1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
import collections
import itertools as it
import operator
import pickle
import random
import sys
import pytest
from ordered_set import OrderedSet
def test_pickle():
set1 = OrderedSet("abracadabra")
roundtrip = pickle.loads(pickle.dumps(set1))
assert roundtrip == set1
def test_empty_pickle():
empty_oset = OrderedSet()
empty_roundtrip = pickle.loads(pickle.dumps(empty_oset))
assert empty_roundtrip == empty_oset
def test_order():
set1 = OrderedSet("abracadabra")
assert len(set1) == 5
assert set1 == OrderedSet(["a", "b", "r", "c", "d"])
assert list(reversed(set1)) == ["d", "c", "r", "b", "a"]
def test_binary_operations():
set1 = OrderedSet("abracadabra")
set2 = OrderedSet("simsalabim")
assert set1 != set2
assert set1 & set2 == OrderedSet(["a", "b"])
assert set1 | set2 == OrderedSet(["a", "b", "r", "c", "d", "s", "i", "m", "l"])
assert set1 - set2 == OrderedSet(["r", "c", "d"])
def test_indexing():
set1 = OrderedSet("abracadabra")
assert set1[:] == set1
assert set1.copy() == set1
assert set1 is set1
assert set1[:] is not set1
assert set1.copy() is not set1
assert set1[[1, 2]] == OrderedSet(["b", "r"])
assert set1[1:3] == OrderedSet(["b", "r"])
assert set1.index("b") == 1
assert set1.index(["b", "r"]) == [1, 2]
with pytest.raises(KeyError):
set1.index("br")
class FancyIndexTester:
"""
Make sure we can index by a NumPy ndarray, without having to import
NumPy.
"""
def __init__(self, indices):
self.indices = indices
def __iter__(self):
return iter(self.indices)
def __index__(self):
raise TypeError("NumPy arrays have weird __index__ methods")
def __eq__(self, other):
# Emulate NumPy being fussy about the == operator
raise TypeError
def test_fancy_index_class():
set1 = OrderedSet("abracadabra")
indexer = FancyIndexTester([1, 0, 4, 3, 0, 2])
assert "".join(set1[indexer]) == "badcar"
def test_pandas_compat():
set1 = OrderedSet("abracadabra")
assert set1.get_loc("b") == 1
assert set1.get_indexer(["b", "r"]) == [1, 2]
def test_tuples():
set1 = OrderedSet()
tup = ("tuple", 1)
set1.add(tup)
assert set1.index(tup) == 0
assert set1[0] == tup
def test_remove():
set1 = OrderedSet("abracadabra")
set1.remove("a")
set1.remove("b")
assert set1 == OrderedSet("rcd")
assert set1[0] == "r"
assert set1[1] == "c"
assert set1[2] == "d"
assert set1.index("r") == 0
assert set1.index("c") == 1
assert set1.index("d") == 2
assert "a" not in set1
assert "b" not in set1
assert "r" in set1
# Make sure we can .discard() something that's already gone, plus
# something that was never there
set1.discard("a")
set1.discard("a")
def test_remove_error():
# If we .remove() an element that's not there, we get a KeyError
set1 = OrderedSet("abracadabra")
with pytest.raises(KeyError):
set1.remove("z")
def test_clear():
set1 = OrderedSet("abracadabra")
set1.clear()
assert len(set1) == 0
assert set1 == OrderedSet()
def test_update():
set1 = OrderedSet("abcd")
result = set1.update("efgh")
assert result == 7
assert len(set1) == 8
assert "".join(set1) == "abcdefgh"
set2 = OrderedSet("abcd")
result = set2.update("cdef")
assert result == 5
assert len(set2) == 6
assert "".join(set2) == "abcdef"
def test_pop():
set1 = OrderedSet("ab")
elem = set1.pop()
assert elem == "b"
elem = set1.pop()
assert elem == "a"
pytest.raises(KeyError, set1.pop)
def test_getitem_type_error():
set1 = OrderedSet("ab")
with pytest.raises(TypeError):
set1["a"]
def test_update_value_error():
set1 = OrderedSet("ab")
with pytest.raises(ValueError):
# noinspection PyTypeChecker
set1.update(3)
def test_empty_repr():
set1 = OrderedSet()
assert repr(set1) == "OrderedSet()"
def test_eq_wrong_type():
set1 = OrderedSet()
assert set1 != 2
def test_ordered_equality():
# Ordered set checks order against sequences.
assert OrderedSet([1, 2]) == OrderedSet([1, 2])
assert OrderedSet([1, 2]) == [1, 2]
assert OrderedSet([1, 2]) == (1, 2)
assert OrderedSet([1, 2]) == collections.deque([1, 2])
def test_ordered_inequality():
# Ordered set checks order against sequences.
assert OrderedSet([1, 2]) != OrderedSet([2, 1])
assert OrderedSet([1, 2]) != [2, 1]
assert OrderedSet([1, 2]) != [2, 1, 1]
assert OrderedSet([1, 2]) != (2, 1)
assert OrderedSet([1, 2]) != (2, 1, 1)
# Note: in Python 2.7 deque does not inherit from Sequence, but __eq__
# contains an explicit check for this case for python 2/3 compatibility.
assert OrderedSet([1, 2]) != collections.deque([2, 1])
assert OrderedSet([1, 2]) != collections.deque([2, 2, 1])
def test_comparisons():
# Comparison operators on sets actually test for subset and superset.
assert OrderedSet([1, 2]) < OrderedSet([1, 2, 3])
assert OrderedSet([1, 2]) > OrderedSet([1])
