File: Python-and-Oracle-Database-The-New-Wave-of-Scripting.html

package info (click to toggle)
python-oracledb 1.2.1-3
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 5,224 kB
  • sloc: python: 17,637; sql: 1,819; makefile: 41
file content (2752 lines) | stat: -rw-r--r-- 108,791 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<title>Python and Oracle Database Tutorial: The New Wave of Scripting</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

<link rel="stylesheet" href="resources/base.css" type="text/css"/>
<link rel="shortcut icon" type="image/x-icon" href="resources/favicon.ico"/>
</head>
<body bgcolor="#ffffff" text="#000000">
  <div class="oracleHeader">
    <div class="container">
      <a class="oracleLogo" href="https://www.oracle.com/">Oracle</a>
    </div>
  </div>
  <header class="header" role="banner">
    <div class="container">
      <div class="headerLogoContainer">
        <img class="headerLogo" alt="python-oracledb logo" src="resources/logo.png" />
      </div>
      <div class="headerContent">
        <h1 class="headerTitle">Python and Oracle Database Tutorial: The New Wave of Scripting</h1>
        <nav class="headerNav" role="navigation">
        </nav>
      </div>
    </div>

  </header>

<h1></h1>

  <h2>Contents</h2>

  <ul>
    <li><a href="#overview" >Overview</a></li>
    <li><a href="#preface" >Setup</a></li>
    <li><a href="#connecting">Connecting to Oracle</a>
      <ul>
        <li>1.1 Creating a basic connection</li>
        <li>1.2 Indentation indicates code structure</li>
        <li>1.3 Executing a query</li>
        <li>1.4 Closing connections</li>
        <li>1.5 Checking versions</li>
        <li>1.6 Using the ConnectParams builder class</li>
        <li>1.7 Checking Connection Health</li>
      </ul>
    </li>
    <li><a href="#pooling">Connection Pooling</a>
      <ul>
        <li>2.1 Connection pooling</li>
        <li>2.2 Connection pool experiments</li>
        <li>2.3 Creating a DRCP Connection</li>
        <li>2.4 Connection pooling and DRCP</li>
        <li>2.5 More DRCP investigation</li>
      </ul>
    </li>
    <li><a href="#fetching">Fetching Data</a>
      <ul>
        <li>3.1 A simple query</li>
        <li>3.2 Using fetchone()</li>
        <li>3.3 Using fetchmany()</li>
        <li>3.4 Tuning with arraysize and prefetchrows</li>
      </ul>
    </li>
    <li><a href="#binding">Binding Data</a>
      <ul>
        <li>4.1 Binding in queries</li>
        <li>4.2 Binding in inserts</li>
        <li>4.3 Batcherrors</li>
      </ul>
    </li>
    <li><a href="#plsql">PL/SQL</a>
      <ul>
        <li>5.1 PL/SQL functions</li>
        <li>5.2 PL/SQL procedures</li>
      </ul>
    </li>
    <li><a href="#handlers">Type Handlers</a>
      <ul>
        <li>6.1 Basic output type handler</li>
        <li>6.2 Output type handlers and variable converters</li>
        <li>6.3 Input type handlers</li>
      </ul>
    </li>
    <li> <a href="#lobs">LOBs</a>
      <ul>
        <li>7.1 Fetching a CLOB using a locator</li>
        <li>7.2 Fetching a CLOB as a string</li>
      </ul>
    </li>
    <li> <a href="#rowfactory">Rowfactory functions</a>
      <ul>
        <li>8.1 Rowfactory for mapping column names</li>
      </ul>
    </li>
    <li><a href="#subclass">Subclassing connections and cursors</a>
      <ul>
        <li>9.1 Subclassing connections</li>
        <li>9.2 Subclassing cursors</li>
      </ul>
    </li>
    <li><a href="#thick">Python-oracledb Thick mode</a>
      <ul>
      <li>10.1 Review the Oracle Client library path</li>
      <li>10.2 Review the configuration files for thick mode</li>
      </ul>
    </li>
    <li><a href="#scrollable">Scrollable cursors</a>
      <ul>
      <li>11.1 Working with scrollable cursors</li>
      </ul>
    </li>
    <li><a href="#bindnamedobj">Binding named objects</a>
      <ul>
      <li>12.1 How to bind named objects</li>
      </ul>
    </li>
    <li><a href="#typehandlers">Input and Output Type Handlers with named objects</a>
      <ul>
      <li>13.1 Input type handlers with named objects</li>
      <li>13.2 Output type handlers with named objects</li>
      </ul>
    </li>
    <li><a href="#aq">Advanced Queuing</a>
      <ul>
        <li>14.1 Message passing with Oracle Advanced Queuing</li>
      </ul>
    </li>
    <li><a href="#soda">Simple Oracle Document Access (SODA)</a>
      <ul>
        <li>15.1 Inserting JSON Documents</li>
        <li>15.2 Searching SODA Documents</li>
      </ul>
    </li>
    <li><a href="#summary" >Summary</a></li>
    <li><a href="#primer" >Appendix: Python Primer</a></li>
    <li><a href="#resources" >Resources</a></li>
</ul>

  <h2><a name="overview">Overview</a></h2>

  <p>This tutorial is a primary guide on using Python with Oracle Database. It contains both beginner and advanced materials. Choose the content that interests you and your skill level. The tutorial has scripts to run and modify, and has suggested solutions.</p>

<p>Python is a popular general purpose dynamic scripting language. The python-oracledb driver provides Python APIs to access Oracle Database. It is an upgrade for the hugely popular <a href="https://oracle.github.io/python-cx_Oracle/">cx_Oracle</a> interface.
</p>


  <p>If you are new to Python, review the <a href="#primer">Appendix: Python Primer</a> to gain an understanding of the language. </p>
<p>When you have finished this tutorial, we recommend reviewing the <a href="http://python-oracledb.readthedocs.org/en/latest/index.html" >python-oracledb documentation</a>.</p>

  <p>The original copy of these instructions that you are reading is <a
  href="https://oracle.github.io/python-oracledb/samples/tutorial/Python-and-Oracle-Database-The-New-Wave-of-Scripting.html"
  >here</a>.</p>

<h3><a name="architecture">Python-oracledb Architecture</a></h3>

<p>The python-oracledb driver enables access to Oracle Database using either
one of two modes.  Both modes have comprehensive functionality supporting the
Python Database API v2.0 Specification.  By default, python-oracledb runs in a
&quot;thin&quot; mode, which connects directly to Oracle Database.  This mode
does not need Oracle Client libraries. However, some additional features are
available when python-oracledb uses them.  Python-oracledb applications that
load the Oracle Client libraries via an application script runtime option are
said to be in &quot;thick&quot; mode.  This tutorial has examples in both
modes.</p>

<p><img src="resources/python-oracledb-arch.svg" alt="Python python-oracledb architecture" width=800/></p>
<p>The database can be on the same machine as Python, or it can be remote.</p>
<h2><a name="preface">Setup</a></h2>

  <ul>

    <li><h4 id="installsw">Install software</h4>

      <p>Install Python 3 if not already available.  It can be obtained from
      your operating system package library or from <a
      href="https://www.python.org/">python.org</a>.  On Windows, use Python 3.7
      or later.  On macOS, use Python 3.7 or later.  On Linux, use Python 3.6 or
      later.</p>

      <p>Install <a
      href="https://pypi.org/project/oracledb/">python-oracledb</a> with
      a command like <code>pip install oracledb --upgrade</code></p>

      <p>Ensure you can access an Oracle Database.</p>

<!--
      <p>To get going, follow either of the quick start instructions:</p>

      <ul>
        <li><p><a href="https://www.oracle.com/database/technologies/appdev/python/quickstartpythononprem.html" >Quick Start: Developing Python Applications for Oracle Database (On-Premises)</a></p></li>

        <li><p><a
          href="https://www.oracle.com/database/technologies/appdev/python/quickstartpython.html"
          >Quick Start: Developing Python Applications for Oracle Autonomous Database</a></p></li>
      </ul>
-->
    </li>

      <li>
        <h4 id="downloadscripts">Download the tutorial scripts</h4>

        <p>The Python scripts used in this example are in the <a href="https://github.com/oracle/python-oracledb/tree/main/samples/tutorial" >python-oracledb GitHub repository</a>.</p>

        <p>Download a zip file of the repository from <a href="https://github.com/oracle/python-oracledb/archive/main.zip" >here</a> and unzip it. Alternatively you can use 'git' to clone the repository.</p>
<p><code>git clone https://github.com/oracle/python-oracledb.git</code></p>

        <p>The <code>samples/tutorial</code> directory has scripts to run and modify. The <code>samples/tutorial/solutions</code> directory has scripts with suggested code changes. The <code>samples/tutorial/sql</code> directory has all the SQL scripts used by the Python files to create database tables and other objects.</p>

      </li>
      <li>
          <h4>Review the privileged database credentials used for creating the schema</h4>

          <p>Review <code>db_config_sys.py</code> in the <code>tutorial</code> directory. This file is included in other Python files for creating and dropping the tutorial user.</p>

          <p>Edit <code>db_config_sys.py</code> file and change the default values to match the system connection information for your environment.  Alternatively, you can set the given environment variables in your terminal window. For example, the default username is "<em>SYSTEM</em>" unless the environment variable "<em>PYTHON_SYSUSER</em>" contains a different username. The default system connection string is for the "<em>orclpdb</em>" database service on the same machine as Python. In Python Database API terminology, the connection string parameter is called the "data source name", or "dsn".  Using environment variables is convenient because you will not be asked to re-enter the password when you run scripts:</p>

<pre>
user = os.environ.get("PYTHON_SYSUSER", "SYSTEM")

dsn = os.environ.get("PYTHON_SYS_CONNECT_STRING", "localhost/orclpdb")

pw = os.environ.get("PYTHON_SYSPASSWORD")
if pw is None:
    pw = getpass.getpass("Enter password for %s: " % user)
</pre>

          <p>Substitute the admin values for your environment. If you are using Oracle Autonomous Database (ADB), use the <em>ADMIN</em> user instead of <em>SYSTEM</em>. The tutorial instructions may need adjusting, depending on how you have set up your environment.</p>
    </li>

      <li><h4 id="createdbuser">Create a database user</h4>

          <p>If you have an existing user, you may be able to use it for most examples (some examples may require extra permissions).</p>

          <p>If you need to create a new user  for this tutorial, review the grants created in <code>samples/tutorial/sql/create_user.sql</code> by opening it in your favorite text editor. Then open a terminal window and run  <code>create_user.py</code>  to execute the <code>create_user.sql</code> script and create the sample user. This tutorial uses the name <code>pythondemo</code>:</p>
<pre>
<strong>python create_user.py</strong></pre>

<p>The example above connects as the <em>SYSTEM (or ADMIN</em> for ADB<em>) </em> user using <code>db_config_sys</code> file discussed in the earlier section.  The connection string is "<em>localhost/orclpdb</em>", meaning use the database service "<em>orclpdb</em>" running on localhost (the computer you are running your Python scripts on).</p>
<p>If it runs successfully, you will see something similar below:</p>
<pre>Enter password for SYSTEM:
Enter password for pythondemo:
Creating user...
SQL File Name:  D:\python-oracledb\samples\tutorial\sql\create_user.sql
Done.</pre>
<p> The new user <em>pythondemo</em> is created.</p>
<p>When the tutorial is finished, ensure that all the database sessions connected to the tutorial user <em>pythondemo</em> are closed and then run <code>drop_user.py</code> to remove the tutorial user.</p>
      </li>

    <li>
      <h4 id="installsampleenv">Install the tables and other database objects for the tutorial</h4>

          <p>Once you have a database user, then you can create the key tutorial tables and database objects for the tutorial by running <code>setup_tutorial.py</code> (the environment setup file), using your values for the tutorial username, password and connection string:</p>

<pre>
<strong>python setup_tutorial.py</strong></pre>
<p>On successful completion of the run, You will see something like:</p>
<pre>Setting up the sample tables and other DB objects for the tutorial...
SQL File Name:  D:\python-oracledb\samples\tutorial\sql\setup_tutorial.sql
Done.</pre>
<p>This will call the <code>setup_tutorial.sql</code> file from <code>tutorials/sql</code> directory to setup some sample tables and  database objects required for running the examples in the tutorial.</p>
    </li>

     <li>
          <h4>Review the connection credentials used by the tutorial scripts</h4>

          <p>Review <code>db_config.py</code> (thin mode), and <code>db_config.sql</code> files in the <code>tutorial</code> and <code>tutorial/sql </code>directories respectively. These are included in other Python and SQL files for setting up the database connection.</p>

