>
<li><h4>8.1 Rowfactory for mapping column names</h4>
<p>Review the code contained in <code>rowfactory.py</code>:</p>
<pre>
import collections
import oracledb
import db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
cur.execute("select deptno, dname from dept")
rows = cur.fetchall()
print('Array indexes:')
for row in rows:
print(row[0], "->", row[1])
print('Loop target variables:')
for c1, c2 in rows:
print(c1, "->", c2)
</pre>
<p>This shows two methods of accessing result set items from a data row. The first uses array indexes like <code>row[0]</code>. The second uses loop target variables that take each row tuple's values.</p>
<p>Run the file:</p>
<pre><strong>python rowfactory.py</strong></pre>
<p>Both access methods gives the same results.</p>
<p>To use a rowfactory function, edit <code>rowfactory.py</code> and
add this code at the bottom:</p>
<pre>
<strong>print('Rowfactory:')
cur.execute("select deptno, dname from dept")
cur.rowfactory = collections.namedtuple("MyClass", ["DeptNumber", "DeptName"])
rows = cur.fetchall()
for row in rows:
print(row.DeptNumber, "->", row.DeptName)
</strong></pre>
<p>This uses the Python factory function
<code>namedtuple()</code> to create a subclass of tuple that allows access to the elements via indexes or the given field names.</p>
<p>The <code>print()</code> function shows the use of the new
named tuple fields. This coding style can help reduce coding
errors.</p>
<p>Run the script again:</p>
<pre><strong>python rowfactory.py</strong></pre>
<p>The output results are the same.</p>
</li>
</ul>
<h2><a name="subclass">9. Subclassing connections and cursors</a></h2>
<p>Subclassing enables application to "hook" connection and cursor
creation. This can be used to alter or log connection and execution
parameters, and to extend python-oracledb functionality. <em>Documentation link for
further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/tracing.html#application-tracing"
>Application Tracing</a></em>.</p>
<ul>
<li><h4>9.1 Subclassing connections</h4>
<p>Review the code contained in <code>subclass.py</code>:</p>
<pre>
import oracledb
import db_config
class MyConnection(oracledb.Connection):
def __init__(self):
print("Connecting to database")
return super(MyConnection, self).__init__(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
con = MyConnection()
cur = con.cursor()
cur.execute("select count(*) from emp where deptno = :bv", (10,))
count, = cur.fetchone()
print("Number of rows:", count)
</pre>
<p>This creates a new class "MyConnection" that inherits from the python-oracledb Connection class. The <code>__init__</code> method is
invoked when an instance of the new class is created. It prints a message and calls the base class, passing the connection credentials.</p>
<p>In the "normal" application, the application code:</p>
<pre>con = MyConnection()</pre>
<p>does not need to supply any credentials, as they are embedded in the
custom subclass. All the python-oracledb methods such as <code>cursor()</code> are
available, as shown by the query.</p>
<p>Run the file:</p>
<pre><strong>python subclass.py</strong></pre>
<p>The query executes successfully.</p>
</li>
<li><h4>9.2 Subclassing cursors</h4>
<p>Edit <code>subclass.py</code> and extend the
<code>cursor()</code> method with a new MyCursor class:</p>
<pre>
import oracledb
import db_config
class MyConnection(oracledb.Connection):
def __init__(self):
print("Connecting to database")
return super(MyConnection, self).__init__(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
<strong> def cursor(self):
return MyCursor(self)
class MyCursor(oracledb.Cursor):
def execute(self, statement, args):
print("Executing:", statement)
print("Arguments:")
for argIndex, arg in enumerate(args):
print(" Bind", argIndex + 1, "has value", repr(arg))
return super(MyCursor, self).execute(statement, args)
def fetchone(self):
print("Fetchone()")
return super(MyCursor, self).fetchone()</strong>
con = MyConnection()
cur = con.cursor()
cur.execute("select count(*) from emp where deptno = :bv", (10,))
count, = cur.fetchone()
print("Number of rows:", count)
</pre>
<p>When the application gets a cursor from the
<code>MyConnection</code> class, the new <code>cursor()</code> method returns an instance of our new <code>MyCursor</code> class.</p>
<p>The "application" query code remains unchanged. The new <code>execute()</code> and <code>fetchone()</code> methods of the <code>MyCursor</code> class get invoked. They do some logging and invoke the parent methods to do the actual statement execution.</p>
<p>To confirm this, run the file again:</p>
<pre><strong>python subclass.py</strong></pre>
</li>
</ul>
<h2> <a name="thick">10. Python-oracledb Thick mode</a></h2>
<p>All the above examples use python-oracledb in <em>thin</em> mode, but there are certain features which are only available in the <em>thick</em> mode of the python-oracledb driver. The upcoming sections show some of these. Note that you can also run all the earlier examples in thick mode by just changing the import line in examples from <code>import db_config</code> to <code>import db_config_thick as db_config</code>.</p>
<p>The following sections assume you have installed the tutorial schema as shown at the <a href="#preface" >tutorial start</a>.</p>
<ul>
<li>
<h4> 10.1 Review the Oracle Client library path</h4>
<p>You additionally need to make Oracle Client libraries available. Follow the documentation on <a href="https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html" >Installing python-oracledb</a>.</p>
<p>When you have installed Oracle Client libraries, review the library path settings in <code>db_config_thick.py</code> file. If python-oracledb cannot locate Oracle Client libraries, then your applications will fail with an error like "<em>DPI-1047: Cannot locate a 64-bit Oracle Client library</em>". For our examples, we are using Oracle Instant Client libraries.</p>
