1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111
|
# orjson
orjson is a fast, correct JSON library for Python. It
[benchmarks](https://github.com/ijl/orjson?tab=readme-ov-file#performance) as the fastest Python
library for JSON and is more correct than the standard json library or other
third-party libraries. It serializes
[dataclass](https://github.com/ijl/orjson?tab=readme-ov-file#dataclass),
[datetime](https://github.com/ijl/orjson?tab=readme-ov-file#datetime),
[numpy](https://github.com/ijl/orjson?tab=readme-ov-file#numpy), and
[UUID](https://github.com/ijl/orjson?tab=readme-ov-file#uuid) instances natively.
[orjson.dumps()](https://github.com/ijl/orjson?tab=readme-ov-file#serialize) is
something like 10x as fast as `json`, serializes
common types and subtypes, has a `default` parameter for the caller to specify
how to serialize arbitrary types, and has a number of flags controlling output.
[orjson.loads()](https://github.com/ijl/orjson?tab=readme-ov-file#deserialize)
is something like 2x as fast as `json`, and is strictly compliant with UTF-8 and
RFC 8259 ("The JavaScript Object Notation (JSON) Data Interchange Format").
Reading from and writing to files, line-delimited JSON files, and so on is
not provided by the library.
orjson supports CPython 3.9, 3.10, 3.11, 3.12, 3.13, and 3.14.
It distributes amd64/x86_64/x64, i686/x86, aarch64/arm64/armv8, arm7,
ppc64le/POWER8, and s390x wheels for Linux, amd64 and aarch64 wheels
for macOS, and amd64, i686, and aarch64 wheels for Windows.
Wheels published to PyPI for amd64 run on x86-64-v1 (2003)
or later, but will at runtime use AVX-512 if available for a
significant performance benefit; aarch64 wheels run on ARMv8-A (2011) or
later.
orjson does not and will not support PyPy, embedded Python builds for
Android/iOS, or PEP 554 subinterpreters.
orjson may support PEP 703 free-threading when it is stable.
Releases follow semantic versioning and serializing a new object type
without an opt-in flag is considered a breaking change.
orjson is licensed under both the Apache 2.0 and MIT licenses. The
repository and issue tracker is
[github.com/ijl/orjson](https://github.com/ijl/orjson), and patches may be
submitted there. There is a
[CHANGELOG](https://github.com/ijl/orjson/blob/master/CHANGELOG.md)
available in the repository.
1. [Usage](https://github.com/ijl/orjson?tab=readme-ov-file#usage)
1. [Install](https://github.com/ijl/orjson?tab=readme-ov-file#install)
2. [Quickstart](https://github.com/ijl/orjson?tab=readme-ov-file#quickstart)
3. [Migrating](https://github.com/ijl/orjson?tab=readme-ov-file#migrating)
4. [Serialize](https://github.com/ijl/orjson?tab=readme-ov-file#serialize)
1. [default](https://github.com/ijl/orjson?tab=readme-ov-file#default)
2. [option](https://github.com/ijl/orjson?tab=readme-ov-file#option)
3. [Fragment](https://github.com/ijl/orjson?tab=readme-ov-file#fragment)
5. [Deserialize](https://github.com/ijl/orjson?tab=readme-ov-file#deserialize)
2. [Types](https://github.com/ijl/orjson?tab=readme-ov-file#types)
1. [dataclass](https://github.com/ijl/orjson?tab=readme-ov-file#dataclass)
2. [datetime](https://github.com/ijl/orjson?tab=readme-ov-file#datetime)
3. [enum](https://github.com/ijl/orjson?tab=readme-ov-file#enum)
4. [float](https://github.com/ijl/orjson?tab=readme-ov-file#float)
5. [int](https://github.com/ijl/orjson?tab=readme-ov-file#int)
6. [numpy](https://github.com/ijl/orjson?tab=readme-ov-file#numpy)
7. [str](https://github.com/ijl/orjson?tab=readme-ov-file#str)
8. [uuid](https://github.com/ijl/orjson?tab=readme-ov-file#uuid)
3. [Testing](https://github.com/ijl/orjson?tab=readme-ov-file#testing)
4. [Performance](https://github.com/ijl/orjson?tab=readme-ov-file#performance)
1. [Latency](https://github.com/ijl/orjson?tab=readme-ov-file#latency)
2. [Reproducing](https://github.com/ijl/orjson?tab=readme-ov-file#reproducing)
5. [Questions](https://github.com/ijl/orjson?tab=readme-ov-file#questions)
6. [Packaging](https://github.com/ijl/orjson?tab=readme-ov-file#packaging)
7. [License](https://github.com/ijl/orjson?tab=readme-ov-file#license)
## Usage
### Install
To install a wheel from PyPI, install the `orjson` package.
In `requirements.in` or `requirements.txt` format, specify:
```txt
orjson >= 3.10,<4
```
In `pyproject.toml` format, specify:
```toml
orjson = "^3.10"
```
To build a wheel, see [packaging](https://github.com/ijl/orjson?tab=readme-ov-file#packaging).
