1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512
|
# Copyright 2020 Red Hat, Inc
# All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"); you may
# not use this file except in compliance with the License. You may obtain
# a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
# WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
# License for the specific language governing permissions and limitations
# under the License.
"""
This is a python implementation of virtual disk format inspection routines
gathered from various public specification documents, as well as qemu disk
driver code. It attempts to store and parse the minimum amount of data
required, and in a streaming-friendly manner to collect metadata about
complex-format images.
"""
import abc
import struct
import logging
from oslo_utils._i18n import _
from oslo_utils import units
LOG = logging.getLogger(__name__)
def _chunked_reader(fileobj, chunk_size=512):
while True:
chunk = fileobj.read(chunk_size)
if not chunk:
break
yield chunk
class CaptureRegion:
"""Represents a region of a file we want to capture.
A region of a file we want to capture requires a byte offset into
the file and a length. This is expected to be used by a data
processing loop, calling capture() with the most recently-read
chunk. This class handles the task of grabbing the desired region
of data across potentially multiple fractional and unaligned reads.
:param offset: Byte offset into the file starting the region
:param length: The length of the region
:param min_length: Consider this region complete if it has captured at
least this much data. This should generally NOT be used
but may be required for certain formats with highly
variable data structures.
"""
def __init__(self, offset, length, min_length=None):
self.offset = offset
self.length = length
self.data = b''
self.min_length = min_length
@property
def complete(self):
"""Returns True when we have captured the desired data."""
if self.min_length is not None:
return self.min_length <= len(self.data)
else:
return self.length == len(self.data)
def capture(self, chunk, current_position):
"""Process a chunk of data.
This should be called for each chunk in the read loop, at least
until complete returns True.
:param chunk: A chunk of bytes in the file
:param current_position: The position of the file processed by the
read loop so far. Note that this will be
the position in the file *after* the chunk
being presented.
"""
read_start = current_position - len(chunk)
if (read_start <= self.offset <= current_position or
self.offset <= read_start <= (self.offset + self.length)):
if read_start < self.offset:
lead_gap = self.offset - read_start
else:
lead_gap = 0
self.data += chunk[lead_gap:]
self.data = self.data[:self.length]
class EndCaptureRegion(CaptureRegion):
"""Represents a region that captures the last N bytes of a stream.
This can only capture the last N bytes of a stream and not an arbitrary
region referenced from the end of the file since in most cases we do not
know how much data we will read.
:param offset: Byte offset from the end of the stream to capture (which
will also be the region length)
"""
def __init__(self, offset):
super().__init__(offset, offset)
# We don't want to indicate completeness until we have the data we
# want *and* have reached EOF
self._complete = False
def capture(self, chunk, current_position):
self.data += chunk
self.data = self.data[0 - self.length:]
self.offset = current_position - len(self.data)
@property
def complete(self):
return super().complete and self._complete
def finish(self):
"""Indicate that the entire stream has been read."""
self._complete = True
class SafetyCheck:
"""Represents a named safety check on an inspector"""
def __init__(self, name, target_fn, description=None):
"""A safety check, it's meta info, and result.
@name should be a short name of the check (ideally no spaces)
@target_fn is the implementation we run (no args) which returns either
None if the check passes, or a string reason why it failed.
@description is a optional longer-format human-readable string that
describes the check.
"""
self.name = name
self.target_fn = target_fn
self.description = description
def __call__(self):
"""Executes the target check function, records the result.
Returns True if the check succeeded (i.e. no failure reason) or
False if it did not.
"""
try:
self.target_fn()
except SafetyViolation:
raise
except Exception as e:
LOG.error('Failed to run safety check %s on %s inspector: %s',
self.name, self, e)
raise SafetyViolation(_('Unexpected error'))
@classmethod
def null(cls):
"""The "null" safety check always returns True.
This should only be used if there is no meaningful checks that can
be done for a given format.
"""
return cls('null', lambda: None,
_('This file format has no meaningful safety check'))
@classmethod
def banned(cls):
"""The "banned" safety check always returns False.
This should be used for formats we want to identify but never allow,
generally because they are unsupported by any of our users and/or
we are unable to check for safety.
"""
def fail():
raise SafetyViolation(_('This file format is not allowed'))
return cls('banned', fail, _('This file format is not allowed'))
class ImageFormatError(Exception):
"""An unrecoverable image format error that aborts the process."""
pass
class SafetyViolation(Exception):
"""Indicates a failure of a single safety violation."""
pass
class SafetyCheckFailed(Exception):
"""Indictes that one or more of a series of safety checks failed."""
def __init__(self, failures):
super().__init__(_('Safety checks failed: %s') % ','.join(
failures.keys()))
self.failures = failures
class FileInspector(abc.ABC):
"""A stream-based disk image inspector.