          <p>Edit <code>db_config.py</code> file and change the default values to match the connection information for your environment.  Alternatively, you can set the given environment variables in your terminal window. For example, the default username is "<em>pythondemo</em>" unless the environment variable "<em>PYTHON_USER</em>" contains a different username. The default connection string is for the '<em>orclpdb</em>' database service on the same machine as Python. In Python Database API terminology, the connection string parameter is called the "data source name", or "dsn".  Using environment variables is convenient because you will not be asked to re-enter the password when you run scripts:</p>

<pre>
user = os.environ.get("PYTHON_USER", "pythondemo")

dsn = os.environ.get("PYTHON_CONNECT_STRING", "localhost/orclpdb")

pw = os.environ.get("PYTHON_PASSWORD")
if pw is None:
    pw = getpass.getpass("Enter password for %s: " % user)
</pre>

<p>Also, change the database username and connection string in the SQL configuration file <code>db_config.sql</code> based on your environment settings:</p>

<pre>
-- Default database username
def user = "<strong>pythondemo</strong>"

-- Default database connection string
def connect_string = "<strong>localhost/orclpdb</strong>"

-- Prompt for the password
accept pw char prompt 'Enter database password for &amp;user: ' hide
</pre>

          <p>The tutorial instructions may need adjusting, depending on how you have set up your environment.</p>
     </li>

        <li><h4> Runtime Naming</h4>

          <p>At runtime, the module name of the python-oracledb package is <code>oracledb</code>:</p>

        <pre>import oracledb</pre></li>

         <li><h4>Python-oracledb defaults</h4>
        <p>A singleton <code>oracledb.defaults</code> contains attributes that can be used to adjust the default behavior of python-oracledb. Attributes not supported in a mode (<em>thin</em> or <em>thick</em>) will be ignored in that mode.</p>
        <p>Open <code>defaults.py</code> in an editor. This will look like:</p>
        <pre>import oracledb

print("Default array size:", <strong>oracledb.defaults.arraysize</strong>)</pre>
Run the script:
<pre><strong>python defaults.py</strong></pre>
It displays:
<pre>Default array size: 100</pre>
<p> This gives the default array size tuning parameter that will be useful in Section 3.4 of this tutorial.</p>
<p>The default values can also be edited using the <code>defaults</code> attribute. All the default values that can be set and read with <code>defaults</code> attribute are available in the <a href="http://python-oracledb.readthedocs.io/en/latest/index.html">python-oracledb documentation</a>.</p></li>
</ul>

<h2><a name="connecting">1. Connecting to Oracle</a></h2>

<p>You can connect from Python to a local, remote or cloud Oracle Database. <em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html"
>Connecting to Oracle Database</a></em>.</p>

      <ul>
        <li>
          <h4>1.1 Creating a basic connection</h4>
          <p>Review the code contained in <code>connect.py</code> :</p>
          <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
print("Database version:", con.version)
</pre>

          <p>The python-oracledb module is imported to provide the API for accessing the Oracle database. Many inbuilt and third-party modules can be included in Python scripts this way.</p>

          <p> The username, the password and the connection string that you configured in the
<code>db_config.py</code> module is passed to the <code>connect()</code> method. By default, Oracle's Easy Connect connection string syntax is used. It consists of the hostname of your machine, <code>localhost</code>, and the database service name <code>orclpdb</code>. (In Python Database API terminology, the connection string parameter is called the "data source name", or "dsn").</p>

          <p>Open a command terminal and change to the <code>tutorial</code> directory:</p>

          <pre><strong>cd samples/tutorial</strong></pre>

          <p>Run the Python script:</p>

          <pre><strong>python connect.py</strong></pre>

          <p>The version number of the database should be displayed. An exception is raised if the connection fails. Adjust the username, password, or connection string parameters to invalid values to see the exception.</p>

          <p>Python-oracledb also supports "<em>external authentication</em>", which allows connections without needing usernames and passwords to be embedded in the code. Authentication would then be performed by, for
 example, LDAP or Oracle Wallets.</p>

        </li>

        <li>
          <h4>1.2 Indentation indicates code structure</h4>

          <p>In Python, there are no statement terminators, begin/end keywords, or braces to indicate code blocks.</p>

          <p>Open <code>connect.py</code> in an editor. Indent the print statement with some spaces:</p>

          <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
  print("Database version:", con.version)
</pre>

          <p>Save the script and run it again:</p>

          <pre><strong>python connect.py</strong> </pre>

          <p>This raises an exception about the indentation. The number of spaces or tabs must be consistent in each block; otherwise, the Python interpreter will either raise an exception or execute code unexpectedly.  </p>

          <p>Python may not always be able to identify accidental from deliberate indentation. <em>Check if your indentation is correct before running each example.  Make sure to indent all statement blocks equally.</em> <b>Note that the sample files use spaces, not tabs.</b> </p>

        </li>

        <li>
          <h4>1.3 Executing a query</h4>

          <p>Open <code>query.py</code> in an editor.  It looks like:</p>

          <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
</pre>

   <p>Edit the file and add the code shown in bold below:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

<strong>cur = con.cursor()
cur.execute("select * from dept order by deptno")
res = cur.fetchall()
for row in res:
    print(row)</strong>
</pre>

          <p>Make sure the <code>print(row)</code> line is indented. This tutorial uses spaces, not tabs.</p>

          <p>The code executes a query and fetches all data.</p>

          <p>Save the file and run it:</p>

          <pre><strong>python query.py</strong></pre>

          <p>In each loop iteration, a new row is stored in
          <code>row</code> variable as a Python "tuple" and is displayed.</p>

          <p>Fetching data is described further in <a href="#fetching" >Section 3</a>. </p>
        </li>

        <li>
          <h4>1.4 Closing connections</h4>

          <p>Connections and other resources used by python-oracledb will automatically be closed at the end of scope.  This is a common programming style that takes care of the correct order of resource closure.</p>

          <p>Resources can also be explicitly closed to free up database resources if they are no longer needed.  This is strongly recommended in blocks of code that remain active for some time.</p>

          <p>Open <code>query.py</code> in an editor and add calls to close the cursor and connection like:</p>

          <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

cur = con.cursor()
cur.execute("select * from dept order by deptno")
res = cur.fetchall()
for row in res:
    print(row)

<strong>cur.close()</strong>
<strong>con.close()</strong>
</pre>

          <p>Running the script completes without error:</p>

          <pre><strong>python query.py</strong></pre>

          <p>If you swap the order of the two <code>close()</code> calls you will see an error.</p>
        </li>

        <li>
          <h4>1.5 Checking versions</h4>

          <p>Review the code contained in <code>versions.py</code>:</p>

          <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

print(oracledb.__version__) # two underscores before and after the version</pre>

          <p>Run the script:</p>

          <pre><strong>python versions.py</strong></pre>

          <p>This gives the version of the python-oracledb interface.</p>

          <p>Edit the file to print the version of the database, and the Oracle client libraries used by python-oracledb:</p>

          <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

print(oracledb.__version__)
<strong>print("Database version:", con.version)</strong>
</pre>

          <p>When the script is run, it will display:</p>

          <pre>
1.0.0
Database version: 19.3.0.0.0</pre>

          <p>Any python-oracledb installation can connect to older and newer
          Oracle Database versions.  By checking the Oracle Database
          version numbers, the application can make use of
          the best Oracle features available.</p>

        </li>
        <li>
        <h4>1.6 Using the ConnectParams builder class</h4>
        <p>
        A connection property builder function <code>oracledb.ConnectParams()</code> has been added. It returns a new <em>ConnectParams</em> object. The object can be passed to <code>oracledb.connect()</code> or
<code>oracledb.create_pool()</code>.</p>

        <p>Open <code>connect_params2.py</code> in a text editor. It looks like:</p>
        <pre>import oracledb
import db_config

params = oracledb.ConnectParams(host="localhost", port=1521, service_name="orclpdb")
con = oracledb.connect(user=db_config.user, password=db_config.pw, params=params)
print("Database version:", con.version)</pre>
        When the script is run (<code><strong>python connect_params2.py</strong></code>), it will display:
        <pre>Database version: 19.3.0.0.</pre>
        <p>
        The use of <code>ConnectParams()</code> is optional. Users can continue to use previous approaches. The list of parameters for the <code>ConnectParams</code> class is available in the python-oracledb documentation.</p>
        <p>Notes:</p>
        <ul>
          <li>If the <code>params</code> parameter is specified and keyword parameters are also specified, then the <code>params</code> parameter is updated with the values from the keyword parameters before being used to create the connection. </li>
          <li>If the <code>dsn</code> parameter is specified and the <code>params</code> parameter is specified, then the <code>params</code> parameter is updated with the contents of the <code>dsn</code> parameter before being used to create the connection.</li>
       </ul>
     </li>
     <li>
     <h4>1.7 Checking  Connection Health</h4>
     <p>The function <code>Connection.is_healthy()</code> checks the usability of a database connection locally. This function returns a boolean value indicating the health status of a connection.</p>
<p>Connections may become unusable in several cases, such as if the network socket is broken, if an Oracle error indicates the connection is unusable or after receiving a planned down notification from the database.
This function is best used before starting a new database request on an existing standalone connection. Pooled connections internally perform this check before returning a connection to the application. If this function returns <code>False</code>, the connection should be not be used by the application and a new connection should be established instead.</p>
<p>Open <code>connect_health.py</code> in a text editor. It looks like:</p>
       <pre>import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
if con.is_healthy():
    print("Healthy connection!")
else:
    print("Unusable connection. Please check the database and network settings.")</pre>
<p>When the script is run (<code><strong>python connect_health.py</strong></code>), it will display (when the connection is OK):</p>
        <pre>Healthy Connection!</pre>
<p>To fully check a connection's health, use <code>Connection.ping()</code> which performs a round-trip to the database.</p></li>
   </ul>
    <h2><a name="pooling">2. Connection Pooling</a></h2>

<p>Connection pooling is important for performance  when multi-threaded applications frequently connect and disconnect from the database. Pooling also gives the best support for Oracle's High Availability (HA) features.
<em>Documentation link for further reading: <a
      href="https://python-oracledb.readthedocs.io/en/latest/user_guide/connection_handling.html#connection-pooling">Connection Pooling</a></em>.</p>

      <ul>
        <li> <h4>2.1 Connection pooling</h4>

      <p>Review the code contained in <code>connect_pool.py</code>:</p>
<pre>
import oracledb
import threading
import db_config

pool = oracledb.<strong>create_pool</strong>(user=db_config.user, password=db_config.pw, dsn=db_config.dsn,
                            min=2, max=5, increment=1, getmode=oracledb.POOL_GETMODE_WAIT)

def Query():
    con = pool.<strong>acquire</strong>()
    cur = con.cursor()
    for i in range(4):
        cur.execute("select myseq.nextval from dual")
        seqval, = cur.fetchone()
        print("Thread", threading.current_thread().name, "fetched sequence =", seqval)

thread1 = threading.Thread(name='#1', target=Query)
thread1.start()

thread2 = threading.Thread(name='#2', target=Query)
thread2.start()

thread1.join()
thread2.join()

print("All done!")
</pre>

          <p>The <code>create_pool()</code> function creates a pool of Oracle connections for the user.  Connections in the pool can be used by python-oracledb by calling <code>pool.acquire()</code>.
          The initial pool size is 2 connections.  The maximum size is 5 connections. When the pool needs to grow, then a single new connection will be created at a time based on the <code>increment</code> parameter. The pool can shrink back to the minimum size of 2 when the connections are no longer in use.</p>

          <p>The <code>def Query():</code> line creates a method that is called by each thread.</p>

          <p>In the <code>Query</code> method, the <code>pool.acquire()</code> call gets one connection from the pool (as long as less than 5 are already in use).  This connection is used in a loop of 4 iterations to query the sequence <code>myseq</code>. At the end of the method, python-oracledb will automatically close the cursor and release the connection back to the pool for reuse.</p>

          <p>The <code>seqval, = cur.fetchone()</code> line fetches a row and puts the single value contained in the result tuple into the variable <code>seqval</code>. Without the comma, the value in <code>seqval</code> would be a tuple like
          "<code>(1,)</code>".</p>

          <p>Two threads are created, each invoking the
          <code>Query()</code> method.</p>

          <p>In a command terminal, run:</p>

          <pre><strong>python connect_pool.py</strong></pre>

<p>The output shows the interleaved query results as each thread fetches values independently.  The order of interleaving may vary from run to run.</p>