### Quickstart
This is an example of serializing, with options specified, and deserializing:
```python
>>> import orjson, datetime, numpy
>>> data = {
"type": "job",
"created_at": datetime.datetime(1970, 1, 1),
"status": "🆗",
"payload": numpy.array([[1, 2], [3, 4]]),
}
>>> orjson.dumps(data, option=orjson.OPT_NAIVE_UTC | orjson.OPT_SERIALIZE_NUMPY)
b'{"type":"job","created_at":"1970-01-01T00:00:00+00:00","status":"\xf0\x9f\x86\x97","payload":[[1,2],[3,4]]}'
>>> orjson.loads(_)
{'type': 'job', 'created_at': '1970-01-01T00:00:00+00:00', 'status': '🆗', 'payload': [[1, 2], [3, 4]]}
```
### Migrating
orjson version 3 serializes more types than version 2. Subclasses of `str`,
`int`, `dict`, and `list` are now serialized. This is faster and more similar
to the standard library. It can be disabled with
`orjson.OPT_PASSTHROUGH_SUBCLASS`.`dataclasses.dataclass` instances
are now serialized by default and cannot be customized in a
`default` function unless `option=orjson.OPT_PASSTHROUGH_DATACLASS` is
specified. `uuid.UUID` instances are serialized by default.
For any type that is now serialized,
implementations in a `default` function and options enabling them can be
removed but do not need to be. There was no change in deserialization.
To migrate from the standard library, the largest difference is that
`orjson.dumps` returns `bytes` and `json.dumps` returns a `str`.
Users with `dict` objects using non-`str` keys should specify `option=orjson.OPT_NON_STR_KEYS`.
`sort_keys` is replaced by `option=orjson.OPT_SORT_KEYS`.
`indent` is replaced by `option=orjson.OPT_INDENT_2` and other levels of indentation are not
supported.
`ensure_ascii` is probably not relevant today and UTF-8 characters cannot be
escaped to ASCII.
### Serialize
```python
def dumps(
__obj: Any,
default: Optional[Callable[[Any], Any]] = ...,
option: Optional[int] = ...,
) -> bytes: ...
```
`dumps()` serializes Python objects to JSON.
It natively serializes
`str`, `dict`, `list`, `tuple`, `int`, `float`, `bool`, `None`,
`dataclasses.dataclass`, `typing.TypedDict`, `datetime.datetime`,
`datetime.date`, `datetime.time`, `uuid.UUID`, `numpy.ndarray`, and
`orjson.Fragment` instances. It supports arbitrary types through `default`. It
serializes subclasses of `str`, `int`, `dict`, `list`,
`dataclasses.dataclass`, and `enum.Enum`. It does not serialize subclasses
of `tuple` to avoid serializing `namedtuple` objects as arrays. To avoid
serializing subclasses, specify the option `orjson.OPT_PASSTHROUGH_SUBCLASS`.
The output is a `bytes` object containing UTF-8.
The global interpreter lock (GIL) is held for the duration of the call.
It raises `JSONEncodeError` on an unsupported type. This exception message
describes the invalid object with the error message
`Type is not JSON serializable: ...`. To fix this, specify
[default](https://github.com/ijl/orjson?tab=readme-ov-file#default).
It raises `JSONEncodeError` on a `str` that contains invalid UTF-8.
It raises `JSONEncodeError` on an integer that exceeds 64 bits by default or,
with `OPT_STRICT_INTEGER`, 53 bits.
It raises `JSONEncodeError` if a `dict` has a key of a type other than `str`,
unless `OPT_NON_STR_KEYS` is specified.
It raises `JSONEncodeError` if the output of `default` recurses to handling by
`default` more than 254 levels deep.
It raises `JSONEncodeError` on circular references.
It raises `JSONEncodeError` if a `tzinfo` on a datetime object is
unsupported.
`JSONEncodeError` is a subclass of `TypeError`. This is for compatibility
with the standard library.
If the failure was caused by an exception in `default` then
`JSONEncodeError` chains the original exception as `__cause__`.
#### default
To serialize a subclass or arbitrary types, specify `default` as a
callable that returns a supported type. `default` may be a function,
lambda, or callable class instance. To specify that a type was not
handled by `default`, raise an exception such as `TypeError`.
```python
>>> import orjson, decimal
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
raise TypeError
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"))
JSONEncodeError: Type is not JSON serializable: decimal.Decimal
>>> orjson.dumps(decimal.Decimal("0.0842389659712649442845"), default=default)
b'"0.0842389659712649442845"'
>>> orjson.dumps({1, 2}, default=default)
orjson.JSONEncodeError: Type is not JSON serializable: set
```
The `default` callable may return an object that itself
must be handled by `default` up to 254 times before an exception
is raised.
It is important that `default` raise an exception if a type cannot be handled.