This base class works on raw images and is subclassed for more
complex types. It is to be presented with the file to be examined
one chunk at a time, during read processing and will only store
as much data as necessary to determine required attributes of
the file.
"""
# This should match what qemu-img thinks this format is
NAME = ''
def __init__(self, tracing=False):
self._total_count = 0
# NOTE(danms): The logging in here is extremely verbose for a reason,
# but should never really be enabled at that level at runtime. To
# retain all that work and assist in future debug, we have a separate
# debug flag that can be passed from a manual tool to turn it on.
self._tracing = tracing
self._capture_regions = {}
self._safety_checks = {}
self._finished = False
self._initialize()
if not self._safety_checks:
# Make sure we actively declare some safety check, even if it
# is a no-op.
raise RuntimeError(
'All inspectors must define at least one safety check')
def _trace(self, *args, **kwargs):
if self._tracing:
LOG.debug(*args, **kwargs)
@abc.abstractmethod
def _initialize(self):
"""Set up inspector before we start processing data.
This should add the initial set of capture regions and safety checks.
"""
def finish(self):
"""Indicate that the entire stream has been read.
This should be called when the entire stream has been completely read,
which will mark any EndCaptureRegion objects as complete.
"""
self._finished = True
for region in self._capture_regions.values():
if isinstance(region, EndCaptureRegion):
region.finish()
def _capture(self, chunk, only=None):
if self._finished:
raise RuntimeError('Inspector has been marked finished, '
'no more data processing allowed')
for name, region in self._capture_regions.items():
if only and name not in only:
continue
if isinstance(region, EndCaptureRegion) or not region.complete:
region.capture(chunk, self._total_count)
def eat_chunk(self, chunk):
"""Call this to present chunks of the file to the inspector."""
pre_regions = set(self._capture_regions.values())
pre_complete = {region for region in self._capture_regions.values()
if region.complete}
# Increment our position-in-file counter
self._total_count += len(chunk)
# Run through the regions we know of to see if they want this
# data
self._capture(chunk)
# Let the format do some post-read processing of the stream
self.post_process()
# Check to see if the post-read processing added new regions
# which may require the current chunk.
new_regions = set(self._capture_regions.values()) - pre_regions
if new_regions:
self._capture(chunk, only=[self.region_name(r)
for r in new_regions])
post_complete = {region for region in self._capture_regions.values()
if region.complete}
# Call the handler for any regions that are newly complete
for region in post_complete - pre_complete:
self.region_complete(self.region_name(region))
def post_process(self):
"""Post-read hook to process what has been read so far.
This will be called after each chunk is read and potentially captured
by the defined regions. If any regions are defined by this call,
those regions will be presented with the current chunk in case it
is within one of the new regions.
"""
pass
def region(self, name):
"""Get a CaptureRegion by name."""
return self._capture_regions[name]
def region_name(self, region):
"""Return the region name for a region object."""
for name in self._capture_regions:
if self._capture_regions[name] is region:
return name
raise ValueError('No such region')
def new_region(self, name, region):
"""Add a new CaptureRegion by name."""
if self.has_region(name):
# This is a bug, we tried to add the same region twice
raise ImageFormatError('Inspector re-added region %s' % name)
self._capture_regions[name] = region
def has_region(self, name):
"""Returns True if named region has been defined."""
return name in self._capture_regions
def delete_region(self, name):
"""Remove a capture region by name.
This will raise KeyError if the region does not exist.
"""
del self._capture_regions[name]
def region_complete(self, region_name):
"""Called when a region becomes complete.
Subclasses may implement this if they need to do one-time processing
of a region's data.
"""
pass
def add_safety_check(self, check):
if not isinstance(check, SafetyCheck):
raise RuntimeError(_('Unable to add safety check of type %s') % (
type(check).__name__))
if check.name in self._safety_checks:
raise RuntimeError(_('Duplicate check of name %s') % check.name)
self._safety_checks[check.name] = check
@property
@abc.abstractmethod
def format_match(self):
"""Returns True if the file appears to be the expected format."""
@property
def virtual_size(self):
"""Returns the virtual size of the disk image, or zero if unknown."""
return self._total_count
@property
def actual_size(self):
"""Returns the total size of the file, usually smaller than
virtual_size. NOTE: this will only be accurate if the entire
file is read and processed.