<pre>
# On Linux, this must be None.
# Instead, the Oracle environment must be set before Python starts.
instant_client_dir = None
# On Windows, if your database is on the same machine, comment these lines out
# and let instant_client_dir be None. Otherwise, set this to your Instant
# Client directory. Note the use of the raw string r"...", which allows backslashes to
# be used as directory separators.
if platform.system() == "Windows":
instant_client_dir = r"C:\Oracle\instantclient_19_14"
# On macOS (Intel x86) set the directory to your Instant Client directory
if platform.system() == "Darwin":
instant_client_dir = os.environ.get("HOME")+"/Downloads/instantclient_19_8"
# You must always call init_oracle_client() to use thick mode
oracledb.init_oracle_client(lib_dir=instant_client_dir)</pre>
<p> <strong>Important! </strong>Calling the <code>init_oracle_client()</code> function enables the thick mode of python-oracledb. Once python-oracledb is in thick mode, you cannot return to thin mode without removing calls to <code>init_oracle_client()</code> and restarting the application.</p>
<p>Edit <code>db_config_thick.py</code> and set <code>instant_client_dir</code> to <code>None</code> or to a valid path according to the following notes:</p>
<ul>
<li>
<p>If you are on macOS (Intel x86) or Windows, and you have installed Oracle Instant Client libraries because your database is on a remote machine, then set <code>instant_client_dir</code> to the path of the Instant Client libraries.</p>
</li>
<li>
<p>If you are on Windows and have a local database installed, then comment out the two Windows lines, so that <code>instant_client_dir</code> remains <code>None</code>.</p>
</li>
<li>
<p>In all other cases (including Linux with Oracle Instant Client), make sure that <code>instant_client_dir</code> is set to <code>None</code>. In these cases you must make sure that the Oracle libraries from Instant Client or your ORACLE_HOME are in your system library search path before you start Python. On Linux, the path can be configured with <em>ldconfig</em> or with the <em>LD_LIBRARY_PATH</em> environment variable.</p>
</li>
</ul>
</li>
<li><h4 id="thickconfig">10.2 Review the configuration files for thick mode</h4>
<p>Review <code>db_config_thick.py</code> (thick mode), and <code>db_config.sql</code> files in the <code>tutorial</code> directory. These are included in other Python and SQL files for setting up the database connection.</p>
<p>Edit <code>db_config_thick.py</code> file and change the default values to match the connection information for your environment. Alternatively, you can set the given environment variables in your terminal window. For example, the default username is "<em>pythondemo</em>" unless the environment variable "<em>PYTHON_USER</em>" contains a different username. The default connection string is for the '<em>orclpdb</em>' database service on the same machine as Python. In Python Database API terminology, the connection string parameter is called the "data source name" or "dsn". Using environment variables is convenient because you will not be asked to re-enter the password when you run scripts:</p>
<pre>
user = os.environ.get("PYTHON_USER", "pythondemo")
dsn = os.environ.get("PYTHON_CONNECT_STRING", "localhost/orclpdb")
pw = os.environ.get("PYTHON_PASSWORD")
if pw is None:
pw = getpass.getpass("Enter password for %s: " % user)
</pre>
<p>Also, change the default username and connection string in the SQL configuration file <code>db_config.sql</code>:</p>
<pre>
-- Default database username
def user = "pythondemo"
-- Default database connection string
def connect_string = "localhost/orclpdb"
-- Prompt for the password
accept pw char prompt 'Enter database password for &user: ' hide
</pre>
<p>The tutorial instructions may need adjusting, depending on how you have set up your environment.</p>
</li>
</ul>
<p>The following sections are specific to the python-oracledb thick modes in this release of python-oracledb.</p>
<h2><a name = "scrollable">11. Scrollable cursors</a></h2>
<p>Scrollable cursors enable python-oracledb thick mode applications to move backwards as well as forwards in query results. They can be used to skip rows as well as move to a particular row.</p>
<ul>
<li><h4>11.1 Working with scrollable cursors</h4>