Python otherwise implicitly returns `None`, which appears to the caller
like a legitimate value and is serialized:
```python
>>> import orjson, json
>>>
def default(obj):
if isinstance(obj, decimal.Decimal):
return str(obj)
>>> orjson.dumps({"set":{1, 2}}, default=default)
b'{"set":null}'
>>> json.dumps({"set":{1, 2}}, default=default)
'{"set":null}'
```
#### option
To modify how data is serialized, specify `option`. Each `option` is an integer
constant in `orjson`. To specify multiple options, mask them together, e.g.,
`option=orjson.OPT_STRICT_INTEGER | orjson.OPT_NAIVE_UTC`.
##### OPT_APPEND_NEWLINE
Append `\n` to the output. This is a convenience and optimization for the
pattern of `dumps(...) + "\n"`. `bytes` objects are immutable and this
pattern copies the original contents.
```python
>>> import orjson
>>> orjson.dumps([])
b"[]"
>>> orjson.dumps([], option=orjson.OPT_APPEND_NEWLINE)
b"[]\n"
```
##### OPT_INDENT_2
Pretty-print output with an indent of two spaces. This is equivalent to
`indent=2` in the standard library. Pretty printing is slower and the output
larger. orjson is the fastest compared library at pretty printing and has
much less of a slowdown to pretty print than the standard library does. This
option is compatible with all other options.
```python
>>> import orjson
>>> orjson.dumps({"a": "b", "c": {"d": True}, "e": [1, 2]})
b'{"a":"b","c":{"d":true},"e":[1,2]}'
>>> orjson.dumps(
{"a": "b", "c": {"d": True}, "e": [1, 2]},
option=orjson.OPT_INDENT_2
)
b'{\n "a": "b",\n "c": {\n "d": true\n },\n "e": [\n 1,\n 2\n ]\n}'
```
If displayed, the indentation and linebreaks appear like this:
```json
{
"a": "b",
"c": {
"d": true
},
"e": [
1,
2
]
}
```
This measures serializing the github.json fixture as compact (52KiB) or
pretty (64KiB):
| Library | compact (ms) | pretty (ms) | vs. orjson |
|-----------|----------------|---------------|--------------|
| orjson | 0.01 | 0.02 | 1 |
| json | 0.13 | 0.54 | 34 |
This measures serializing the citm_catalog.json fixture, more of a worst
case due to the amount of nesting and newlines, as compact (489KiB) or
pretty (1.1MiB):
| Library | compact (ms) | pretty (ms) | vs. orjson |
|-----------|----------------|---------------|--------------|
| orjson | 0.25 | 0.45 | 1 |
| json | 3.01 | 24.42 | 54.4 |
This can be reproduced using the `pyindent` script.
##### OPT_NAIVE_UTC
Serialize `datetime.datetime` objects without a `tzinfo` as UTC. This
has no effect on `datetime.datetime` objects that have `tzinfo` set.
```python
>>> import orjson, datetime
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0),
)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0),
option=orjson.OPT_NAIVE_UTC,
)
b'"1970-01-01T00:00:00+00:00"'
```
##### OPT_NON_STR_KEYS
Serialize `dict` keys of type other than `str`. This allows `dict` keys
to be one of `str`, `int`, `float`, `bool`, `None`, `datetime.datetime`,
`datetime.date`, `datetime.time`, `enum.Enum`, and `uuid.UUID`. For comparison,
the standard library serializes `str`, `int`, `float`, `bool` or `None` by
default. orjson benchmarks as being faster at serializing non-`str` keys
than other libraries. This option is slower for `str` keys than the default.
```python
>>> import orjson, datetime, uuid
>>> orjson.dumps(
{uuid.UUID("7202d115-7ff3-4c81-a7c1-2a1f067b1ece"): [1, 2, 3]},
option=orjson.OPT_NON_STR_KEYS,
)
b'{"7202d115-7ff3-4c81-a7c1-2a1f067b1ece":[1,2,3]}'
>>> orjson.dumps(
{datetime.datetime(1970, 1, 1, 0, 0, 0): [1, 2, 3]},
option=orjson.OPT_NON_STR_KEYS | orjson.OPT_NAIVE_UTC,
)
b'{"1970-01-01T00:00:00+00:00":[1,2,3]}'
```
These types are generally serialized how they would be as
values, e.g., `datetime.datetime` is still an RFC 3339 string and respects
options affecting it. The exception is that `int` serialization does not
respect `OPT_STRICT_INTEGER`.
This option has the risk of creating duplicate keys. This is because non-`str`
objects may serialize to the same `str` as an existing key, e.g.,
`{"1": true, 1: false}`. The last key to be inserted to the `dict` will be
serialized last and a JSON deserializer will presumably take the last
occurrence of a key (in the above, `false`). The first value will be lost.
This option is compatible with `orjson.OPT_SORT_KEYS`. If sorting is used,
note the sort is unstable and will be unpredictable for duplicate keys.