</li>

    <li>
      <h4>2.2 Connection pool experiments</h4>


<p>Review <code>connect_pool2.py</code>, which has a loop for the number of threads, each iteration invoking the <code>Query()</code> method:</p>

<pre>
import oracledb
import threading
import db_config

pool = oracledb.create_pool(user=db_config.user, password=db_config.pw, dsn=db_config.dsn,
                            min=2, max=5, increment=1, getmode=oracledb.POOL_GETMODE_WAIT)

def Query():
    con = pool.acquire()
    cur = con.cursor()
    for i in range(4):
        cur.execute("select myseq.nextval from dual")
        seqval, = cur.fetchone()
        print("Thread", threading.current_thread().name, "fetched sequence =", seqval)

<strong>numberOfThreads = 2
threadArray = []

for i in range(numberOfThreads):
    thread = threading.Thread(name='#' + str(i), target=Query)
    threadArray.append(thread)
    thread.start()

for t in threadArray:
    t.join()</strong>

print("All done!")
</pre>

<p>In a command terminal, run:</p>

<pre><strong>python connect_pool2.py</strong></pre>

<p>Experiment with different values of the pool parameters and
<code>numberOfThreads</code>.  Larger initial pool sizes will make the pool creation slower, but the connections will be available immediately when needed.
</p>

<p>Try changing <code>getmode</code> to
<code>oracledb.POOL_GETMODE_WAIT</code>.  When <code>numberOfThreads</code>
exceeds the maximum size of the pool, the <code>acquire()</code> call will now
generate an error such as "<em>ORA-24459: OCISessionGet() timed out waiting for pool to create new connections</em>".  </p>

<p>Pool configurations where <code>min</code> is the same as
<code>max</code> (and <code>increment = 0</code>) are often
recommended as a best practice for the optimum performance. Pools with such configurations are referred to as &quot;<em>static pools</em>&quot;. This configuration avoids connection storms on the database server.</p>

</li>

    <li>
      <h4>2.3 Creating a DRCP Connection</h4>

  <p>Database Resident Connection Pooling allows multiple Python processes on multiple machines to share a small pool of database server processes.</p>

  <p>Below left is a diagram without DRCP. Every application standalone connection (or python-oracledb connection-pool connection) has its own database server process. Standalone application <code>connect()</code> and close calls require the expensive create and destroy of those database server processes.
  Python-oracledb connection pools reduce these costs by keeping database server processes open, but every python-oracledb connection pool will require its own set of database server processes, even if they are not doing database work: these idle server processes consume database host resources. Below right is a diagram with DRCP.  Scripts and Python processes can share database servers from a pre-created pool of servers and return them when they are not in use.
  </p>

  <table cellspacing="0" cellpadding="30" border="0" >
    <tr>
      <td>
        <img width="400" src="resources/python_nopool.png" alt="Picture of 3-tier application architecture without DRCP showing connections from multiple application processes each going to a server process in the database tier" />
        <div align="center"><p><strong>Without DRCP</strong></p></div>
      </td>
      <td>
        <img width="400" src="resources/python_pool.png" alt="Picture of 3-tier application architecture with DRCP showing connections from multiple application processes going to a pool of server processes in the database tier" />
        <div align="center"><p><strong>With DRCP</strong></p></div>
      </td>
    </tr>
  </table>

  <p>DRCP is useful when the database host machine does not have enough memory to handle the number of database server processes required. If DRCP is enabled, it is best used in conjunction with python-oracledb's connection pooling.
  However, the default 'dedicated' server process model is generally recommended if the database host memory is large enough. This can be with or without a python-oracledb connection pool, depending on the connection rate.</p>

  <p>Batch scripts doing long running jobs should generally use dedicated connections. Both dedicated and DRCP servers can be used together in the same application or database.</p>
  <h4 id="startdrcp">Start the Database Resident Connection Pool (DRCP)</h4>

    <p name="startdrcp">If you are running a local or remote Oracle Database (that is not an ADB), start the DRCP pool. Note that the DRCP pool is  started in an Oracle Autonomous Database by default.</p>

   <p>Run SQL*Plus with SYSDBA privileges, for example:</p>

<pre>
sqlplus -l sys/syspassword@localhost/orclcdb as sysdba
</pre>

          <p>and execute the command:</p>

<pre>
execute dbms_connection_pool.start_pool()
</pre>

   <p>Note: If you are using Oracle Database 21c,</p>
          <p>Run <code>show parameter enable_per_pdb_drcp</code> in SQL*Plus.</p>
          <p>If this shows TRUE,</p>
          <p>then you will  need to run the <code>execute</code> command in a pluggable database, not a container database.</p>
    <h4>Connect to the Oracle Database through DRCP</h4>
  <p>Review the code contained in <code>connect_drcp.py</code>:</p>

  <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn + "<strong>:pooled</strong>",
                       cclass=&quot;PYTHONDEMO&quot;, purity=oracledb.PURITY_SELF)
print("Database version:", con.version)
</pre>

  <p> This is similar to <code>connect.py</code> but
  &quot;<code>:pooled</code>&quot; is appended to the connection string, telling
  the database to use a pooled server. A Connection Class "PYTHONDEMO" is also passed into the <code>connect()</code> method to allow grouping of database servers to applications. Note that with Autonomous Database, the connection string has a different form, see the <a
  href="https://docs.oracle.com/en/cloud/paas/autonomous-database/adbsa/connect-drcp.html#GUID-E1337EC6-4A78-4199-84F0-A2739055F3FA"
  >ADB documentation</a>. </p>

  <p> The &quot;purity&quot; of the connection is defined as the <code>PURITY_SELF</code> constant, meaning the session state (such as the default date format) might be retained between connection calls, giving performance benefits. Session information will be discarded if a pooled server is later reused by an  application with a different connection class name.</p>

  <p>Applications that should never share session information should use a different connection class and/or use <code>PURITY_NEW</code> to force creation of a new session. This reduces overall scalability but prevents applications from misusing the session information.  The default purity for connections created with <code>connect()</code> is <code>PURITY_NEW</code>.</p>

  <p>Run <code>connect_drcp.py </code>in a terminal window.</p>

  <pre><strong>python connect_drcp.py</strong></pre>

  <p>The output is simply the version of the database.</p>

  </li>

    <li>
      <h4>2.4 Connection pooling and DRCP</h4>

      <p>DRCP works well with python-oracledb's connection pooling.  The
      default purity for pooled connections is <code>PURITY_SELF</code>.</p>

  <p>Edit <code>connect_pool2.py</code>, reset any changed pool options, and modify it to use DRCP:</p>
  <pre>
import oracledb
import threading
import db_config

pool = oracledb.create_pool(user=db_config.user, password=db_config.pw, dsn=db_config.dsn <strong>+ ":pooled"</strong>,
                            min=2, max=5, increment=1, getmode=oracledb.POOL_GETMODE_WAIT,
                            <strong>cclass="PYTHONDEMO", purity=oracledb.PURITY_SELF</strong>)

def Query():
    con = pool.acquire()
    cur = conn.cursor()
    for i in range(4):
        cur.execute("select myseq.nextval from dual")
        seqval, = cur.fetchone()
        print("Thread", threading.current_thread().name, "fetched sequence =", seqval)

numberOfThreads = 2
threadArray = []

for i in range(numberOfThreads):
    thread = threading.Thread(name='#' + str(i), target=Query)
    threadArray.append(thread)
    thread.start()

for t in threadArray:
    t.join()

print("All done!")
</pre>

      <p>The script logic does not need to be changed to benefit from
      DRCP connection pooling.</p>

      <p>Run the script:</p>

      <pre><strong>python connect_pool2.py</strong></pre>

      <p>Optionally, you can run <strong>drcp_query.py</strong> to check the DRCP pool statistics.</p>

      <pre><strong>python drcp_query.py</strong></pre>

      <p>This will prompt for the SYSTEM (or ADMIN user), the password, and the database connection string. For running the file, you will need to connect to the container database in Oracle Database v19 or lower.  From Oracle Database 21c onwards, you can enable DRCP in pluggable databases.</p>

      <p>Note that with ADB, this view does not contain rows, so running this script is not useful. For other Oracle Databases, the script shows the number of connection requests made to the pool since the database was started ("NUM_REQUESTS"), how many of those reused a pooled server's session ("NUM_HITS"), and how many had to create new sessions ("NUM_MISSES"). Typically the goal is a low number of misses.</p>
      <p> If the file is run successfully, you should see something like </p>
      <pre>Looking at DRCP Pool stats...

(CCLASS_NAME, NUM_REQUESTS, NUM_HITS, NUM_MISSES)
-------------------------------------------------
('PYTHONDEMO.SHARED', 5, 0, 5)
('PYTHONDEMO.PYTHONDEMO', 4, 2, 2)
('SYSTEM.SHARED', 11, 0, 11)
Done.</pre>
      <p>To see the pool configuration, you can query DBA_CPOOL_INFO.</p>
    </li>

    <li>
      <h4>2.5 More DRCP investigation</h4>

      <p>To further explore the behaviors of python-oracledb connection pooling and DRCP pooling, you could try changing the purity to <code>oracledb.PURITY_NEW</code> to see the effect on the DRCP NUM_MISSES statistic.</p>

      <p>Another experiement is to include the <code>time</code> module at the file
      top:</p>

      <pre>
import time</pre>

      <p>and add calls to <code>time.sleep(1)</code> in the code, for
      example in the query loop.  Then look at the way the threads execute.  Use
      <code>drcp_query.sql</code> to monitor the pool's behavior.</p>

    </li>
  </ul>

  <h2><a name="fetching">3. Fetching Data</a> </h2>


  <p>Executing SELECT queries is the primary way to get data from Oracle Database. <em>Documentation link for further reading: <a
  href="https://python-oracledb.readthedocs.io/en/latest/user_guide/sql_execution.html"
  >SQL Queries</a></em>.</p>

  <ul>
  <li><h4>3.1 A simple query</h4>

  <p>There are several functions you can use to query an Oracle database, but the basics of querying are always the same:</p>

  <p>1. Execute the statement.<br />
  2. Bind data values (optional).<br />
  3. Fetch the results from the database.</p>

    <p>Review the code contained in <code>query2.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

cur = con.cursor()
cur.execute("select * from dept order by deptno")
for deptno, dname, loc in cur:
    print("Department number: ", deptno)
    print("Department name: ", dname)
    print("Department location:", loc)
</pre>

    <p>The <code>cursor()</code> method opens a cursor for statements to use.</p>

    <p>The <code>execute()</code> method parses and executes the statement.</p>

    <p>The loop fetches each row from the cursor and unpacks the returned
    tuple into the variables <code>deptno</code>, <code>dname</code>,
    <code>loc</code>, which are then printed.</p>

    <p>Run the script in a terminal window:</p>

    <pre><strong>python query2.py</strong></pre>

    <p>The output is:</p>

    <pre>Department number:  10
Department name:  ACCOUNTING
Department location: NEW YORK
Department number:  20
Department name:  RESEARCH
Department location: DALLAS
Department number:  30
Department name:  SALES
Department location: CHICAGO
Department number:  40
Department name:  OPERATIONS
Department location: BOSTON</pre>

  </li>

<li><h4>3.2 Using fetchone()</h4>

  <p>When the number of rows is large, the <code>fetchall()</code> call may use too much memory.</p>

  <p>Review the code contained in <code>query_one.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, password=db_config.dsn)
cur = con.cursor()

cur.execute("select * from dept order by deptno")
row = cur.fetchone()
print(row)

row = cur.fetchone()
print(row)
</pre>

  <p>This uses the <code>fetchone()</code> method to return just a single row as a
  tuple. When called multiple time, consecutive rows are returned:</p>

  <p>Run the script in a terminal window:</p>

  <pre><strong>python query_one.py</strong></pre>

  <p>The first two rows of the table are printed.</p>

</li>

<li><h4>3.3 Using fetchmany()</h4>

  <p>Review the code contained in <code>query_many.py</code>:</p>

  <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

cur.execute("select * from dept order by deptno")
num_rows =  3
res = cur.fetchmany(num_rows)
print(res)
</pre>

  <p>The <code>fetchmany()</code> method returns a list of tuples. By default the maximum number of rows that can be returned is specified by the cursor attribute <code>arraysize</code> (which defaults to 100).  Here the <code>numRows</code> parameter specifies that three rows should be returned.</p>

  <p>Run the script in a terminal window:</p>

  <pre><strong>python query_many.py</strong></pre>

  <p>The first three rows of the table are returned as a list
  (Python's name for an array) of tuples.</p>