# MutableSet subclasses aren't comparable to set on 3.3.
if tuple(sys.version_info) >= (3, 4):
assert OrderedSet([1, 2]) > {1}
def test_unordered_equality():
# Unordered set checks order against non-sequences.
assert OrderedSet([1, 2]) == {1, 2}
assert OrderedSet([1, 2]) == frozenset([2, 1])
assert OrderedSet([1, 2]) == {1: "a", 2: "b"}
assert OrderedSet([1, 2]) == {1: 1, 2: 2}.keys()
assert OrderedSet([1, 2]) == {1: 1, 2: 2}.values()
# Corner case: OrderedDict is not a Sequence, so we don't check for order,
# even though it does have the concept of order.
assert OrderedSet([1, 2]) == collections.OrderedDict([(2, 2), (1, 1)])
# Corner case: We have to treat iterators as unordered because there
# is nothing to distinguish an ordered and unordered iterator
assert OrderedSet([1, 2]) == iter([1, 2])
assert OrderedSet([1, 2]) == iter([2, 1])
assert OrderedSet([1, 2]) == iter([2, 1, 1])
def test_unordered_inequality():
assert OrderedSet([1, 2]) != set([])
assert OrderedSet([1, 2]) != frozenset([2, 1, 3])
assert OrderedSet([1, 2]) != {2: "b"}
assert OrderedSet([1, 2]) != {1: 1, 4: 2}.keys()
assert OrderedSet([1, 2]) != {1: 1, 2: 3}.values()
# Corner case: OrderedDict is not a Sequence, so we don't check for order,
# even though it does have the concept of order.
assert OrderedSet([1, 2]) != collections.OrderedDict([(2, 2), (3, 1)])
def allsame_(iterable, eq=operator.eq):
"""returns True of all items in iterable equal each other"""
iter_ = iter(iterable)
try:
first = next(iter_)
except StopIteration:
return True
return all(eq(first, item) for item in iter_)
def check_results_(results, datas, name):
"""
helper for binary operator tests.
check that all results have the same value, but are different items.
data and name are used to indicate what sort of tests is run.
"""
if not allsame_(results):
raise AssertionError(
"Not all same {} for {} with datas={}".format(results, name, datas)
)
for a, b in it.combinations(results, 2):
if not isinstance(a, (bool, int)):
assert a is not b, name + " should all be different items"
def _operator_consistency_testdata():
"""
Predefined and random data used to test operator consistency.
"""
# test case 1
data1 = OrderedSet([5, 3, 1, 4])
data2 = OrderedSet([1, 4])
yield data1, data2
# first set is empty
data1 = OrderedSet([])
data2 = OrderedSet([3, 1, 2])
yield data1, data2
# second set is empty
data1 = OrderedSet([3, 1, 2])
data2 = OrderedSet([])
yield data1, data2
# both sets are empty
data1 = OrderedSet([])
data2 = OrderedSet([])
yield data1, data2
# random test cases
rng = random.Random(0)
a, b = 20, 20
for _ in range(10):
data1 = OrderedSet(rng.randint(0, a) for _ in range(b))
data2 = OrderedSet(rng.randint(0, a) for _ in range(b))
yield data1, data2
yield data2, data1
def test_operator_consistency_isect():
for data1, data2 in _operator_consistency_testdata():
result1 = data1.copy()
result1.intersection_update(data2)
result2 = data1 & data2
result3 = data1.intersection(data2)
check_results_([result1, result2, result3], datas=(data1, data2), name="isect")
def test_operator_consistency_difference():
for data1, data2 in _operator_consistency_testdata():
result1 = data1.copy()
result1.difference_update(data2)
result2 = data1 - data2
result3 = data1.difference(data2)
check_results_(
[result1, result2, result3], datas=(data1, data2), name="difference"
)
def test_operator_consistency_xor():
for data1, data2 in _operator_consistency_testdata():
result1 = data1.copy()
result1.symmetric_difference_update(data2)
result2 = data1 ^ data2
result3 = data1.symmetric_difference(data2)
check_results_([result1, result2, result3], datas=(data1, data2), name="xor")
def test_operator_consistency_union():
for data1, data2 in _operator_consistency_testdata():
result1 = data1.copy()
result1.update(data2)
result2 = data1 | data2
result3 = data1.union(data2)
check_results_([result1, result2, result3], datas=(data1, data2), name="union")
def test_operator_consistency_subset():
for data1, data2 in _operator_consistency_testdata():
result1 = data1 <= data2
result2 = data1.issubset(data2)
result3 = set(data1).issubset(set(data2))
check_results_([result1, result2, result3], datas=(data1, data2), name="subset")
def test_operator_consistency_superset():
for data1, data2 in _operator_consistency_testdata():
result1 = data1 >= data2
result2 = data1.issuperset(data2)
result3 = set(data1).issuperset(set(data2))
check_results_(
[result1, result2, result3], datas=(data1, data2), name="superset"
)
def test_operator_consistency_disjoint():
for data1, data2 in _operator_consistency_testdata():
result1 = data1.isdisjoint(data2)
result2 = len(data1.intersection(data2)) == 0
check_results_([result1, result2], datas=(data1, data2), name="disjoint")
def test_bitwise_and_consistency():
# Specific case that was failing without explicit __and__ definition
data1 = OrderedSet([12, 13, 1, 8, 16, 15, 9, 11, 18, 6, 4, 3, 19, 17])
data2 = OrderedSet([19, 4, 9, 3, 2, 10, 15, 17, 11, 13, 20, 6, 14, 16, 8])
result1 = data1.copy()
result1.intersection_update(data2)
# This requires a custom & operation apparently
result2 = data1 & data2
result3 = data1.intersection(data2)
check_results_([result1, result2, result3], datas=(data1, data2), name="isect")
|