```python
>>> import orjson, datetime
>>> orjson.dumps(
{"other": 1, datetime.date(1970, 1, 5): 2, datetime.date(1970, 1, 3): 3},
option=orjson.OPT_NON_STR_KEYS | orjson.OPT_SORT_KEYS
)
b'{"1970-01-03":3,"1970-01-05":2,"other":1}'
```
This measures serializing 589KiB of JSON comprising a `list` of 100 `dict`
in which each `dict` has both 365 randomly-sorted `int` keys representing epoch
timestamps as well as one `str` key and the value for each key is a
single integer. In "str keys", the keys were converted to `str` before
serialization, and orjson still specifes `option=orjson.OPT_NON_STR_KEYS`
(which is always somewhat slower).
| Library | str keys (ms) | int keys (ms) | int keys sorted (ms) |
|-----------|-----------------|-----------------|------------------------|
| orjson | 0.5 | 0.93 | 2.08 |
| json | 2.72 | 3.59 | |
json is blank because it
raises `TypeError` on attempting to sort before converting all keys to `str`.
This can be reproduced using the `pynonstr` script.
##### OPT_OMIT_MICROSECONDS
Do not serialize the `microsecond` field on `datetime.datetime` and
`datetime.time` instances.
```python
>>> import orjson, datetime
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
)
b'"1970-01-01T00:00:00.000001"'
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, 1),
option=orjson.OPT_OMIT_MICROSECONDS,
)
b'"1970-01-01T00:00:00"'
```
##### OPT_PASSTHROUGH_DATACLASS
Passthrough `dataclasses.dataclass` instances to `default`. This allows
customizing their output but is much slower.
```python
>>> import orjson, dataclasses
>>>
@dataclasses.dataclass
class User:
id: str
name: str
password: str
def default(obj):
if isinstance(obj, User):
return {"id": obj.id, "name": obj.name}
raise TypeError
>>> orjson.dumps(User("3b1", "asd", "zxc"))
b'{"id":"3b1","name":"asd","password":"zxc"}'
>>> orjson.dumps(User("3b1", "asd", "zxc"), option=orjson.OPT_PASSTHROUGH_DATACLASS)
TypeError: Type is not JSON serializable: User
>>> orjson.dumps(
User("3b1", "asd", "zxc"),
option=orjson.OPT_PASSTHROUGH_DATACLASS,
default=default,
)
b'{"id":"3b1","name":"asd"}'
```
##### OPT_PASSTHROUGH_DATETIME
Passthrough `datetime.datetime`, `datetime.date`, and `datetime.time` instances
to `default`. This allows serializing datetimes to a custom format, e.g.,
HTTP dates:
```python
>>> import orjson, datetime
>>>
def default(obj):
if isinstance(obj, datetime.datetime):
return obj.strftime("%a, %d %b %Y %H:%M:%S GMT")
raise TypeError
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)})
b'{"created_at":"1970-01-01T00:00:00"}'
>>> orjson.dumps({"created_at": datetime.datetime(1970, 1, 1)}, option=orjson.OPT_PASSTHROUGH_DATETIME)
TypeError: Type is not JSON serializable: datetime.datetime
>>> orjson.dumps(
{"created_at": datetime.datetime(1970, 1, 1)},
option=orjson.OPT_PASSTHROUGH_DATETIME,
default=default,
)
b'{"created_at":"Thu, 01 Jan 1970 00:00:00 GMT"}'
```
This does not affect datetimes in `dict` keys if using OPT_NON_STR_KEYS.
##### OPT_PASSTHROUGH_SUBCLASS
Passthrough subclasses of builtin types to `default`.
```python
>>> import orjson
>>>
class Secret(str):
pass
def default(obj):
if isinstance(obj, Secret):
return "******"
raise TypeError
>>> orjson.dumps(Secret("zxc"))
b'"zxc"'
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS)
TypeError: Type is not JSON serializable: Secret
>>> orjson.dumps(Secret("zxc"), option=orjson.OPT_PASSTHROUGH_SUBCLASS, default=default)
b'"******"'
```
This does not affect serializing subclasses as `dict` keys if using
OPT_NON_STR_KEYS.
##### OPT_SERIALIZE_DATACLASS
This is deprecated and has no effect in version 3. In version 2 this was
required to serialize `dataclasses.dataclass` instances. For more, see
[dataclass](https://github.com/ijl/orjson?tab=readme-ov-file#dataclass).
##### OPT_SERIALIZE_NUMPY
Serialize `numpy.ndarray` instances. For more, see
[numpy](https://github.com/ijl/orjson?tab=readme-ov-file#numpy).
##### OPT_SERIALIZE_UUID
This is deprecated and has no effect in version 3. In version 2 this was
required to serialize `uuid.UUID` instances. For more, see
[UUID](https://github.com/ijl/orjson?tab=readme-ov-file#UUID).
##### OPT_SORT_KEYS
Serialize `dict` keys in sorted order. The default is to serialize in an
unspecified order. This is equivalent to `sort_keys=True` in the standard
library.
This can be used to ensure the order is deterministic for hashing or tests.
It has a substantial performance penalty and is not recommended in general.