  <p>You can access elements of the lists by position indexes.  To see this,
  edit the file and add:</p>

  <pre>
<strong>print(res[0])</strong>    # first row
<strong>print(res[0][1])</strong> # second element of first row
</pre>

  </li>
  <li><h4>3.4 Tuning with arraysize and prefetchrows</h4>

  <p>This section demonstrates a way to improve query performance by increasing the number of rows returned in each batch from Oracle to the Python program.</p>

  <p>Row prefetching and array fetching are internal buffering techniques to reduce round-trips to the database. The difference is the code layer that is doing the buffering, and when the buffering occurs.</p>

  <p>The <a href="#installsampleenv">environment setup file</a> has already created the <em>bigtab</em> table with a large number of rows (to be used by the <code>query_arraysize.py</code> file) by internally running the sql script below:</p>
  <pre>create table bigtab (mycol varchar2(20));

begin
 for i in 1..20000
 loop
  insert into bigtab (mycol) values (dbms_random.string('A',20));
 end loop;
end;</pre>
  <p>The setup file has also inserted around 20000 string values in the <em>bigtab</em> table.</p>


    <p>Review the code contained in <code>query_arraysize.py</code>:</p>

<pre>
import oracledb
import time
import db_config

con = oracledb.connect(name=db_config.user, password=db_config.pw, dsn=db_config.dsn)

start = time.time()

cur = con.cursor()
cur.prefetchrows = 100
cur.arraysize = 100
cur.execute("select * from bigtab")
res = cur.fetchall()
# print(res)  # uncomment to display the query results

elapsed = (time.time() - start)
print(elapsed, "seconds")
</pre>

    <p>This uses the 'time' module to measure elapsed time of the query. The <em>prefetchrows</em> and <em>arraysize</em> values are 100. This causes batches of 100 records at a time to be returned from the database to a cache in Python.
    These values can be tuned to reduce the number of &quot;round-trips&quot;
    made to the database, often reducing network load and reducing the number of context switches on the database server. The <code>fetchone()</code>,
    <code>fetchmany()</code> and <code>fetchall()</code> methods will read from the cache before requesting more data from the database.</p>

    <p>In a terminal window, run:</p>

    <pre><strong>python query_arraysize.py</strong></pre>

    <p>Rerun a few times to see the average times.</p>

    <p>Experiment with different prefetchrows and arraysize values.  For example, edit <code>query_arraysize.py</code> and change the arraysize
    to:</p>

    <pre>cur.arraysize = <strong>2000</strong></pre>

    <p>Rerun the script to compare the performance of different
    arraysize settings.</p>

    <p>In general, larger array sizes improve performance.  Depending on how fast your system is, you may need to use different values than those given here to see a meaningful time difference.</p>

    <p>There is a time/space tradeoff for increasing the values. Larger values will require more memory in Python for buffering the records.</p>

    <p>If you know the query returns a fixed number of rows, for example, 20 rows, then set arraysize to 20 and prefetchrows to 21.  The addition of one extra row for prefetchrows prevents a round-trip to check for end-of-fetch. The statement execution and fetch will take a total of one round-trip.  This minimizes the load on the database.</p>

    <p>If you know a query only returns a few records,
    decrease the arraysize from the default to reduce memory usage.</p>
  </li>
</ul>

<h2><a name="binding">4. Binding Data</a></h2>

  <p>Bind variables enable you to re-execute statements with new data values
  without the overhead of re-parsing the statement.  Binding improves code reusability, improves application scalability, and can reduce the risk of SQL injection attacks. Using bind variables is strongly recommended.
<em>Documentation link for further reading: <a
  href="https://python-oracledb.readthedocs.io/en/latest/user_guide/bind.html" >Using Bind Variables</a></em>.</p>

  <ul>

    <li><h4>4.1 Binding in queries</h4>

  <p>Review the code contained in <code>bind_query.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

sql = "select * from dept where deptno = :id order by deptno"

cur.execute(sql, id=20)
res = cur.fetchall()
print(res)

cur.execute(sql, id=10)
res = cur.fetchall()
print(res)
</pre>

      <p>The statement contains a bind variable "<code>:id</code>" placeholder.
      The statement is executed twice with different values for the
      <code>WHERE</code> clause.</p>

      <p>From a terminal window, run:</p>

      <pre><strong>python bind_query.py</strong></pre>

      <p>The output shows the details for the two departments.</p>

      <p>An arbitrary number of named arguments can be used in an
      <code>execute()</code> call.  Each argument name must match a bind
      variable name.  Alternatively, instead of passing multiple arguments you
      could pass a second argument to <code>execute()</code> that is a sequence
      or a dictionary.  Later examples show these syntaxes.</p>

      <p>To bind a database NULL, use the Python value <code>None</code>.</p>

      <p>python-oracledb uses a cache of executed statements.  As long as the statement you pass to <code>execute()</code> is in that cache, you can use different bind values and still avoid a full statement parse.  The statement cache size is configurable for each connection. To see the default statement cache size, edit <code>bind_query.py</code> and add a line at the end:</p>

<pre>
print(con.stmtcachesize)
</pre>

      <p>Re-run the file.</p>

      <p> You would set the statement cache size to the
      number of unique statements commonly executed in your applications.</p>

    </li>

    <li><h4>4.2 Binding in inserts</h4>

  <p>The <a href="#installsampleenv">environment setup file</a> has already created the <em>mytab</em> table (to be used by the <code>bind_insert.py</code> file) by internally running the sql script below:</p>
  <pre>create table mytab (id number, data varchar2(20), constraint my_pk primary key (id))</pre>
  <p>Now, review the code contained in <code>bind_insert.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

rows = [ (1, &quot;First&quot; ), (2, &quot;Second&quot; ),
         (3, &quot;Third&quot; ), (4, &quot;Fourth&quot; ),
         (5, &quot;Fifth&quot; ), (6, &quot;Sixth&quot; ),
         (7, &quot;Seventh&quot; ) ]

cur.executemany(&quot;insert into mytab(id, data) values (:1, :2)", rows)

# Now query the results back

cur2 = con.cursor()
cur2.execute('select * from mytab')
res = cur2.fetchall()
print(res)</pre>

      <p>The '<code>rows</code>' array contains the data to be inserted into the <em>mytab</em> table created earlier.</p>

      <p>The <code>executemany()</code> call inserts all rows.  This call uses "array binding", which is an efficient way to
      insert multiple records.</p>

      <p>The final part of the script queries the results back and displays them as a list of tuples.</p>

      <p>From a terminal window, run:</p>

      <pre><strong>python bind_insert.py</strong></pre>

      <p>The new results are automatically rolled back at the end of
      the script. So, re-running the script will always show the same number of
      rows in the table.</p>

    </li>

    <li><h4>4.3 Batcherrors</h4>

      <p>The <code>Batcherrors</code> features allows invalid data to be identified
      while allowing valid data to be inserted.</p>

      <p>Edit the data values in <code>bind_insert.py</code> and
      create a row with a duplicate key:</p>

<pre>
rows = [ (1, &quot;First&quot; ), (2, &quot;Second&quot; ),
         (3, &quot;Third&quot; ), (4, &quot;Fourth&quot; ),
         (5, &quot;Fifth&quot; ), (6, &quot;Sixth&quot; ),
         <strong>(6, &quot;Duplicate&quot; ),</strong>
         (7, &quot;Seventh&quot; ) ]
</pre>

      <p>From a terminal window, run:</p>

      <pre><strong>python bind_insert.py</strong></pre>

      <p>The duplicate generates the error "ORA-00001: unique
      constraint (PYTHONHOL.MY_PK) violated".  The data is rolled back
      and the query returns no rows.</p>

      <p>Edit the file again and enable <code>batcherrors</code> like:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

rows = [ (1, &quot;First&quot; ), (2, &quot;Second&quot; ),
         (3, &quot;Third&quot; ), (4, &quot;Fourth&quot; ),
         (5, &quot;Fifth&quot; ), (6, &quot;Sixth&quot; ),
         <strong>(6, &quot;Duplicate&quot; ),</strong>
         (7, &quot;Seventh&quot; ) ]

cur.executemany("insert into mytab(id, data) values (:1, :2)", rows<strong>, batcherrors=True</strong>)

<strong>for error in cur.getbatcherrors():
    print("Error", error.message.rstrip(), "at row offset", error.offset)</strong>

# Now query the results back

cur2 = con.cursor()
cur2.execute('select * from mytab')
res = cur2.fetchall()
print(res)
</pre>

      <p>Run the file:</p>

      <pre><strong>python bind_insert.py</strong></pre>

      <p>The new code shows the offending duplicate row: "ORA-00001: unique constraint (PYTHONDEMO.MY_PK) violated at row offset 6".
      This indicates the 6th data value (counting from 0) had a
      problem.</p>

      <p>The other data gets inserted and is queried back.</p>

      <p>At the end of the script, python-oracledb will roll back an uncommitted transaction. If you want to commit results, you can use:</p>

<pre>con.commit()</pre>

      <p>To force python-oracledb to roll back the transaction, use:</p>

<pre>con.rollback()</pre>

</li>

</ul>

<h2><a name="plsql">5. PL/SQL</a></h2>

<p>PL/SQL is Oracle's procedural language extension to SQL. PL/SQL procedures and functions are stored and run in the database. Using PL/SQL lets all database applications reuse logic, no matter how the application accesses the database. Many data-related operations can  be performed in PL/SQL faster than extracting the data into a  program (for example, Python) and then processing it. <em>Documentation link for further reading: <a
  href="https://python-oracledb.readthedocs.io/en/latest/user_guide/plsql_execution.html">PL/SQL Execution</a></em>.</p>

  <ul>
    <li>
      <h4>5.1 PL/SQL function</h4>
  <p>The <a href="#installsampleenv">environment setup file</a> has already created the new table named <strong>ptab</strong> and a PL/SQL stored function <code>myfunc</code> to insert a row into <em>ptab</em> and return double the inserted value by internally running the sql script below:</p>
  <pre>create table ptab (mydata varchar(20), myid number);

create or replace function myfunc(d_p in varchar2, i_p in number) return number as
  begin
    insert into ptab (mydata, myid) values (d_p, i_p);
    return (i_p * 2);
  end;
/</pre>

      <p>The <code>myfunc</code> PL/SQL stored function will be used by the <code>plsql_func.py</code> file below.</p>
      <p>Review the code contained in <code>plsql_func.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

res = cur.callfunc('myfunc', int, ('abc', 2))
print(res)
</pre>

      <p>This uses the <code>callfunc()</code> method to execute the function.
      The second parameter is the type of the returned value. It should be one of the types supported by python-oracledb or one of the type constants defined by python-oracledb (such as <em>oracledb.NUMBER</em>). The two PL/SQL function parameters are passed as a tuple, binding them to the function parameter arguments.</p>

      <p>From a terminal window, run:</p>

      <pre><strong>python plsql_func.py</strong></pre>

      <p>The output is a result of the PL/SQL function calculation.</p>

    </li>

    <li><h4>5.2 PL/SQL procedures</h4>

  <p>The <a href="#installsampleenv">environment setup file</a> has already created a PL/SQL
      stored procedure <code>myproc</code> to accept two parameters by internally running the sql script below:</p>
  <pre>create or replace procedure myproc(v1_p in number, v2_p out number) as
begin
  v2_p := v1_p * 2;
end;
/</pre>
<p> The second parameter contains an OUT return value.The <code>myproc</code> PL/SQL stored procedure will be used by the <code>plsql_proc.py</code> file below.</p>

<p>Review the code contained in <code>plsql_proc.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

myvar = cur.var(int)
cur.callproc('myproc', (123, myvar))
print(myvar.getvalue())</pre>

      <p>This creates an integer variable <code>myvar</code> to hold
      the value returned by the PL/SQL OUT parameter. The input number
      123 and the output variable name are bound to the procedure call
      parameters using a tuple.</p>

      <p>To call the PL/SQL procedure, the <code>callproc()</code>
      method is used.</p>

      <p>In a terminal window, run:</p>

<pre><strong>python plsql_proc.py</strong></pre>

      <p>The <code>getvalue()</code> method displays the returned
      value.</p>
    </li>
  </ul>

<h2><a name="handlers">6. Type Handlers</a></h2>

<p>Type handlers enable applications to alter data that is fetched from, or sent to, the database. <em>Documentation links for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/sql_execution.html#changing-fetched-data-types-with-output-type-handlers"
>Changing Fetched Data Types with Output Type Handlers</a> and <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/bind.html#changing-bind-data-types-using-an-input-type-handler"
>Changing Bind Data Types using an Input Type Handler</a></em>.</p>