<p>Review the code contained in <code>query_scroll.py</code>:</p>
<pre>
import oracledb
import db_config_thick as db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor(<strong>scrollable=True</strong>)
cur.execute("select * from dept order by deptno")
cur.scroll(2, mode="absolute") # go to second row
print(cur.fetchone())
cur.scroll(-1) # go back one row
print(cur.fetchone())
</pre>
<p>Run the script in a terminal window:</p>
<pre><strong>python query_scroll.py</strong></pre>
<p>Edit <code>query_scroll.py</code> and experiment with different
scroll options and orders, such as:</p>
<pre>cur.scroll(1) # go to next row
print(cur.fetchone())
cur.scroll(mode="first") # go to first row
print(cur.fetchone())</pre>
<p>Try some scroll options that go beyond the number of rows in the resultset.</p>
</li>
</ul>
<h2><a name="bindnamedobj">12. Binding named objects</a></h2>
<p>Python-oracledb's thick mode can fetch and bind named object types such as Oracle's Spatial Data Objects (SDO).</p>
<p>The SDO definition includes the following attributes:</p>
<pre>
Name Null? Type
----------------------------------------- -------- ----------------------------
SDO_GTYPE NUMBER
SDO_SRID NUMBER
SDO_POINT MDSYS.SDO_POINT_TYPE
SDO_ELEM_INFO MDSYS.SDO_ELEM_INFO_ARRAY
SDO_ORDINATES MDSYS.SDO_ORDINATE_ARRAY
</pre>
<ul>
<li><h4>12.1 How to bind named objects</h4>
<p>Review the code contained in <code>bind_sdo.py</code>:</p>
<pre>
import oracledb
import db_config_thick as db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
# Create table
cur.execute("""begin
execute immediate 'drop table testgeometry';
exception when others then
if sqlcode <> -942 then
raise;
end if;
end;""")
cur.execute("""create table testgeometry (
id number(9) not null,
geometry MDSYS.SDO_GEOMETRY not null)""")
# Create and populate Oracle objects
type_obj = con.<strong>gettype</strong>("MDSYS.SDO_GEOMETRY")
element_info_type_obj = con.<strong>gettype</strong>("MDSYS.SDO_ELEM_INFO_ARRAY")
ordinate_type_obj = con.<strong>gettype</strong>("MDSYS.SDO_ORDINATE_ARRAY")
obj = type_obj.<strong>newobject()</strong>
obj.SDO_GTYPE = 2003
obj.SDO_ELEM_INFO = element_info_type_obj.<strong>newobject()</strong>
obj.SDO_ELEM_INFO.<strong>extend</strong>([1, 1003, 3])
obj.SDO_ORDINATES = ordinate_type_obj.<strong>newobject()</strong>
obj.SDO_ORDINATES.<strong>extend</strong>([1, 1, 5, 7])
print("Created object", obj)
# Add a new row
print("Adding row to table...")
cur.execute("insert into testgeometry values (1, :objbv)", objbv = obj)
print("Row added!")
# Query the row
print("Querying row just inserted...")
cur.execute("select id, geometry from testgeometry");
for row in cur:
print(row)</pre>
<p>This uses <code>gettype()</code> to get the database types of the SDO and its object attributes. The <code>newobject()</code> calls create Python representations of those objects. The python object atributes are then set. Oracle VARRAY types such as SDO_ELEM_INFO_ARRAY are set with <code>extend()</code>.</p>
<p>Run the file:</p>
<pre><strong>python bind_sdo.py</strong></pre>
<p>The new SDO is shown as an object, similar to </p>
<pre>(1, <oracledb.Object MDSYS.SDO_GEOMETRY at 0x104a76230>)</pre>
<p>To show the attribute values, edit the query code section at
the end of the file. Add a new method that traverses the object. The file below the existing comment "<code># (Change below here)</code>")
should look like:</p>
<pre>
# (Change below here)
# Define a function to dump the contents of an Oracle object
def dumpobject(obj, prefix = " "):
if obj.type.iscollection:
print(prefix, "[")
for value in obj.aslist():
if isinstance(value, oracledb.Object):
dumpobject(value, prefix + " ")
else:
print(prefix + " ", repr(value))
print(prefix, "]")
else:
print(prefix, "{")
for attr in obj.type.attributes:
value = getattr(obj, attr.name)
if isinstance(value, oracledb.Object):
print(prefix + " " + attr.name + " :")
dumpobject(value, prefix + " ")
else:
print(prefix + " " + attr.name + " :", repr(value))
print(prefix, "}")
# Query the row
print("Querying row just inserted...")
cur.execute("select id, geometry from testgeometry")
for id, obj in cur:
print("Id: ", id)
dumpobject(obj)</pre>
<p>Run the file again:</p>
<pre><strong>python bind_sdo.py</strong></pre>
<p>This shows</p>
<pre>
Querying row just inserted...