```python
>>> import orjson
>>> orjson.dumps({"b": 1, "c": 2, "a": 3})
b'{"b":1,"c":2,"a":3}'
>>> orjson.dumps({"b": 1, "c": 2, "a": 3}, option=orjson.OPT_SORT_KEYS)
b'{"a":3,"b":1,"c":2}'
```
This measures serializing the twitter.json fixture unsorted and sorted:
| Library | unsorted (ms) | sorted (ms) | vs. orjson |
|-----------|-----------------|---------------|--------------|
| orjson | 0.11 | 0.3 | 1 |
| json | 1.36 | 1.93 | 6.4 |
The benchmark can be reproduced using the `pysort` script.
The sorting is not collation/locale-aware:
```python
>>> import orjson
>>> orjson.dumps({"a": 1, "ä": 2, "A": 3}, option=orjson.OPT_SORT_KEYS)
b'{"A":3,"a":1,"\xc3\xa4":2}'
```
This is the same sorting behavior as the standard library.
`dataclass` also serialize as maps but this has no effect on them.
##### OPT_STRICT_INTEGER
Enforce 53-bit limit on integers. The limit is otherwise 64 bits, the same as
the Python standard library. For more, see [int](https://github.com/ijl/orjson?tab=readme-ov-file#int).
##### OPT_UTC_Z
Serialize a UTC timezone on `datetime.datetime` instances as `Z` instead
of `+00:00`.
```python
>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
)
b'"1970-01-01T00:00:00+00:00"'
>>> orjson.dumps(
datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=zoneinfo.ZoneInfo("UTC")),
option=orjson.OPT_UTC_Z
)
b'"1970-01-01T00:00:00Z"'
```
#### Fragment
`orjson.Fragment` includes already-serialized JSON in a document. This is an
efficient way to include JSON blobs from a cache, JSONB field, or separately
serialized object without first deserializing to Python objects via `loads()`.
```python
>>> import orjson
>>> orjson.dumps({"key": "zxc", "data": orjson.Fragment(b'{"a": "b", "c": 1}')})
b'{"key":"zxc","data":{"a": "b", "c": 1}}'
```
It does no reformatting: `orjson.OPT_INDENT_2` will not affect a
compact blob nor will a pretty-printed JSON blob be rewritten as compact.
The input must be `bytes` or `str` and given as a positional argument.
This raises `orjson.JSONEncodeError` if a `str` is given and the input is
not valid UTF-8. It otherwise does no validation and it is possible to
write invalid JSON. This does not escape characters. The implementation is
tested to not crash if given invalid strings or invalid JSON.
### Deserialize
```python
def loads(__obj: Union[bytes, bytearray, memoryview, str]) -> Any: ...
```
`loads()` deserializes JSON to Python objects. It deserializes to `dict`,
`list`, `int`, `float`, `str`, `bool`, and `None` objects.
`bytes`, `bytearray`, `memoryview`, and `str` input are accepted. If the input
exists as a `memoryview`, `bytearray`, or `bytes` object, it is recommended to
pass these directly rather than creating an unnecessary `str` object. That is,
`orjson.loads(b"{}")` instead of `orjson.loads(b"{}".decode("utf-8"))`. This
has lower memory usage and lower latency.
The input must be valid UTF-8.
orjson maintains a cache of map keys for the duration of the process. This
causes a net reduction in memory usage by avoiding duplicate strings. The
keys must be at most 64 bytes to be cached and 2048 entries are stored.
The global interpreter lock (GIL) is held for the duration of the call.
It raises `JSONDecodeError` if given an invalid type or invalid
JSON. This includes if the input contains `NaN`, `Infinity`, or `-Infinity`,
which the standard library allows, but is not valid JSON.
It raises `JSONDecodeError` if a combination of array or object recurses
1024 levels deep.
It raises `JSONDecodeError` if unable to allocate a buffer large enough
to parse the document.
`JSONDecodeError` is a subclass of `json.JSONDecodeError` and `ValueError`.
This is for compatibility with the standard library.
## Types
### dataclass
orjson serializes instances of `dataclasses.dataclass` natively. It serializes
instances 40-50x as fast as other libraries and avoids a severe slowdown seen
in other libraries compared to serializing `dict`.
It is supported to pass all variants of dataclasses, including dataclasses
using `__slots__`, frozen dataclasses, those with optional or default
attributes, and subclasses. There is a performance benefit to not
using `__slots__`.
| Library | dict (ms) | dataclass (ms) | vs. orjson |
|-----------|-------------|------------------|--------------|
| orjson | 0.43 | 0.95 | 1 |
| json | 5.81 | 38.32 | 40 |
This measures serializing 555KiB of JSON, orjson natively and other libraries
using `default` to serialize the output of `dataclasses.asdict()`. This can be
reproduced using the `pydataclass` script.