  <ul>
    <li>
      <h4>6.1 Basic output type handler</h4>

      <p>Output type handlers enable applications to change how data
      is fetched from the database.  For example, numbers can be
      returned as strings or decimal objects.  LOBs can be returned as
      strings or bytes.</p>

      <p>A type handler is enabled by setting the
      <code>outputtypehandler</code> attribute on either a cursor or
      the connection. If set on a cursor, it only affects queries executed
      by that cursor. If set on a connection, it affects all queries executed
      on cursors created by that connection.</p>

      <p>Review the code contained in <code>type_output.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

print("Standard output...")
for row in cur.execute("select * from dept"):
    print(row)
</pre>

      <p>In a terminal window, run:</p>

      <pre><strong>python type_output.py</strong></pre>

      <p>This shows the department number represented as digits like
      <code>10</code>.</p>

      <p>Add an output type handler to the bottom of the file:</p>

<pre>
<strong>def ReturnNumbersAsStrings(cursor, name, defaultType, size, precision, scale):
    if defaultType == oracledb.NUMBER:
        return cursor.var(str, 9, cursor.arraysize)

print("Output type handler output...")
cur = con.cursor()
cur.outputtypehandler = ReturnNumbersAsStrings
for row in cur.execute("select * from dept"):
    print(row)</strong>
</pre>

      <p>This type handler converts any number columns to strings with
      maximum size 9.</p>

      <p>Run the script again:</p>

      <pre><strong>python type_output.py</strong></pre>

      <p>The new output shows the department numbers are now strings
      within quotes like <code>'10'</code>.</p>

    </li>

    <li><h4>6.2 Output type handlers and variable converters</h4>

      <p>When numbers are fetched from the database, the conversion from Oracle's decimal representation to Python's binary format may need careful handling.  To avoid unexpected issues, the  general recommendation is to do number operations in SQL or PL/SQL, or to use the decimal module in Python.</p>

      <p>Output type handlers can be combined with variable converters
      to change how data is fetched.</p>

      <p>Review <code>type_converter.py</code>:</p>

      <pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

for value, in cur.execute("select 0.1 from dual"):
    print("Value:", value, "* 3 =", value * 3)
</pre>

<p>Run the file:</p>

<pre><strong>python type_converter.py</strong></pre>

      <p>The output is like:</p>

      <pre>Value: 0.1 * 3 = 0.30000000000000004</pre>

      <p>Edit the file and add a type handler that uses a Python decimal converter:</p>

<pre>
import oracledb
<strong>import decimal</strong>
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

<strong>def ReturnNumbersAsDecimal(cursor, name, defaultType, size, precision, scale):
    if defaultType == oracledb.NUMBER:
        return cursor.var(str, 9, cursor.arraysize, outconverter=decimal.Decimal)

cur.outputtypehandler = ReturnNumbersAsDecimal</strong>

for value, in cur.execute("select 0.1 from dual"):
    print("Value:", value, "* 3 =", value * 3)
</pre>

      <p>The Python <code>decimal.Decimal</code> converter gets called
      with the string representation of the Oracle number.  The output
      from <code>decimal.Decimal</code> is returned in the output
      tuple.  </p>

      <p>Run the file again:</p>

      <pre><strong>python type_converter.py</strong></pre>

      <p>Output is like:</p>

      <pre>Value: 0.1 * 3 = 0.3</pre>

      <p>The code above demonstrates the use of outconverter, but in this particular case, python-oracledb offers a simple convenience attribute to do the same conversion:</p>

<pre>
import oracledb

oracledb.defaults.fetch_decimals = True
</pre></li>

    <li>
      <h4>6.3 Input type handlers</h4>

      <p>Input type handlers enable applications to change how data is bound to statements, or to enable new types to be bound directly without having to be converted individually.</p>

      <p>Review <code>type_input.py</code>, with the addition of a new class and converter (shown in bold):</p>

<pre>
import oracledb
import db_config
import json

con = oracledb.connect(user=db_config.user,
                       password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

# Create table
cur.execute("""begin
                 execute immediate 'drop table BuildingTable';
                 exception when others then
                   if sqlcode &lt;&gt; -942 then
                     raise;
                   end if;
               end;""")
cur.execute("""create table BuildingTable (
               ID number(9) not null,
               BuildingDetails varchar2(400),
               constraint TestTempTable_pk primary key (ID))""")

# Create a Python class for a Building
<strong>class Building(object):

    def __init__(self, building_id, description, num_floors):
        self.building_id = building_id
        self.description = description
        self.num_floors = num_floors

    def __repr__(self):
        return "&lt;Building %s: %s&gt;" % (self.building_id, self.description)

    def __eq__(self, other):
        if isinstance(other, Building):
            return other.building_id == self.building_id \
                and other.description == self.description \
                and other.num_floors == self.num_floors
        return NotImplemented

    def to_json(self):
        return json.dumps(self.__dict__)

    @classmethod
    def from_json(cls, value):
        result = json.loads(value)
        return cls(**result)

# Convert a Python building object to SQL JSON type that can be read as a string
def building_in_converter(value):
    return value.to_json()


def input_type_handler(cursor, value, num_elements):
    if isinstance(value, Building):
        return cursor.var(oracledb.STRING, arraysize=num_elements,
                          inconverter=building_in_converter)


building = Building(1, "The First Building", 5)  # Python object
cur.execute("truncate table BuildingTable")
cur.inputtypehandler = input_type_handler
cur.execute("insert into BuildingTable (ID, BuildingDetails) values (:1, :2)",
            (building.building_id, building))
con.commit()</strong>

# Query the row
print("Querying the row just inserted...")
cur.execute("select ID, BuildingDetails from BuildingTable")
for (int_col, string_col) in cur:
    print("Building ID:", int_col)
    print("Building Details in JSON format:", string_col)
</pre>

<p>In the new file, a Python class <code>Building</code> is defined, which holds   basic information about a building.

The <code>Building</code> class is used lower in the code to create a Python instance:</p>

<pre>
building = Building(1, &quot;The First Building&quot;, 5)</pre>

<p>which is then directly bound into the INSERT statement like </p>

<pre>cur.execute("insert into BuildingTable (ID, BuildingDetails) values (:1, :2)", (building.building_id, building))</pre>

<p>The mapping between Python and Oracle objects is handled in
<code>building_in_converter</code> which  creates
an Oracle STRING object from the <code>Building</code> Python object in a JSON format.  The <code>building_in_converter</code> method is called by the input type handler <code>input_type_handler</code>,whenever an instance of <code>Building</code> is inserted with the cursor.</p>

      <p>To confirm the behavior, run the file:</p>

      <pre><strong>python type_input.py</strong></pre>
      <p>You should see the following output:</p>
      <pre>Querying the row just inserted...
Building ID: 1
Building Details in JSON format: {"building_id": 1, "description": "The First Building", "num_floors": 5}</pre>

    </li>

  </ul>

<h2><a name="lobs">7. LOBs</a></h2>

  <p>Oracle Database "LOB" long objects can be streamed using a LOB locator, or worked with directly as strings or bytes. <em>Documentation link
for further reading: <a
  href="https://python-oracledb.readthedocs.io/en/latest/user_guide/lob_data.html"
  >Using CLOB and BLOB Data</a></em>.</p>

  <ul>
    <li>
    <h4>7.1 Fetching a CLOB using a locator</h4>

      <p>Review the code contained in <code>clob.py</code>:</p>

<pre>
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

print("Inserting data...")
cur.execute("truncate table testclobs")
long_string = ""
for i in range(5):
    char = chr(ord('A') + i)
    long_string += char * 250
    cur.execute("insert into testclobs values (:1, :2)",
                   (i + 1, "String data " + longString + ' End of string'))
con.commit()

print("Querying data...")
cur.execute("select * from testclobs where id = :id", {'id': 1})
(id, clob) = cur.fetchone()
print("CLOB length:", clob.size())
clobdata = clob.read()
print("CLOB data:", clobdata)
</pre>

      <p>This inserts some test string data and then fetches one
      record into <code>clob</code>, which is a python-oracledb character
      LOB Object.  Methods on LOB include <code>size()</code> and
      <code>read()</code>.</p>

      <p>To see the output, run the file:</p>

<pre><strong>python clob.py</strong></pre>

      <p>Edit the file and experiment reading chunks of data by giving start character position and length, such as <code>clob.read(1,10)</code>.</p>

    </li>

    <li>
      <h4>7.2 Fetching a CLOB as a string</h4>

      <p>For CLOBs small enough to fit in the application memory, it
      is much faster to fetch them directly as strings.</p>

      <p>Review the code contained in <code>clob_string.py</code>. The differences from <code>clob.py</code> are shown in bold:</p>

<pre>
import oracledb
import db_config

<strong>oracledb.defaults.fetch_lobs = False</strong>

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

print("Inserting data...")
cur.execute("truncate table testclobs")
long_string = ""
for i in range(5):
    char = chr(ord('A') + i)
    long_string += char * 250
    cur.execute("insert into testclobs values (:1, :2)",
                (i + 1, "String data " + long_string + ' End of string'))
con.commit()

print("Querying data...")
cur.execute("select * from testclobs where id = :id", {'id': 1})
<strong>(id, clobdata) = cur.fetchone()
print("CLOB length:", len(clobdata))
print("CLOB data:", clobdata)</strong>
</pre>

      <p>Setting <em>oracledb.defaults.fetch_lobs</em> to False causes python-oracledb to fetch the CLOB as a
      string.  Standard Python string functions such as <code>len()</code> can be used on the result.</p>

      <p>The output is the same as for <code>clob.py</code>.  To
      check, run the file:</p>

<pre><strong>python clob_string.py</strong></pre>

    </li>
  </ul>

<h2><a name="rowfactory">8. Rowfactory functions</a></h2>

  <p>Rowfactory functions enable queries to return objects other than
  tuples.  They can be used to provide names for the various columns
  or to return custom objects.</p>

  <ul>
    <li><h4>8.1 Rowfactory for mapping column names</h4>

  <p>Review the code contained in <code>rowfactory.py</code>:</p>

<pre>
import collections
import oracledb
import db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

cur.execute("select deptno, dname from dept")
rows = cur.fetchall()

print('Array indexes:')
for row in rows:
    print(row[0], "->", row[1])

print('Loop target variables:')
for c1, c2 in rows:
    print(c1, "->", c2)
</pre>

  <p>This shows two methods of accessing result set items from a data row.  The first uses array indexes like <code>row[0]</code>. The second uses loop target variables that take each row tuple's values.</p>

  <p>Run the file:</p>

<pre><strong>python rowfactory.py</strong></pre>

  <p>Both access methods gives the same results.</p>

  <p>To use a rowfactory function, edit <code>rowfactory.py</code> and
  add this code at the bottom:</p>

<pre>
<strong>print('Rowfactory:')
cur.execute("select deptno, dname from dept")
cur.rowfactory = collections.namedtuple("MyClass", ["DeptNumber", "DeptName"])

rows = cur.fetchall()
for row in rows:
    print(row.DeptNumber, "->", row.DeptName)
</strong></pre>

      <p>This uses the Python factory function
      <code>namedtuple()</code> to create a subclass of tuple that allows access to the elements via indexes or the given field names.</p>

      <p>The <code>print()</code> function shows the use of the new
      named tuple fields.  This coding style can help reduce coding
      errors.</p>

      <p>Run the script again:</p>

<pre><strong>python rowfactory.py</strong></pre>


  <p>The output results are the same.</p>

</li>
</ul>

<h2><a name="subclass">9. Subclassing connections and cursors</a></h2>

  <p>Subclassing enables application to "hook" connection and cursor
  creation.  This can be used to alter or log connection and execution
  parameters, and to extend python-oracledb functionality. <em>Documentation link for
further reading: <a
  href="https://python-oracledb.readthedocs.io/en/latest/user_guide/tracing.html#application-tracing"
  >Application Tracing</a></em>.</p>

  <ul>
    <li><h4>9.1 Subclassing connections</h4>

  <p>Review the code contained in <code>subclass.py</code>:</p>

  <pre>
import oracledb
import db_config

class MyConnection(oracledb.Connection):

    def __init__(self):
        print("Connecting to database")
        return super(MyConnection, self).__init__(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

con = MyConnection()
cur = con.cursor()

cur.execute("select count(*) from emp where deptno = :bv", (10,))
count, = cur.fetchone()
print("Number of rows:", count)
</pre>