Id: 1
{
SDO_GTYPE : 2003
SDO_SRID : None
SDO_POINT : None
SDO_ELEM_INFO :
[
1
1003
3
]
SDO_ORDINATES :
[
1
1
5
7
]
}
</pre>
<p>To explore further, try setting the SDO attribute SDO_POINT, which is of type SDO_POINT_TYPE.</p>
<p>The <code>gettype()</code> and <code>newobject()</code> methods can also be used to bind PL/SQL Records and Collections.</p>
<p>Before deciding to use objects, review your performance goals because working with scalar values can be faster.</p>
</li>
</ul>
<h2><a name="typehandlers">13. Input and Output Type Handlers with named objects</a></h2>
<p>Named objects can only be used in python-oracledb's thick mode. <em>Documentation links for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/sql_execution.html#changing-fetched-data-types-with-output-type-handlers"
>Changing Fetched Data Types with Output Type Handlers</a> and <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/bind.html#changing-bind-data-types-using-an-input-type-handler"
>Changing Bind Data Types using an Input Type Handler</a></em>.</p>
<ul>
<li>
<h4>13.1 Input type handlers with named objects</h4>
<p>Input type handlers for named objects can enable applications to change how data is bound to the individual attributes of the named objects. Review the code contained in <code>type_input_named_obj.py</code>, which is similar to the final <code>bind_sdo.py</code> from section 12.1, with the
addition of a new class and converter (shown in bold):</p>
<pre>
import oracledb
import db_config_thick as db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
# Create table
cur.execute("""begin
execute immediate 'drop table testgeometry';
exception when others then
if sqlcode <> -942 then
raise;
end if;
end;""")
cur.execute("""create table testgeometry (
id number(9) not null,
geometry MDSYS.SDO_GEOMETRY not null)""")
<strong># Create a Python class for an SDO
class mySDO(object):
def __init__(self, gtype, elemInfo, ordinates):
self.gtype = gtype
self.elemInfo = elemInfo
self.ordinates = ordinates</strong>
# Get Oracle type information
obj_type = con.gettype("MDSYS.SDO_GEOMETRY")
element_info_type_obj = con.gettype("MDSYS.SDO_ELEM_INFO_ARRAY")
ordinate_type_obj = con.gettype("MDSYS.SDO_ORDINATE_ARRAY")
# Convert a Python object to MDSYS.SDO_GEOMETRY
<strong>def SDOInConverter(value):
obj = obj_type.newobject()
obj.SDO_GTYPE = value.gtype
obj.SDO_ELEM_INFO = element_info_type_obj.newobject()
obj.SDO_ELEM_INFO.extend(value.elemInfo)
obj.SDO_ORDINATES = ordinate_type_obj.newobject()
obj.SDO_ORDINATES.extend(value.ordinates)
return obj
def SDOInputTypeHandler(cursor, value, numElements):
if isinstance(value, mySDO):
return cursor.var(oracledb.OBJECT, arraysize=numElements,
inconverter=SDOInConverter, typename=obj_type.name)</strong>
sdo = mySDO(2003, [1, 1003, 3], [1, 1, 5, 7]) # Python object
<strong>cur.inputtypehandler = SDOInputTypeHandler</strong>
cur.execute("insert into testgeometry values (:1, :2)", (1, sdo))
# Define a function to dump the contents of an Oracle object
def dumpobject(obj, prefix = " "):
if obj.type.iscollection:
print(prefix, "[")
for value in obj.aslist():
if isinstance(value, oracledb.Object):
dumpobject(value, prefix + " ")
else:
print(prefix + " ", repr(value))
print(prefix, "]")
else:
print(prefix, "{")
for attr in obj.type.attributes:
value = getattr(obj, attr.name)
if isinstance(value, oracledb.Object):
print(prefix + " " + attr.name + " :")
dumpobject(value, prefix + " ")
else:
print(prefix + " " + attr.name + " :", repr(value))
print(prefix, "}")
# Query the row
print("Querying row just inserted...")
cur.execute("select id, geometry from testgeometry")
for (id, obj) in cur:
print("Id: ", id)
dumpobject(obj)
</pre>
<p>The mapping between Python and Oracle objects is handled in <code>SDOInConverter</code> which uses the python-oracledb <code>newobject()</code> and <code>extend()</code> methods to create an Oracle object from the Python object values. The <code>SDOInConverter</code> method is called by the input type handler
<code>SDOInputTypeHandler</code> whenever an instance of
<code>mySDO</code> is inserted with the cursor.</p>
<p>To confirm the behavior, run the file:</p>
<pre><strong>python type_input_named_obj.py</strong></pre>
<p> This will show</p>
<pre>Querying row just inserted...