Dataclasses are serialized as maps, with every attribute serialized and in
the order given on class definition:
```python
>>> import dataclasses, orjson, typing
@dataclasses.dataclass
class Member:
id: int
active: bool = dataclasses.field(default=False)
@dataclasses.dataclass
class Object:
id: int
name: str
members: typing.List[Member]
>>> orjson.dumps(Object(1, "a", [Member(1, True), Member(2)]))
b'{"id":1,"name":"a","members":[{"id":1,"active":true},{"id":2,"active":false}]}'
```
### datetime
orjson serializes `datetime.datetime` objects to
[RFC 3339](https://tools.ietf.org/html/rfc3339) format,
e.g., "1970-01-01T00:00:00+00:00". This is a subset of ISO 8601 and is
compatible with `isoformat()` in the standard library.
```python
>>> import orjson, datetime, zoneinfo
>>> orjson.dumps(
datetime.datetime(2018, 12, 1, 2, 3, 4, 9, tzinfo=zoneinfo.ZoneInfo("Australia/Adelaide"))
)
b'"2018-12-01T02:03:04.000009+10:30"'
>>> orjson.dumps(
datetime.datetime(2100, 9, 1, 21, 55, 2).replace(tzinfo=zoneinfo.ZoneInfo("UTC"))
)
b'"2100-09-01T21:55:02+00:00"'
>>> orjson.dumps(
datetime.datetime(2100, 9, 1, 21, 55, 2)
)
b'"2100-09-01T21:55:02"'
```
`datetime.datetime` supports instances with a `tzinfo` that is `None`,
`datetime.timezone.utc`, a timezone instance from the python3.9+ `zoneinfo`
module, or a timezone instance from the third-party `pendulum`, `pytz`, or
`dateutil`/`arrow` libraries.
It is fastest to use the standard library's `zoneinfo.ZoneInfo` for timezones.
`datetime.time` objects must not have a `tzinfo`.
```python
>>> import orjson, datetime
>>> orjson.dumps(datetime.time(12, 0, 15, 290))
b'"12:00:15.000290"'
```
`datetime.date` objects will always serialize.
```python
>>> import orjson, datetime
>>> orjson.dumps(datetime.date(1900, 1, 2))
b'"1900-01-02"'
```
Errors with `tzinfo` result in `JSONEncodeError` being raised.
To disable serialization of `datetime` objects specify the option
`orjson.OPT_PASSTHROUGH_DATETIME`.
To use "Z" suffix instead of "+00:00" to indicate UTC ("Zulu") time, use the option
`orjson.OPT_UTC_Z`.
To assume datetimes without timezone are UTC, use the option `orjson.OPT_NAIVE_UTC`.
### enum
orjson serializes enums natively. Options apply to their values.
```python
>>> import enum, datetime, orjson
>>>
class DatetimeEnum(enum.Enum):
EPOCH = datetime.datetime(1970, 1, 1, 0, 0, 0)
>>> orjson.dumps(DatetimeEnum.EPOCH)
b'"1970-01-01T00:00:00"'
>>> orjson.dumps(DatetimeEnum.EPOCH, option=orjson.OPT_NAIVE_UTC)
b'"1970-01-01T00:00:00+00:00"'
```
Enums with members that are not supported types can be serialized using
`default`:
```python
>>> import enum, orjson
>>>
class Custom:
def __init__(self, val):
self.val = val
def default(obj):
if isinstance(obj, Custom):
return obj.val
raise TypeError
class CustomEnum(enum.Enum):
ONE = Custom(1)
>>> orjson.dumps(CustomEnum.ONE, default=default)
b'1'
```
### float
orjson serializes and deserializes double precision floats with no loss of
precision and consistent rounding.
`orjson.dumps()` serializes Nan, Infinity, and -Infinity, which are not
compliant JSON, as `null`:
```python
>>> import orjson, json
>>> orjson.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
b'[null,null,null]'
>>> json.dumps([float("NaN"), float("Infinity"), float("-Infinity")])
'[NaN, Infinity, -Infinity]'
```
### int
orjson serializes and deserializes 64-bit integers by default. The range
supported is a signed 64-bit integer's minimum (-9223372036854775807) to
an unsigned 64-bit integer's maximum (18446744073709551615). This
is widely compatible, but there are implementations
that only support 53-bits for integers, e.g.,
web browsers. For those implementations, `dumps()` can be configured to
raise a `JSONEncodeError` on values exceeding the 53-bit range.
```python
>>> import orjson
>>> orjson.dumps(9007199254740992)
b'9007199254740992'
>>> orjson.dumps(9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
>>> orjson.dumps(-9007199254740992, option=orjson.OPT_STRICT_INTEGER)
JSONEncodeError: Integer exceeds 53-bit range
```
### numpy
orjson natively serializes `numpy.ndarray` and individual
`numpy.float64`, `numpy.float32`, `numpy.float16` (`numpy.half`),
`numpy.int64`, `numpy.int32`, `numpy.int16`, `numpy.int8`,
`numpy.uint64`, `numpy.uint32`, `numpy.uint16`, `numpy.uint8`,
`numpy.uintp`, `numpy.intp`, `numpy.datetime64`, and `numpy.bool`
instances.
orjson is compatible with both numpy v1 and v2.
orjson is faster than all compared libraries at serializing
numpy instances. Serializing numpy data requires specifying
`option=orjson.OPT_SERIALIZE_NUMPY`.