  <p>This creates a new class "MyConnection" that inherits from the python-oracledb Connection class.  The <code>__init__</code> method is
  invoked when an instance of the new class is created.  It prints a message and calls the base class, passing the connection credentials.</p>

  <p>In the "normal" application, the application code:</p>

  <pre>con = MyConnection()</pre>

  <p>does not need to supply any credentials, as they are embedded in the
  custom subclass. All the python-oracledb methods such as <code>cursor()</code> are
  available, as shown by the query.</p>

  <p>Run the file:</p>

<pre><strong>python subclass.py</strong></pre>

  <p>The query executes successfully.</p>

    </li>

    <li><h4>9.2 Subclassing cursors</h4>

      <p>Edit <code>subclass.py</code> and extend the
      <code>cursor()</code> method with a new MyCursor class:</p>

<pre>
import oracledb
import db_config

class MyConnection(oracledb.Connection):

    def __init__(self):
        print("Connecting to database")
        return super(MyConnection, self).__init__(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

<strong>    def cursor(self):
        return MyCursor(self)

class MyCursor(oracledb.Cursor):

   def execute(self, statement, args):
       print("Executing:", statement)
       print("Arguments:")
       for argIndex, arg in enumerate(args):
           print("  Bind", argIndex + 1, "has value", repr(arg))
           return super(MyCursor, self).execute(statement, args)

   def fetchone(self):
       print("Fetchone()")
       return super(MyCursor, self).fetchone()</strong>

con = MyConnection()
cur = con.cursor()

cur.execute("select count(*) from emp where deptno = :bv", (10,))
count, = cur.fetchone()
print("Number of rows:", count)
</pre>

<p>When the application gets a cursor from the
<code>MyConnection</code> class, the new <code>cursor()</code> method returns an instance of our new <code>MyCursor</code> class.</p>

<p>The "application" query code remains unchanged.  The new <code>execute()</code> and <code>fetchone()</code> methods of the <code>MyCursor</code> class get invoked.  They do some logging and invoke the parent methods to do the actual statement execution.</p>

<p>To confirm this, run the file again:</p>

<pre><strong>python subclass.py</strong></pre>

    </li>

</ul>

<h2> <a name="thick">10. Python-oracledb Thick mode</a></h2>
<p>All the above examples use python-oracledb in <em>thin</em> mode, but there are certain features which are only available in the <em>thick</em> mode of the python-oracledb driver. The upcoming sections  show some of these.  Note that you can also run all the earlier examples in thick mode by just changing the import line in examples from <code>import db_config</code> to <code>import db_config_thick as db_config</code>.</p>

<p>The following sections assume you have installed the tutorial schema as shown at the <a href="#preface" >tutorial start</a>.</p>

<ul>
        <li>
          <h4> 10.1 Review the Oracle Client library path</h4>

          <p>You additionally need to make Oracle Client libraries available.  Follow the documentation on <a href="https://python-oracledb.readthedocs.io/en/latest/user_guide/installation.html" >Installing python-oracledb</a>.</p>

          <p>When you have installed Oracle Client libraries, review the library path settings in <code>db_config_thick.py</code> file. If python-oracledb cannot locate Oracle Client libraries, then your applications will fail with an error like "<em>DPI-1047: Cannot locate a 64-bit Oracle Client library</em>". For our examples, we are using Oracle Instant Client libraries.</p>

<pre>
# On Linux, this must be None.
# Instead, the Oracle environment must be set before Python starts.
instant_client_dir = None

# On Windows, if your database is on the same machine, comment these lines out
# and let instant_client_dir be None.  Otherwise, set this to your Instant
# Client directory.  Note the use of the raw string r"...", which allows backslashes to
# be used as directory separators.
if platform.system() == &quot;Windows&quot;:
    instant_client_dir = r"C:\Oracle\instantclient_19_14"

# On macOS (Intel x86) set the directory to your Instant Client directory
if platform.system() == &quot;Darwin&quot;:
    instant_client_dir = os.environ.get("HOME")+"/Downloads/instantclient_19_8"

# You must always call init_oracle_client() to use thick mode
oracledb.init_oracle_client(lib_dir=instant_client_dir)</pre>

 <p> <strong>Important! </strong>Calling the <code>init_oracle_client()</code> function enables the thick mode of python-oracledb. Once python-oracledb is in thick mode, you cannot return to thin mode without removing calls to <code>init_oracle_client()</code> and restarting the application.</p>
 <p>Edit <code>db_config_thick.py</code> and set <code>instant_client_dir</code> to <code>None</code> or to a valid path according to the following notes:</p>

          <ul>
            <li>

              <p>If you are on  macOS (Intel x86) or Windows, and you have installed Oracle Instant Client libraries because your database is on a remote machine, then set <code>instant_client_dir</code> to the path of the Instant Client libraries.</p>
            </li>

            <li>

            <p>If you are on Windows and have a local database installed, then comment out the two Windows lines, so that <code>instant_client_dir</code> remains <code>None</code>.</p>

            </li>

            <li>

            <p>In all other cases (including Linux with Oracle Instant Client), make sure that <code>instant_client_dir</code> is set to <code>None</code>.  In these cases you must make sure that the Oracle libraries from Instant Client or your ORACLE_HOME are in your system library search path before you start Python. On Linux, the path can be configured with <em>ldconfig</em> or with the <em>LD_LIBRARY_PATH</em> environment variable.</p>
           </li>
         </ul>
</li>
<li><h4 id="thickconfig">10.2 Review the configuration files for thick mode</h4>

          <p>Review <code>db_config_thick.py</code>   (thick mode), and <code>db_config.sql</code> files in the <code>tutorial</code> directory.  These are included in other Python and SQL files for setting up the database connection.</p>

          <p>Edit <code>db_config_thick.py</code> file and change the default values to match the connection information for your environment.  Alternatively, you can set the given environment variables in your terminal window. For example, the default username is "<em>pythondemo</em>" unless the environment variable "<em>PYTHON_USER</em>" contains a different username. The default connection string is for the '<em>orclpdb</em>' database service on the same machine as Python. In Python Database API terminology, the connection string parameter is called the "data source name" or "dsn".  Using environment variables is convenient because you will not be asked to re-enter the password when you run scripts:</p>

<pre>
user = os.environ.get("PYTHON_USER", "pythondemo")

dsn = os.environ.get("PYTHON_CONNECT_STRING", "localhost/orclpdb")

pw = os.environ.get("PYTHON_PASSWORD")
if pw is None:
    pw = getpass.getpass("Enter password for %s: " % user)
</pre>

<p>Also, change the default username and connection string in the SQL configuration file <code>db_config.sql</code>:</p>

<pre>
-- Default database username
def user = "pythondemo"

-- Default database connection string
def connect_string = "localhost/orclpdb"

-- Prompt for the password
accept pw char prompt 'Enter database password for &amp;user: ' hide
</pre>


          <p>The tutorial instructions may need adjusting, depending on how you have set up your environment.</p>
  </li>
</ul>

<p>The following sections are specific to the python-oracledb thick modes in this release of python-oracledb.</p>

 <h2><a name = "scrollable">11. Scrollable cursors</a></h2>

    <p>Scrollable cursors enable python-oracledb thick mode applications to move backwards as well as forwards in query results. They can be used to skip rows as well as move to a particular row.</p>
    <ul>
    <li><h4>11.1 Working with scrollable cursors</h4>
    <p>Review the code contained in <code>query_scroll.py</code>:</p>

    <pre>
import oracledb
import db_config_thick as db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor(<strong>scrollable=True</strong>)

cur.execute("select * from dept order by deptno")

cur.scroll(2, mode="absolute")  # go to second row
print(cur.fetchone())

cur.scroll(-1)                    # go back one row
print(cur.fetchone())
</pre>

    <p>Run the script in a terminal window:</p>

  <pre><strong>python query_scroll.py</strong></pre>

    <p>Edit <code>query_scroll.py</code> and experiment with different
    scroll options and orders, such as:</p>

    <pre>cur.scroll(1)  # go to next row
print(cur.fetchone())

cur.scroll(mode="first")  # go to first row
print(cur.fetchone())</pre>

    <p>Try some scroll options that go beyond the number of rows in the resultset.</p>
</li>
</ul>

<h2><a name="bindnamedobj">12. Binding named objects</a></h2>

  <p>Python-oracledb's thick mode can fetch and bind named object types such as Oracle's Spatial Data Objects (SDO).</p>

  <p>The  SDO definition includes the following attributes:</p>

<pre>
 Name                                      Null?    Type
 ----------------------------------------- -------- ----------------------------
 SDO_GTYPE                                          NUMBER
 SDO_SRID                                           NUMBER
 SDO_POINT                                          MDSYS.SDO_POINT_TYPE
 SDO_ELEM_INFO                                      MDSYS.SDO_ELEM_INFO_ARRAY
 SDO_ORDINATES                                      MDSYS.SDO_ORDINATE_ARRAY
</pre>
<ul>
    <li><h4>12.1 How to bind named objects</h4>
  <p>Review the code contained in <code>bind_sdo.py</code>:</p>

<pre>
import oracledb
import db_config_thick as db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

# Create table
cur.execute("""begin
                 execute immediate 'drop table testgeometry';
                 exception when others then
                   if sqlcode &lt;&gt; -942 then
                     raise;
                   end if;
               end;""")
cur.execute("""create table testgeometry (
               id number(9) not null,
               geometry MDSYS.SDO_GEOMETRY not null)""")

# Create and populate Oracle objects
type_obj = con.<strong>gettype</strong>("MDSYS.SDO_GEOMETRY")
element_info_type_obj = con.<strong>gettype</strong>("MDSYS.SDO_ELEM_INFO_ARRAY")
ordinate_type_obj = con.<strong>gettype</strong>("MDSYS.SDO_ORDINATE_ARRAY")
obj = type_obj.<strong>newobject()</strong>
obj.SDO_GTYPE = 2003
obj.SDO_ELEM_INFO = element_info_type_obj.<strong>newobject()</strong>
obj.SDO_ELEM_INFO.<strong>extend</strong>([1, 1003, 3])
obj.SDO_ORDINATES = ordinate_type_obj.<strong>newobject()</strong>
obj.SDO_ORDINATES.<strong>extend</strong>([1, 1, 5, 7])
print("Created object", obj)

# Add a new row
print("Adding row to table...")
cur.execute("insert into testgeometry values (1, :objbv)", objbv = obj)
print("Row added!")

# Query the row
print("Querying row just inserted...")
cur.execute("select id, geometry from testgeometry");
for row in cur:
    print(row)</pre>
<p>This uses <code>gettype()</code> to get the database types of the SDO and its object attributes. The <code>newobject()</code> calls create Python representations of those objects. The python object atributes are then set.  Oracle VARRAY types such as SDO_ELEM_INFO_ARRAY are set with <code>extend()</code>.</p>

<p>Run the file:</p>

<pre><strong>python bind_sdo.py</strong></pre>

<p>The new SDO is shown as an object, similar to </p>

<pre>(1, &lt;oracledb.Object MDSYS.SDO_GEOMETRY at 0x104a76230&gt;)</pre>

<p>To show the attribute values, edit the query code section at
the end of the file.  Add a new method that traverses the object. The file below the existing comment "<code># (Change below here)</code>")
should look like:</p>

<pre>
# (Change below here)

# Define a function to dump the contents of an Oracle object
def dumpobject(obj, prefix = "  "):
    if obj.type.iscollection:
        print(prefix, "[")
        for value in obj.aslist():
            if isinstance(value, oracledb.Object):
                dumpobject(value, prefix + "  ")
            else:
                print(prefix + "  ", repr(value))
        print(prefix, "]")
    else:
        print(prefix, "{")
        for attr in obj.type.attributes:
            value = getattr(obj, attr.name)
            if isinstance(value, oracledb.Object):
                print(prefix + "  " + attr.name + " :")
                dumpobject(value, prefix + "    ")
            else:
                print(prefix + "  " + attr.name + " :", repr(value))
        print(prefix, "}")

# Query the row
print("Querying row just inserted...")
cur.execute("select id, geometry from testgeometry")
for id, obj in cur:
    print("Id: ", id)
    dumpobject(obj)</pre>

<p>Run the file again:</p>

<pre><strong>python bind_sdo.py</strong></pre>

<p>This shows</p>
<pre>
Querying row just inserted...
Id:  1
   {
    SDO_GTYPE : 2003
    SDO_SRID : None
    SDO_POINT : None
    SDO_ELEM_INFO :
       [
         1
         1003
         3
       ]
    SDO_ORDINATES :
       [
         1
         1
         5
         7
       ]
   }
</pre>