Id: 1
{
SDO_GTYPE : 2003.0
SDO_SRID : None
SDO_POINT : None
SDO_ELEM_INFO :
[
1.0
1003.0
3.0
]
SDO_ORDINATES :
[
1.0
1.0
5.0
7.0
]
}</pre></li>
</ul>
<ul>
<li>
<h4>13.2 Output type handlers with named objects</h4>
<p>Output type handlers enable applications to extract the data from database named objects into a user-defined Python object (defined by the <code>mySDO</code> class here). Review the code contained in <code>type_output_named_obj.py</code> with the output converter function shown in bold:</p>
<pre>
import oracledb
import db_config_thick as db_config
con = oracledb.connect(user=db_config.user,
password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
# Create table
cur.execute("""begin
execute immediate 'drop table testgeometry';
exception when others then
if sqlcode <> -942 then
raise;
end if;
end;""")
cur.execute("""create table testgeometry (
id number(9) not null,
geometry MDSYS.SDO_GEOMETRY not null)""")
# Create a Python class for an SDO
class mySDO(object):
def __init__(self, gtype, elemInfo, ordinates):
self.gtype = gtype
self.elemInfo = elemInfo
self.ordinates = ordinates
# Get Oracle type information
obj_type = con.gettype("MDSYS.SDO_GEOMETRY")
element_info_type_obj = con.gettype("MDSYS.SDO_ELEM_INFO_ARRAY")
ordinate_type_obj = con.gettype("MDSYS.SDO_ORDINATE_ARRAY")
# Convert a Python object to MDSYS.SDO_GEOMETRY
def SDOInConverter(value):
obj = obj_type.newobject()
obj.SDO_GTYPE = value.gtype
obj.SDO_ELEM_INFO = element_info_type_obj.newobject()
obj.SDO_ELEM_INFO.extend(value.elemInfo)
obj.SDO_ORDINATES = ordinate_type_obj.newobject()
obj.SDO_ORDINATES.extend(value.ordinates)
return obj
def SDOInputTypeHandler(cursor, value, numElements):
if isinstance(value, mySDO):
return cursor.var(oracledb.OBJECT, arraysize=numElements,
inconverter=SDOInConverter, typename=obj_type.name)
# Convert a MDSYS.SDO_GEOMETRY DB Object to Python object
<strong>def SDOOutConverter(DBobj):
return mySDO(int(DBobj.SDO_GTYPE), DBobj.SDO_ELEM_INFO.aslist(),
DBobj.SDO_ORDINATES.aslist())</strong>
<strong>def SDOOutputTypeHandler(cursor, name, default_type, size, precision,
scale):
if default_type == oracledb.DB_TYPE_OBJECT:
return cursor.var(obj_type, arraysize=cursor.arraysize,
outconverter=SDOOutConverter)</strong>
sdo = mySDO(2003, [1, 1003, 3], [1, 1, 5, 7]) # Python object
cur.inputtypehandler = SDOInputTypeHandler
cur.execute("insert into testgeometry values (:1, :2)", (1, sdo))
cur.outputtypehandler = SDOOutputTypeHandler
# Query the SDO Table row
print("Querying the Spatial Data Object(SDO) Table using the Output Type Handler...")
print("----------------------------------------------------------------------------")
cur.execute("select id, geometry from testgeometry")
for (id, obj) in cur:
print("SDO ID:", id)
print("SDO GYTPE:", obj.gtype)
print("SDO ELEMINFO:", obj.elemInfo)
print("SDO_ORDINATES:", obj.ordinates)</pre>
<p>Note that the Input Type Handler and the InConverter functions are the same as the previous example. </p>
<p>The mapping between the Python and Oracle objects is handled in <code>SDOOutConverter</code>. The <code>SDOOutConverter</code> method is called by the output type handler
<code>SDOOutputTypeHandler</code> whenever data of the named object (<code>MDSYS.SDOGEOMETRY</code> in this case) is selected with the cursor and needs to be converted to a user-defined Python object (<code>mySDO</code> object in this case).</p>
<p>To confirm the behavior, run the file:</p>
<pre><strong>python type_output_named_obj.py</strong></pre>
<p> This will show</p>
<pre>Querying the Spatial Data Object(SDO) Table using the Output Type Handler...
----------------------------------------------------------------------------
SDO ID: 1
SDO GYTPE: 2003
SDO ELEMINFO: [1.0, 1003.0, 3.0]
SDO_ORDINATES: [1.0, 1.0, 5.0, 7.0]</pre></li>
</ul>
<h2><a name="aq">14. Advanced Queuing</a></h2>
<p>Oracle Advanced Queuing (AQ) APIs usable in python-oracledb thick mode allow messages to be passed between applications. <em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/aq.html" >Oracle Advanced Queuing (AQ)</a></em>.</p>
<ul>
<li>
<h4>14.1 Message passing with Oracle Advanced Queuing</h4>
<p>Review <code>aq.py</code>:</p>
<pre>
import oracledb
import decimal
import db_config_thick as db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()
BOOK_TYPE_NAME = "UDT_BOOK"
QUEUE_NAME = "BOOKS"
QUEUE_TABLE_NAME = "BOOK_QUEUE_TABLE"
# Cleanup
cur.execute(
"""begin
dbms_aqadm.stop_queue('""" + QUEUE_NAME + """');
dbms_aqadm.drop_queue('""" + QUEUE_NAME + """');
dbms_aqadm.drop_queue_table('""" + QUEUE_TABLE_NAME + """');
execute immediate 'drop type """ + BOOK_TYPE_NAME + """';
exception when others then
if sqlcode <> -24010 then
raise;
end if;
end;""")
# Create a type
print("Creating books type UDT_BOOK...")