```python
>>> import orjson, numpy
>>> orjson.dumps(
numpy.array([[1, 2, 3], [4, 5, 6]]),
option=orjson.OPT_SERIALIZE_NUMPY,
)
b'[[1,2,3],[4,5,6]]'
```
The array must be a contiguous C array (`C_CONTIGUOUS`) and one of the
supported datatypes.
Note a difference between serializing `numpy.float32` using `ndarray.tolist()`
or `orjson.dumps(..., option=orjson.OPT_SERIALIZE_NUMPY)`: `tolist()` converts
to a `double` before serializing and orjson's native path does not. This
can result in different rounding.
`numpy.datetime64` instances are serialized as RFC 3339 strings and
datetime options affect them.
```python
>>> import orjson, numpy
>>> orjson.dumps(
numpy.datetime64("2021-01-01T00:00:00.172"),
option=orjson.OPT_SERIALIZE_NUMPY,
)
b'"2021-01-01T00:00:00.172000"'
>>> orjson.dumps(
numpy.datetime64("2021-01-01T00:00:00.172"),
option=(
orjson.OPT_SERIALIZE_NUMPY |
orjson.OPT_NAIVE_UTC |
orjson.OPT_OMIT_MICROSECONDS
),
)
b'"2021-01-01T00:00:00+00:00"'
```
If an array is not a contiguous C array, contains an unsupported datatype,
or contains a `numpy.datetime64` using an unsupported representation
(e.g., picoseconds), orjson falls through to `default`. In `default`,
`obj.tolist()` can be specified.
If an array is not in the native endianness, e.g., an array of big-endian values
on a little-endian system, `orjson.JSONEncodeError` is raised.
If an array is malformed, `orjson.JSONEncodeError` is raised.
This measures serializing 92MiB of JSON from an `numpy.ndarray` with
dimensions of `(50000, 100)` and `numpy.float64` values:
| Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
|-----------|----------------|------------------|--------------|
| orjson | 105 | 105 | 1 |
| json | 1,481 | 295 | 14.2 |
This measures serializing 100MiB of JSON from an `numpy.ndarray` with
dimensions of `(100000, 100)` and `numpy.int32` values:
| Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
|-----------|----------------|------------------|--------------|
| orjson | 68 | 119 | 1 |
| json | 684 | 501 | 10.1 |
This measures serializing 105MiB of JSON from an `numpy.ndarray` with
dimensions of `(100000, 200)` and `numpy.bool` values:
| Library | Latency (ms) | RSS diff (MiB) | vs. orjson |
|-----------|----------------|------------------|--------------|
| orjson | 50 | 125 | 1 |
| json | 573 | 398 | 11.5 |
In these benchmarks, orjson serializes natively and `json` serializes
`ndarray.tolist()` via `default`. The RSS column measures peak memory
usage during serialization. This can be reproduced using the `pynumpy` script.
orjson does not have an installation or compilation dependency on numpy. The
implementation is independent, reading `numpy.ndarray` using
`PyArrayInterface`.
### str
orjson is strict about UTF-8 conformance. This is stricter than the standard
library's json module, which will serialize and deserialize UTF-16 surrogates,
e.g., "\ud800", that are invalid UTF-8.
If `orjson.dumps()` is given a `str` that does not contain valid UTF-8,
`orjson.JSONEncodeError` is raised. If `loads()` receives invalid UTF-8,
`orjson.JSONDecodeError` is raised.
```python
>>> import orjson, json
>>> orjson.dumps('\ud800')
JSONEncodeError: str is not valid UTF-8: surrogates not allowed
>>> json.dumps('\ud800')
'"\\ud800"'
>>> orjson.loads('"\\ud800"')
JSONDecodeError: unexpected end of hex escape at line 1 column 8: line 1 column 1 (char 0)
>>> json.loads('"\\ud800"')
'\ud800'
```
To make a best effort at deserializing bad input, first decode `bytes` using
the `replace` or `lossy` argument for `errors`:
```python
>>> import orjson
>>> orjson.loads(b'"\xed\xa0\x80"')
JSONDecodeError: str is not valid UTF-8: surrogates not allowed
>>> orjson.loads(b'"\xed\xa0\x80"'.decode("utf-8", "replace"))
'���'
```
### uuid
orjson serializes `uuid.UUID` instances to
[RFC 4122](https://tools.ietf.org/html/rfc4122) format, e.g.,
"f81d4fae-7dec-11d0-a765-00a0c91e6bf6".