<p>To explore further, try setting the SDO attribute SDO_POINT, which is of type SDO_POINT_TYPE.</p>

<p>The <code>gettype()</code> and <code>newobject()</code> methods can also be used to bind PL/SQL Records and Collections.</p>

<p>Before deciding to use objects, review your performance goals because working with scalar values can be faster.</p>
   </li>
</ul>

<h2><a name="typehandlers">13. Input and Output Type Handlers with named objects</a></h2>
<p>Named objects can only be used in python-oracledb's thick mode. <em>Documentation links for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/sql_execution.html#changing-fetched-data-types-with-output-type-handlers"
>Changing Fetched Data Types with Output Type Handlers</a> and <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/bind.html#changing-bind-data-types-using-an-input-type-handler"
>Changing Bind Data Types using an Input Type Handler</a></em>.</p>
<ul>
<li>
  <h4>13.1 Input type handlers with named objects</h4>
<p>Input type handlers for named objects can enable applications to change how data is bound to the individual attributes of the named objects. Review the code contained in <code>type_input_named_obj.py</code>, which is similar to the final <code>bind_sdo.py</code> from section 12.1, with the
    addition of a new class and converter (shown in bold):</p>
<pre>
import oracledb
import db_config_thick as db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

# Create table
cur.execute("""begin
                 execute immediate 'drop table testgeometry';
                 exception when others then
                   if sqlcode &lt;&gt; -942 then
                     raise;
                   end if;
               end;""")
cur.execute("""create table testgeometry (
               id number(9) not null,
               geometry MDSYS.SDO_GEOMETRY not null)""")

<strong># Create a Python class for an SDO
class mySDO(object):
    def __init__(self, gtype, elemInfo, ordinates):
        self.gtype = gtype
        self.elemInfo = elemInfo
        self.ordinates = ordinates</strong>

# Get Oracle type information
obj_type = con.gettype("MDSYS.SDO_GEOMETRY")
element_info_type_obj = con.gettype("MDSYS.SDO_ELEM_INFO_ARRAY")
ordinate_type_obj = con.gettype("MDSYS.SDO_ORDINATE_ARRAY")

# Convert a Python object to MDSYS.SDO_GEOMETRY
<strong>def SDOInConverter(value):
    obj = obj_type.newobject()
    obj.SDO_GTYPE = value.gtype
    obj.SDO_ELEM_INFO = element_info_type_obj.newobject()
    obj.SDO_ELEM_INFO.extend(value.elemInfo)
    obj.SDO_ORDINATES = ordinate_type_obj.newobject()
    obj.SDO_ORDINATES.extend(value.ordinates)
    return obj

def SDOInputTypeHandler(cursor, value, numElements):
    if isinstance(value, mySDO):
        return cursor.var(oracledb.OBJECT, arraysize=numElements,
                inconverter=SDOInConverter, typename=obj_type.name)</strong>

sdo = mySDO(2003, [1, 1003, 3], [1, 1, 5, 7])  # Python object
<strong>cur.inputtypehandler = SDOInputTypeHandler</strong>
cur.execute("insert into testgeometry values (:1, :2)", (1, sdo))

# Define a function to dump the contents of an Oracle object
def dumpobject(obj, prefix = "  "):
    if obj.type.iscollection:
        print(prefix, "[")
        for value in obj.aslist():
            if isinstance(value, oracledb.Object):
                dumpobject(value, prefix + "  ")
            else:
                print(prefix + "  ", repr(value))
        print(prefix, "]")
    else:
        print(prefix, "{")
        for attr in obj.type.attributes:
            value = getattr(obj, attr.name)
            if isinstance(value, oracledb.Object):
                print(prefix + "  " + attr.name + " :")
                dumpobject(value, prefix + "    ")
            else:
                print(prefix + "  " + attr.name + " :", repr(value))
        print(prefix, "}")

# Query the row
print("Querying row just inserted...")
cur.execute("select id, geometry from testgeometry")
for (id, obj) in cur:
    print("Id: ", id)
    dumpobject(obj)
</pre>
<p>The mapping between Python and Oracle objects is handled in <code>SDOInConverter</code> which uses the python-oracledb <code>newobject()</code> and <code>extend()</code> methods to create an Oracle object from the Python object values. The <code>SDOInConverter</code> method is called by the input type handler
<code>SDOInputTypeHandler</code> whenever an instance of
<code>mySDO</code> is inserted with the cursor.</p>

<p>To confirm the behavior, run the file:</p>

<pre><strong>python type_input_named_obj.py</strong></pre>
<p> This will show</p>
<pre>Querying row just inserted...
Id:  1
   {
    SDO_GTYPE : 2003.0
    SDO_SRID : None
    SDO_POINT : None
    SDO_ELEM_INFO :
       [
         1.0
         1003.0
         3.0
       ]
    SDO_ORDINATES :
       [
         1.0
         1.0
         5.0
         7.0
       ]
   }</pre></li>
</ul>

<ul>
<li>
  <h4>13.2 Output type handlers with named objects</h4>
<p>Output type handlers enable applications to extract the data from  database named objects into a user-defined Python object (defined by the <code>mySDO</code> class here). Review the code contained in <code>type_output_named_obj.py</code> with the output converter function shown in bold:</p>
<pre>
import oracledb
import db_config_thick as db_config

con = oracledb.connect(user=db_config.user,
                       password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

# Create table
cur.execute("""begin
                 execute immediate 'drop table testgeometry';
                 exception when others then
                   if sqlcode &lt;&gt; -942 then
                     raise;
                   end if;
               end;""")
cur.execute("""create table testgeometry (
               id number(9) not null,
               geometry MDSYS.SDO_GEOMETRY not null)""")

# Create a Python class for an SDO
class mySDO(object):
    def __init__(self, gtype, elemInfo, ordinates):
        self.gtype = gtype
        self.elemInfo = elemInfo
        self.ordinates = ordinates

# Get Oracle type information
obj_type = con.gettype("MDSYS.SDO_GEOMETRY")
element_info_type_obj = con.gettype("MDSYS.SDO_ELEM_INFO_ARRAY")
ordinate_type_obj = con.gettype("MDSYS.SDO_ORDINATE_ARRAY")

# Convert a Python object to MDSYS.SDO_GEOMETRY
def SDOInConverter(value):
    obj = obj_type.newobject()
    obj.SDO_GTYPE = value.gtype
    obj.SDO_ELEM_INFO = element_info_type_obj.newobject()
    obj.SDO_ELEM_INFO.extend(value.elemInfo)
    obj.SDO_ORDINATES = ordinate_type_obj.newobject()
    obj.SDO_ORDINATES.extend(value.ordinates)
    return obj

def SDOInputTypeHandler(cursor, value, numElements):
    if isinstance(value, mySDO):
        return cursor.var(oracledb.OBJECT, arraysize=numElements,
                          inconverter=SDOInConverter, typename=obj_type.name)

# Convert a MDSYS.SDO_GEOMETRY DB Object to Python object
<strong>def SDOOutConverter(DBobj):
    return mySDO(int(DBobj.SDO_GTYPE), DBobj.SDO_ELEM_INFO.aslist(),
                 DBobj.SDO_ORDINATES.aslist())</strong>

<strong>def SDOOutputTypeHandler(cursor, name, default_type, size, precision,
                         scale):
    if default_type == oracledb.DB_TYPE_OBJECT:
        return cursor.var(obj_type, arraysize=cursor.arraysize,
                          outconverter=SDOOutConverter)</strong>

sdo = mySDO(2003, [1, 1003, 3], [1, 1, 5, 7])  # Python object
cur.inputtypehandler = SDOInputTypeHandler
cur.execute("insert into testgeometry values (:1, :2)", (1, sdo))
cur.outputtypehandler = SDOOutputTypeHandler

# Query the SDO Table row
print("Querying the Spatial Data Object(SDO) Table using the Output Type Handler...")
print("----------------------------------------------------------------------------")
cur.execute("select id, geometry from testgeometry")
for (id, obj) in cur:
    print("SDO ID:", id)
    print("SDO GYTPE:", obj.gtype)
    print("SDO ELEMINFO:", obj.elemInfo)
    print("SDO_ORDINATES:", obj.ordinates)</pre>
<p>Note that the Input Type Handler and the InConverter functions are the same as the previous example. </p>
<p>The mapping between the Python and Oracle objects is handled in <code>SDOOutConverter</code>. The <code>SDOOutConverter</code> method is called by the output type handler
  <code>SDOOutputTypeHandler</code> whenever  data of the named object (<code>MDSYS.SDOGEOMETRY</code> in this case) is selected with the cursor and needs to be converted to a user-defined Python object (<code>mySDO</code> object in this case).</p>

<p>To confirm the behavior, run the file:</p>

<pre><strong>python type_output_named_obj.py</strong></pre>
<p> This will show</p>
<pre>Querying the Spatial Data Object(SDO) Table using the Output Type Handler...
----------------------------------------------------------------------------
SDO ID: 1
SDO GYTPE: 2003
SDO ELEMINFO: [1.0, 1003.0, 3.0]
SDO_ORDINATES: [1.0, 1.0, 5.0, 7.0]</pre></li>
</ul>

<h2><a name="aq">14. Advanced Queuing</a></h2>

<p>Oracle Advanced Queuing (AQ) APIs usable in python-oracledb thick mode allow messages to be passed between applications. <em>Documentation link for further reading: <a
href="https://python-oracledb.readthedocs.io/en/latest/user_guide/aq.html" >Oracle Advanced Queuing (AQ)</a></em>.</p>

  <ul>
    <li>
    <h4>14.1 Message passing with Oracle Advanced Queuing</h4>

    <p>Review <code>aq.py</code>:</p>

<pre>
import oracledb
import decimal
import db_config_thick as db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)
cur = con.cursor()

BOOK_TYPE_NAME = "UDT_BOOK"
QUEUE_NAME = "BOOKS"
QUEUE_TABLE_NAME = "BOOK_QUEUE_TABLE"

# Cleanup
cur.execute(
    """begin
         dbms_aqadm.stop_queue('""" + QUEUE_NAME + """');
         dbms_aqadm.drop_queue('""" + QUEUE_NAME + """');
         dbms_aqadm.drop_queue_table('""" + QUEUE_TABLE_NAME + """');
         execute immediate 'drop type """ + BOOK_TYPE_NAME + """';
         exception when others then
           if sqlcode &lt;&gt; -24010 then
             raise;
           end if;
       end;""")

# Create a type
print("Creating books type UDT_BOOK...")
cur.execute("""
        create type %s as object (
            title varchar2(100),
            authors varchar2(100),
            price number(5,2)
        );""" % BOOK_TYPE_NAME)

# Create queue table and queue and start the queue
print("Creating queue table...")
cur.callproc("dbms_aqadm.create_queue_table",
        (QUEUE_TABLE_NAME, BOOK_TYPE_NAME))
cur.callproc("dbms_aqadm.create_queue", (QUEUE_NAME, QUEUE_TABLE_NAME))
cur.callproc("dbms_aqadm.start_queue", (QUEUE_NAME,))

books_type = con.gettype(BOOK_TYPE_NAME)
queue = con.queue(QUEUE_NAME, booksType)

# Enqueue a few messages
print("Enqueuing messages...")

BOOK_DATA = [
    ("The Fellowship of the Ring", "Tolkien, J.R.R.", decimal.Decimal("10.99")),
    ("Harry Potter and the Philosopher's Stone", "Rowling, J.K.",
            decimal.Decimal("7.99"))
]

for title, authors, price in BOOK_DATA:
    book = books_type.newobject()
    book.TITLE = title
    book.AUTHORS = authors
    book.PRICE = price
    print(title)
    queue.enqone(con.msgproperties(payload=book))
    con.commit()

# Dequeue the messages
print("\nDequeuing messages...")
queue.deqoptions.wait = oracledb.DEQ_NO_WAIT
while True:
    props = queue.deqone()
    if not props:
        break
    print(props.payload.TITLE)
    con.commit()

print("\nDone.")
</pre>

<p>This file sets up Advanced Queuing using Oracle's DBMS_AQADM
package.  The queue is used for passing Oracle UDT_BOOK objects. The file uses AQ interface features enhanced in python-oracledb v1.0.</p>

<p>Run the file:</p>

<pre><strong>python aq.py</strong></pre>

<p>The output shows messages being queued and dequeued.</p>

<p>To experiment, split the code into three files: one to create and
start the queue and two other files to queue and dequeue messages.
Experiment with running the queue and dequeue files concurrently in
separate terminal windows.</p>