cur.execute("""
create type %s as object (
title varchar2(100),
authors varchar2(100),
price number(5,2)
);""" % BOOK_TYPE_NAME)
# Create queue table and queue and start the queue
print("Creating queue table...")
cur.callproc("dbms_aqadm.create_queue_table",
(QUEUE_TABLE_NAME, BOOK_TYPE_NAME))
cur.callproc("dbms_aqadm.create_queue", (QUEUE_NAME, QUEUE_TABLE_NAME))
cur.callproc("dbms_aqadm.start_queue", (QUEUE_NAME,))
books_type = con.gettype(BOOK_TYPE_NAME)
queue = con.queue(QUEUE_NAME, booksType)
# Enqueue a few messages
print("Enqueuing messages...")
BOOK_DATA = [
("The Fellowship of the Ring", "Tolkien, J.R.R.", decimal.Decimal("10.99")),
("Harry Potter and the Philosopher's Stone", "Rowling, J.K.",
decimal.Decimal("7.99"))
]
for title, authors, price in BOOK_DATA:
book = books_type.newobject()
book.TITLE = title
book.AUTHORS = authors
book.PRICE = price
print(title)
queue.enqone(con.msgproperties(payload=book))
con.commit()
# Dequeue the messages
print("\nDequeuing messages...")
queue.deqoptions.wait = oracledb.DEQ_NO_WAIT
while True:
props = queue.deqone()
if not props:
break
print(props.payload.TITLE)
con.commit()
print("\nDone.")
</pre>
<p>This file sets up Advanced Queuing using Oracle's DBMS_AQADM
package. The queue is used for passing Oracle UDT_BOOK objects. The file uses AQ interface features enhanced in python-oracledb v1.0.</p>
<p>Run the file:</p>
<pre><strong>python aq.py</strong></pre>
<p>The output shows messages being queued and dequeued.</p>
<p>To experiment, split the code into three files: one to create and
start the queue and two other files to queue and dequeue messages.
Experiment with running the queue and dequeue files concurrently in
separate terminal windows.</p>
<p>Try removing the <code>commit()</code> call in
<code>aq-dequeue.py</code>. Now run <code>aq-enqueue.py</code> once
and then <code>aq-dequeue.py</code> several times. The same messages
will be available each time you try to dequeue them.</p>
<p>Change <code>aq-dequeue.py</code> to commit in a separate
transaction by changing the "visibility" setting:</p>
<pre>
queue.deqoptions.visibility = oracledb.DEQ_IMMEDIATE
</pre>
<p>This gives the same behavior as the original code.</p>
<p>Now change the options of enqueued messages so that they expire from the
queue if they have not been dequeued after four seconds:</p>
<pre>
queue.enqone(con.msgproperties(payload=book, expiration=4))
</pre>
<p>Now run <code>aq-enqueue.py</code> and wait four seconds before you
run <code>aq-dequeue.py</code>. There should be no messages to
dequeue. </p>
<p>If you are stuck, please look in the <code>solutions</code> directory at the <code>aq-dequeue.py</code>, <code>aq-enqueue.py</code> and <code>aq-queuestart.py</code> files.</p>
</li>
</ul>
<h2><a name="soda">15. Simple Oracle Document Access (SODA)</a></h2>
<p>Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs.
Documents can be inserted, queried, and retrieved from Oracle Database. By default, documents are JSON strings. SODA APIs exist in many languages. It is usable in python-oracledb's thick mode. <i>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/soda.html" >Simple Oracle Document Access (SODA)</a></i>.</p>
<ul>
<li>
<h4>15.1 Inserting JSON Documents</h4>
<p>Review <code>soda.py</code> :</p>
<pre>
import oracledb
import db_config_thick as db_config
con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
soda = con.getSodaDatabase()
# Explicit metadata is used for maximum version portability
metadata = {
"keyColumn": {
"name":"ID"
},
"contentColumn": {
"name": "JSON_DOCUMENT",
"sqlType": "BLOB"
},
"versionColumn": {
"name": "VERSION",
"method": "UUID"
},
"lastModifiedColumn": {
"name": "LAST_MODIFIED"
},
"creationTimeColumn": {
"name": "CREATED_ON"
}
}
collection = soda.createCollection("friends", metadata)
content = {'name': 'Jared', 'age': 35, 'address': {'city': 'Melbourne'}}
doc = collection.insertOneAndGet(content)
key = doc.key
doc = collection.find().key(key).getOne()
content = doc.getContent()
print('Retrieved SODA document dictionary is:')
print(content)</pre>
<p><code>soda.createCollection()</code> will create a new collection, or open an existing collection, if the name is already in use. (Due to a change in the default "<em>sqlType</em>" storage for Oracle Database 21c, the metadata is explicitly stated to use a BLOB column. This lets the example run with different client and database versions).</p>
<p><code>insertOneAndGet()</code> inserts the content of a document into the database and returns a SODA Document Object.