``` python
>>> import orjson, uuid
>>> orjson.dumps(uuid.uuid5(uuid.NAMESPACE_DNS, "python.org"))
b'"886313e1-3b8a-5372-9b90-0c9aee199e5d"'
```
## Testing
The library has comprehensive tests. There are tests against fixtures in the
[JSONTestSuite](https://github.com/nst/JSONTestSuite) and
[nativejson-benchmark](https://github.com/miloyip/nativejson-benchmark)
repositories. It is tested to not crash against the
[Big List of Naughty Strings](https://github.com/minimaxir/big-list-of-naughty-strings).
It is tested to not leak memory. It is tested to not crash
against and not accept invalid UTF-8. There are integration tests
exercising the library's use in web servers (gunicorn using multiprocess/forked
workers) and when
multithreaded. It also uses some tests from the ultrajson library.
orjson is the most correct of the compared libraries. This graph shows how each
library handles a combined 342 JSON fixtures from the
[JSONTestSuite](https://github.com/nst/JSONTestSuite) and
[nativejson-benchmark](https://github.com/miloyip/nativejson-benchmark) tests:
| Library | Invalid JSON documents not rejected | Valid JSON documents not deserialized |
|------------|---------------------------------------|-----------------------------------------|
| orjson | 0 | 0 |
| json | 17 | 0 |
This shows that all libraries deserialize valid JSON but only orjson
correctly rejects the given invalid JSON fixtures. Errors are largely due to
accepting invalid strings and numbers.
The graph above can be reproduced using the `pycorrectness` script.
## Performance
Serialization and deserialization performance of orjson is consistently better
than the standard library's `json`. The graphs below illustrate a few commonly
used documents.
### Latency


#### twitter.json serialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 0.1 | 8453 | 1 |
| json | 1.3 | 765 | 11.1 |
#### twitter.json deserialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 0.5 | 1889 | 1 |
| json | 2.2 | 453 | 4.2 |
#### github.json serialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 0.01 | 103693 | 1 |
| json | 0.13 | 7648 | 13.6 |
#### github.json deserialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 0.04 | 23264 | 1 |
| json | 0.1 | 10430 | 2.2 |
#### citm_catalog.json serialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 0.3 | 3975 | 1 |
| json | 3 | 338 | 11.8 |
#### citm_catalog.json deserialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 1.3 | 781 | 1 |
| json | 4 | 250 | 3.1 |
#### canada.json serialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 2.5 | 399 | 1 |
| json | 29.8 | 33 | 11.9 |
#### canada.json deserialization
| Library | Median latency (milliseconds) | Operations per second | Relative (latency) |
|-----------|---------------------------------|-------------------------|----------------------|
| orjson | 3 | 333 | 1 |
| json | 18 | 55 | 6 |
### Reproducing
The above was measured using Python 3.11.10 in a Fedora 42 container on an
x86-64-v4 machine using the
`orjson-3.10.11-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl`
artifact on PyPI. The latency results can be reproduced using the `pybench` script.
## Questions
### Will it deserialize to dataclasses, UUIDs, decimals, etc or support object_hook?
No. This requires a schema specifying what types are expected and how to
handle errors etc. This is addressed by data validation libraries a
level above this.
### Will it serialize to `str`?
No. `bytes` is the correct type for a serialized blob.
### Will it support NDJSON or JSONL?
No. [orjsonl](https://github.com/umarbutler/orjsonl) may be appropriate.
### Will it support JSON5 or RJSON?
No, it supports RFC 8259.
### How do I depend on orjson in a Rust project?
orjson is only shipped as a Python module. The project should depend on
`orjson` in its own Python requirements and should obtain pointers to
functions and objects using the normal `PyImport_*` APIs.
## Packaging
To package orjson requires at least [Rust](https://www.rust-lang.org/) 1.85
and the [maturin](https://github.com/PyO3/maturin) build tool. The recommended
build command is:
```sh
maturin build --release --strip
```
It benefits from also having a C build environment to compile a faster
deserialization backend. See this project's `manylinux_2_28` builds for an
example using clang and LTO.
The project's own CI tests against `nightly-2025-08-10` and stable 1.82. It
is prudent to pin the nightly version because that channel can introduce
breaking changes. There is a significant performance benefit to using
nightly.
orjson is tested on native hardware for amd64, aarch64, and i686 on Linux and
for arm7, ppc64le, and s390x is cross-compiled and may be tested via
emulation. It is tested for aarch64 on macOS and cross-compiles for amd64. For
Windows it is tested on amd64, i686, and aarch64.
There are no runtime dependencies other than libc.
The source distribution on PyPI contains all dependencies' source and can be
built without network access. The file can be downloaded from
`https://files.pythonhosted.org/packages/source/o/orjson/orjson-${version}.tar.gz`.
orjson's tests are included in the source distribution on PyPI. The tests
require only `pytest`. There are optional packages such as `pytz` and `numpy`
listed in `test/requirements.txt` and used in ~10% of tests. Not having these
dependencies causes the tests needing them to skip. Tests can be run
with `pytest -q test`.
## License
orjson was written by ijl <<ijl@mailbox.org>>, copyright 2018 - 2025, available
to you under either the Apache 2 license or MIT license at your choice.
|