<p>Try removing the <code>commit()</code> call in
<code>aq-dequeue.py</code>.  Now run <code>aq-enqueue.py</code> once
and then <code>aq-dequeue.py</code> several times.  The same messages
will be available each time you try to dequeue them.</p>

<p>Change <code>aq-dequeue.py</code> to commit in a separate
transaction by changing the "visibility" setting:</p>

<pre>
queue.deqoptions.visibility = oracledb.DEQ_IMMEDIATE
</pre>

<p>This gives the same behavior as the original code.</p>

<p>Now change the options of enqueued messages so that they expire from the
queue if they have not been dequeued after four seconds:</p>

<pre>
queue.enqone(con.msgproperties(payload=book, expiration=4))
</pre>

<p>Now run <code>aq-enqueue.py</code> and wait four seconds before you
run <code>aq-dequeue.py</code>.  There should be no messages to
dequeue. </p>

<p>If you are stuck, please look in the <code>solutions</code> directory at the <code>aq-dequeue.py</code>, <code>aq-enqueue.py</code> and <code>aq-queuestart.py</code> files.</p>

</li>
</ul>

<h2><a name="soda">15. Simple Oracle Document Access (SODA)</a></h2>

  <p>Simple Oracle Document Access (SODA) is a set of NoSQL-style APIs.
  Documents can be inserted, queried, and retrieved from Oracle Database.  By default, documents are JSON strings.  SODA APIs exist in many languages. It is usable in python-oracledb's thick mode. <i>Documentation link for further reading: <a
  href="https://python-oracledb.readthedocs.io/en/latest/user_guide/soda.html" >Simple Oracle Document Access (SODA)</a></i>.</p>

  <ul>

    <li>
      <h4>15.1 Inserting JSON Documents</h4>

      <p>Review <code>soda.py</code> :</p>

<pre>
import oracledb
import db_config_thick as db_config

con = oracledb.connect(user=db_config.user, password=db_config.pw, dsn=db_config.dsn)

soda = con.getSodaDatabase()

# Explicit metadata is used for maximum version portability
metadata = {
               "keyColumn": {
                   "name":"ID"
               },
               "contentColumn": {
                   "name": "JSON_DOCUMENT",
                   "sqlType": "BLOB"
               },
               "versionColumn": {
                   "name": "VERSION",
                   "method": "UUID"
               },
               "lastModifiedColumn": {
                   "name": "LAST_MODIFIED"
               },
               "creationTimeColumn": {
                   "name": "CREATED_ON"
               }
           }

collection = soda.createCollection("friends", metadata)

content = {'name': 'Jared', 'age': 35, 'address': {'city': 'Melbourne'}}

doc = collection.insertOneAndGet(content)
key = doc.key

doc = collection.find().key(key).getOne()
content = doc.getContent()
print('Retrieved SODA document dictionary is:')
print(content)</pre>

      <p><code>soda.createCollection()</code> will create a new collection, or open an existing collection, if the name is already in use. (Due to a change in the default "<em>sqlType</em>" storage for Oracle Database 21c, the metadata is explicitly stated to use a BLOB column. This lets the example run with different client and database versions).</p>

      <p><code>insertOneAndGet()</code> inserts the content of a document into the database and returns a SODA Document Object.
This allows access to metadata such as the document key. By default, document keys are automatically generated.</p>

      <p>The <code>find()</code> method is used to begin an operation that will act upon documents in the collection.</p>

      <p><code>content</code> is a dictionary.  You can also get a JSON string by calling <code>doc.getContentAsString()</code>.</p>

      <p>Run the file:</p>

<pre><strong>python soda.py</strong></pre>

      <p>The output shows the content of the new document.</p>

    </li>

    <li>
      <h4>15.2 Searching SODA Documents</h4>

      <p>Extend <code>soda.py</code> to insert some more documents and perform a find filter operation:</p>

<pre>
my_docs = [
    {'name': 'Gerald', 'age': 21, 'address': {'city': 'London'}},
    {'name': 'David', 'age': 28, 'address': {'city': 'Melbourne'}},
    {'name': 'Shawn', 'age': 20, 'address': {'city': 'San Francisco'}}
]
collection.insertMany(my_docs)

filter_spec = { "address.city": "Melbourne" }
my_documents = collection.find().filter(filter_spec).getDocuments()

print('Melbourne people:')
for doc in my_documents:
    print(doc.getContent()["name"])
</pre>

      <p>Run the script again:</p>

      <pre><strong>python soda.py</strong></pre>

      <p>The find operation filters the collection and returns documents where the city is Melbourne.  Note the
 <code>insertMany()</code> method is currently in preview.</p>

      <p>SODA supports query by example (QBE) with an extensive set of
      operators.  Extend <code>soda.py</code> with a QBE to find
      documents where the age is less than 25:</p>

<pre>
filter_spec = {'age': {'$lt': 25}}
my_documents = collection.find().filter(filter_spec).getDocuments()

print('Young people:')
for doc in my_documents:
    print(doc.getContent()["name"])
</pre>

<p>Running the script displays the names.</p>

    </li>
  </ul>

  <h2><a name="summary">Summary</a></h2>
  <p>In this tutorial, you have learned how to: </p>
  <ul>
    <li>Install the python-oracledb driver and use thin and thick modes</li>
    <li>Create and work with connections</li>
    <li>Use python-oracledb's connection pooling and Database Resident Connection Pooling</li>
    <li>Execute queries and fetch data</li>
    <li>Use bind variables</li>
    <li>Use PL/SQL stored functions and procedures</li>
    <li>Extend python-oracledb classes</li>
    <li>Use scrollable cursors</li>
    <li>Work with named objects</li>
    <li>Use Oracle Advanced Queuing</li>
    <li>Use the SODA document store API</li>
  </ul>

  <p>For further reading, see the <a
  href="https://python-oracledb.readthedocs.io/en/latest/index.html" >python-oracledb documentation</a>.</p>

  <h2><a name="primer">Appendix: Python Primer</a></h2>

  <p>Python is a dynamically typed scripting language. It is most often used to run command-line scripts but is also used for web applications and web services.</p>

  <h4>Running Python</h4>

<p> You can either:</p>

  <ul>

    <li><p>Create a file of Python commands, such as
      <code>myfile.py</code>.  This can be run with:</p>
      <pre><strong>python myfile.py</strong></pre></li>

    <li><p>Alternatively run the Python interpreter by executing the <code>python</code> command in a terminal, and then interactively enter commands. Use <strong>Ctrl-D</strong> to exit back to the operating system prompt.</p></li>

</ul>

    <p>On some machines, you may need to run the <code>python3</code> command instead of <code>python</code>. </p>
    <p>When you run scripts, Python automatically creates bytecode versions of them in a folder called <code>__pycache__</code>.
    These improve the performance of scripts that are run multiple times. They are automatically recreated if the source file changes.</p>

    <h4>Indentation</h4>

    <p> Whitespace indentation is significant in Python.  When copying examples, use the same column alignment as shown. The samples in this tutorial use spaces, not tabs. </p>

    <p>The following indentation prints 'done' once after the loop has completed:</p>

<pre>
for i in range(5):
    print(i)
print('done')
</pre>

    <p>But this indentation prints 'done' in each iteration:</p>

<pre>
for i in range(5):
    print(i)
    print('done')
</pre>

<h4>Strings</h4>

<p> Python strings can be enclosed in
    single or double quotes:</p>

  <pre>'A string constant'
&quot;another constant&quot;</pre>
  <p>Multi line strings use a triple-quote syntax:</p>
  <pre>&quot;&quot;&quot;
SELECT *
FROM EMP
&quot;&quot;&quot;</pre>

    <h4>Variables</h4>

<p> Variables do not need types declared:</p>
  <pre>count = 1
ename = 'Arnie'</pre>

    <h4>Comments</h4>

<p> Comments can be single line:</p>
  <pre># a short comment</pre>
  <p>Or they can be multi-line using the triple-quote token to create a string that does nothing:</p>
  <pre>&quot;&quot;&quot;
a longer
comment
&quot;&quot;&quot;
</pre>

    <h4>Printing</h4>

<p> Strings and variables can be displayed with a <code>print()</code> function:</p>
  <pre>print('Hello, World!')
print('Value:', count)</pre>

    <h4>Data Structures</h4>

    <p>Associative arrays are called 'dictionaries':</p>
    <pre>a2 = {'PI':3.1415, 'E':2.7182}</pre>
    <p>Ordered arrays are called 'lists':</p>
    <pre>a3 = [101, 4, 67]</pre>
    <p>Lists can be accessed via indexes.</p>
    <pre>
print(a3[0])
print(a3[-1])
print(a3[1:3])
</pre>

  <p>Tuples are like lists but cannot be changed once they are
  created. They are created with parentheses:</p>

  <pre>a4 = (3, 7, 10)</pre>

  <p>Individual values in a tuple can be assigned to variables like:</p>

  <pre>v1, v2, v3 = a4</pre>

  <p>Now the variable v1 contains 3, the variable v2 contains 7 and the variable v3 contains 10.</p>

  <p>The value in a single entry tuple like "<code>(13,)</code>"can be
  assigned to a variable by putting a comma after the variable name
  like:</p>

  <pre>v1, = (13,)</pre>

  <p>If the assignment is:</p>

  <pre>v1 = (13,)</pre>

  <p>then <code>v1</code> will contain the whole tuple "<code>(13,)</code>"</p>

    <h4>Objects</h4>

<p>Everything in Python is an object. As an example, given the of the list <code>a3</code> above, the <code>append()</code> method can be used to add a value to the list.</p>

  <pre>a3.append(23)</pre>
  <p>Now <code>a3</code> contains <code>[101, 4, 67, 23]</code></p>

<h4>Flow Control</h4>

<p> Code flow can be controlled with tests and loops. The
<code>if</code>/<code>elif</code>/<code>else</code> statements look like:</p>

<pre>
if v == 2 or v == 4:
    print('Even')
elif v == 1 or v == 3:
    print('Odd')
else:
    print('Unknown number')
</pre>

<p>This also shows how the clauses are delimited with colons, and each sub-block of code is indented.</p>

<h4>Loops</h4>

  <p>A traditional loop is:</p>
  <pre>for i in range(10):
    print(i)</pre>

  <p>This prints the numbers from 0 to 9. The value of <code>i</code>
    is incremented in each iteration. </p>

  <p>The '<code>for</code>' command can also be used to iterate over lists and tuples:</p>

 <pre>
a5 = ['Aa', 'Bb', 'Cc']
for v in a5:
    print(v)
</pre>

<p>This sets <code>v</code> to each element of the list
<code>a5</code> in turn.</p>

<h4>Functions</h4>

<p> A function may be defined as:</p>

<pre>
def myfunc(p1, p2):
    &quot;Function documentation: add two numbers&quot;
    print(p1, p2)
    return p1 + p2</pre>

<p>Functions may or may not return values. This function could be called using:</p>

<pre>v3 = myfunc(1, 3)</pre>

<p>Function calls must appear after their function definition.</p>

<p>Functions are also objects and have attributes. The inbuilt
<code>__doc__</code> attribute can be used to find the function description:</p>

  <pre>print(myfunc.__doc__)</pre>

<h4>Modules</h4>

<p> Sub-files can be included in Python scripts with an import statement.</p>
  <pre>import os
import sys</pre>
  <p>Many predefined modules exist, such as the os and the sys modules.</p>


<h2><a name="resources">Resources</a></h2>

<ul>
  <li><a href="https://docs.python.org/3/" >Python Documentation</a></li>
  <li><a href="http://python-oracledb.readthedocs.io/en/latest/index.html" >Python python-oracledb Documentation</a></li>
    <li><a href="https://github.com/oracle/python-oracledb/tree/main/samples" >Python-oracledb Source Code Repository Samples</a></li>
</ul>

<div class="footer"></div>

<hr/>
<h2>License</h2>
<p>Copyright &copy; 2017, 2022, Oracle and/or its affiliates. </p>

<p>This software is dual-licensed to you under the Universal Permissive License
(UPL) 1.0 as shown at https://oss.oracle.com/licenses/upl and Apache License
2.0 as shown at http://www.apache.org/licenses/LICENSE-2.0. You may choose
either license. </p>
<p>If you elect to accept the software under the Apache License, Version 2.0,
the following applies: </p>
<p>Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at </p>
<p>
   https://www.apache.org/licenses/LICENSE-2.0
 </p>
<p>Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. </p>

</body>
</html>