This allows access to metadata such as the document key. By default, document keys are automatically generated.</p>
<p>The <code>find()</code> method is used to begin an operation that will act upon documents in the collection.</p>
<p><code>content</code> is a dictionary. You can also get a JSON string by calling <code>doc.getContentAsString()</code>.</p>
<p>Run the file:</p>
<pre><strong>python soda.py</strong></pre>
<p>The output shows the content of the new document.</p>
</li>
<li>
<h4>15.2 Searching SODA Documents</h4>
<p>Extend <code>soda.py</code> to insert some more documents and perform a find filter operation:</p>
<pre>
my_docs = [
{'name': 'Gerald', 'age': 21, 'address': {'city': 'London'}},
{'name': 'David', 'age': 28, 'address': {'city': 'Melbourne'}},
{'name': 'Shawn', 'age': 20, 'address': {'city': 'San Francisco'}}
]
collection.insertMany(my_docs)
filter_spec = { "address.city": "Melbourne" }
my_documents = collection.find().filter(filter_spec).getDocuments()
print('Melbourne people:')
for doc in my_documents:
print(doc.getContent()["name"])
</pre>
<p>Run the script again:</p>
<pre><strong>python soda.py</strong></pre>
<p>The find operation filters the collection and returns documents where the city is Melbourne. Note the
<code>insertMany()</code> method is currently in preview.</p>
<p>SODA supports query by example (QBE) with an extensive set of
operators. Extend <code>soda.py</code> with a QBE to find
documents where the age is less than 25:</p>
<pre>
filter_spec = {'age': {'$lt': 25}}
my_documents = collection.find().filter(filter_spec).getDocuments()
print('Young people:')
for doc in my_documents:
print(doc.getContent()["name"])
</pre>
<p>Running the script displays the names.</p>
</li>
</ul>
<h2><a name="summary">Summary</a></h2>
<p>In this tutorial, you have learned how to: </p>
<ul>
<li>Install the python-oracledb driver and use thin and thick modes</li>
<li>Create and work with connections</li>
<li>Use python-oracledb's connection pooling and Database Resident Connection Pooling</li>
<li>Execute queries and fetch data</li>
<li>Use bind variables</li>
<li>Use PL/SQL stored functions and procedures</li>
<li>Extend python-oracledb classes</li>
<li>Use scrollable cursors</li>
<li>Work with named objects</li>
<li>Use Oracle Advanced Queuing</li>
<li>Use the SODA document store API</li>
</ul>
<p>For further reading, see the <a
href="https://python-oracledb.readthedocs.io/en/latest/index.html" >python-oracledb documentation</a>.</p>
<h2><a name="primer">Appendix: Python Primer</a></h2>
<p>Python is a dynamically typed scripting language. It is most often used to run command-line scripts but is also used for web applications and web services.</p>
<h4>Running Python</h4>
<p> You can either:</p>
<ul>
<li><p>Create a file of Python commands, such as
<code>myfile.py</code>. This can be run with:</p>
<pre><strong>python myfile.py</strong></pre></li>
<li><p>Alternatively run the Python interpreter by executing the <code>python</code> command in a terminal, and then interactively enter commands. Use <strong>Ctrl-D</strong> to exit back to the operating system prompt.</p></li>
</ul>
<p>On some machines, you may need to run the <code>python3</code> command instead of <code>python</code>. </p>
<p>When you run scripts, Python automatically creates bytecode versions of them in a folder called <code>__pycache__</code>.
These improve the performance of scripts that are run multiple times. They are automatically recreated if the source file changes.</p>
<h4>Indentation</h4>
<p> Whitespace indentation is significant in Python. When copying examples, use the same column alignment as shown. The samples in this tutorial use spaces, not tabs. </p>
<p>The following indentation prints 'done' once after the loop has completed:</p>
<pre>
for i in range(5):
print(i)
print('done')
</pre>
<p>But this indentation prints 'done' in each iteration:</p>
<pre>
for i in range(5):
print(i)
print('done')
</pre>
<h4>Strings</h4>
<p> Python strings can be enclosed in
single or double quotes:</p>
<pre>'A string constant'
"another constant"</pre>
<p>Multi line strings use a triple-quote syntax:</p>
<pre>"""
SELECT *
FROM EMP
"""</pre>
<h4>Variables</h4>
<p> Variables do not need types declared:</p>
<pre>count = 1
ename = 'Arnie'</pre>
<h4>Comments</h4>
<p> Comments can be single line:</p>
<pre># a short comment</pre>
<p>Or they can be multi-line using the triple-quote token to create a string that does nothing:</p>
<pre>"""
a longer
comment
"""
</pre>
<h4>Printing</h4>
<p> Strings and variables can be displayed with a <code>print()</code> function:</p>
<pre>print('Hello, World!')
print('Value:', count)</pre>
<h4>Data Structures</h4>
<p>Associative arrays are called 'dictionaries':</p>
<pre>a2 = {'PI':3.1415, 'E':2.7182}</pre>
<p>Ordered arrays are called 'lists':</p>
<pre>a3 = [101, 4, 67]</pre>
<p>Lists can be accessed via indexes.</p>
<pre>
print(a3[0])
print(a3[-1])
print(a3[1:3])
</pre>
<p>Tuples are like lists but cannot be changed once they are
created. They are created with parentheses:</p>
<pre>a4 = (3, 7, 10)</pre>
<p>Individual values in a tuple can be assigned to variables like:</p>
<pre>v1, v2, v3 = a4</pre>
<p>Now the variable v1 contains 3, the variable v2 contains 7 and the variable v3 contains 10.</p>
<p>The value in a single entry tuple like "<code>(13,)</code>"can be
assigned to a variable by putting a comma after the variable name
like:</p>
<pre>v1, = (13,)</pre>
<p>If the assignment is:</p>
<pre>v1 = (13,)</pre>
<p>then <code>v1</code> will contain the whole tuple "<code>(13,)</code>"</p>
<h4>Objects</h4>
<p>Everything in Python is an object. As an example, given the of the list <code>a3</code> above, the <code>append()</code> method can be used to add a value to the list.</p>
<pre>a3.append(23)</pre>
<p>Now <code>a3</code> contains <code>[101, 4, 67, 23]</code></p>
<h4>Flow Control</h4>
<p> Code flow can be controlled with tests and loops. The
<code>if</code>/<code>elif</code>/<code>else</code> statements look like:</p>
<pre>
if v == 2 or v == 4:
print('Even')
elif v == 1 or v == 3:
print('Odd')
else:
print('Unknown number')
</pre>
<p>This also shows how the clauses are delimited with colons, and each sub-block of code is indented.</p>
<h4>Loops</h4>
<p>A traditional loop is:</p>
<pre>for i in range(10):
print(i)</pre>
<p>This prints the numbers from 0 to 9. The value of <code>i</code>
is incremented in each iteration. </p>
<p>The '<code>for</code>' command can also be used to iterate over lists and tuples:</p>
<pre>
a5 = ['Aa', 'Bb', 'Cc']
for v in a5:
print(v)
</pre>
<p>This sets <code>v</code> to each element of the list
<code>a5</code> in turn.</p>
<h4>Functions</h4>
<p> A function may be defined as:</p>
<pre>
def myfunc(p1, p2):
"Function documentation: add two numbers"
print(p1, p2)
return p1 + p2</pre>
<p>Functions may or may not return values. This function could be called using:</p>
<pre>v3 = myfunc(1, 3)</pre>
<p>Function calls must appear after their function definition.</p>
<p>Functions are also objects and have attributes. The inbuilt
<code>__doc__</code> attribute can be used to find the function description:</p>
<pre>print(myfunc.__doc__)</pre>
<h4>Modules</h4>
<p> Sub-files can be included in Python scripts with an import statement.</p>
<pre>import os
import sys</pre>
<p>Many predefined modules exist, such as the os and the sys modules.</p>
<h2><a name="resources">Resources</a></h2>
<ul>
<li><a href="https://docs.python.org/3/" >Python Documentation</a></li>
<li><a href="http://python-oracledb.readthedocs.io/en/latest/index.html" >Python python-oracledb Documentation</a></li>
<li><a href="https://github.com/oracle/python-oracledb/tree/main/samples" >Python-oracledb Source Code Repository Samples</a></li>
</ul>
<div class="footer"></div>
<hr/>
<h2>License</h2>
<p>Copyright © 2017, 2022, Oracle and/or its affiliates. </p>
<p>This software is dual-licensed to you under the Universal Permissive License
(UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
either license. </p>
<p>If you elect to accept the software under the Apache License, Version 2.0,
the following applies: </p>
<p>Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at </p>
<p>
https://www.apache.org/licenses/LICENSE-2.0
</p>
<p>Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. </p>
</body>
</html>
|