"""
return self._total_count
@property
def complete(self):
"""Returns True if we have all the information needed."""
return all(r.complete for r in self._capture_regions.values())
def __str__(self):
"""The string name of this file format."""
return self.NAME
@property
def context_info(self):
"""Return info on amount of data held in memory for auditing.
This is a dict of region:sizeinbytes items that the inspector
uses to examine the file.
"""
return {name: len(region.data) for name, region in
self._capture_regions.items()}
@classmethod
def from_file(cls, filename):
"""Read as much of a file as necessary to complete inspection.
NOTE: Because we only read as much of the file as necessary, the
actual_size property will not reflect the size of the file, but the
amount of data we read before we satisfied the inspector.
Raises ImageFormatError if we cannot parse the file.
"""
inspector = cls()
with open(filename, 'rb') as f:
for chunk in _chunked_reader(f):
inspector.eat_chunk(chunk)
if inspector.complete:
# No need to eat any more data
break
inspector.finish()
if not inspector.complete or not inspector.format_match:
raise ImageFormatError('File is not in requested format')
return inspector
def safety_check(self):
"""Perform all checks to determine if this file is safe.
Returns if safe, raises otherwise. It may raise ImageFormatError
if safety cannot be guaranteed because of parsing or other errors.
It will raise SafetyCheckFailed if one or more checks fails.
"""
if not self.complete:
raise ImageFormatError(
_('Incomplete file cannot be safety checked'))
if not self.format_match:
raise ImageFormatError(
_('Unable to safety check format %s '
'because content does not match') % self)
failures = {}
for check in self._safety_checks.values():
try:
result = check()
if result is not None:
raise RuntimeError('check returned result')
except SafetyViolation as exc:
exc.check = check
failures[check.name] = exc
LOG.warning('Safety check %s on %s failed because %s',
check.name, self, exc)
if failures:
raise SafetyCheckFailed(failures)
class RawFileInspector(FileInspector):
NAME = 'raw'
def _initialize(self):
"""Raw files have nothing to capture and no safety checks."""
self.add_safety_check(SafetyCheck.null())
@property
def format_match(self):
# By definition, raw files are unformatted and thus we always match
return True
# The qcow2 format consists of a big-endian 72-byte header, of which
# only a small portion has information we care about:
#
# Dec Hex Name
# 0 0x00 Magic 4-bytes 'QFI\xfb'
# 4 0x04 Version (uint32_t, should always be 2 for modern files)
# . . .
# 8 0x08 Backing file offset (uint64_t)
# 24 0x18 Size in bytes (unint64_t)
# . . .
# 72 0x48 Incompatible features bitfield (6 bytes)
#
# https://gitlab.com/qemu-project/qemu/-/blob/master/docs/interop/qcow2.txt
class QcowInspector(FileInspector):
"""QEMU QCOW Format
This should only require about 32 bytes of the beginning of the file
to determine the virtual size, and 104 bytes to perform the safety check.
This recognizes the (very) old v1 format but will raise a SafetyViolation
for it, as it should definitely not be in production use at this point.
"""
NAME = 'qcow2'
BF_OFFSET = 0x08
BF_OFFSET_LEN = 8
I_FEATURES = 0x48
I_FEATURES_LEN = 8
I_FEATURES_DATAFILE_BIT = 3
I_FEATURES_MAX_BIT = 4
def _initialize(self):
self.qemu_header_info = {}
self.new_region('header', CaptureRegion(0, 512))
self.add_safety_check(
SafetyCheck('backing_file', self.check_backing_file))
self.add_safety_check(
SafetyCheck('data_file', self.check_data_file))
self.add_safety_check(
SafetyCheck('unknown_features', self.check_unknown_features))
def region_complete(self, region):
self.qemu_header_info = dict(zip(
('magic', 'version', 'bf_offset', 'bf_sz', 'cluster_bits', 'size'),
struct.unpack('>4sIQIIQ', self.region('header').data[:32])))
if not self.format_match:
self.qemu_header_info = {}
@property
def virtual_size(self):
return self.qemu_header_info.get('size', 0)
@property
def format_match(self):
if not self.region('header').complete:
return False
return self.qemu_header_info.get('magic') == b'QFI\xFB'
def check_backing_file(self):
bf_offset_bytes = self.region('header').data[
self.BF_OFFSET:self.BF_OFFSET + self.BF_OFFSET_LEN]
# nonzero means "has a backing file"
bf_offset, = struct.unpack('>Q', bf_offset_bytes)
if bf_offset != 0:
raise SafetyViolation('Image has a backing file')
def check_unknown_features(self):
ver = self.qemu_header_info.get('version')
if ver == 2:
# Version 2 did not have the feature flag array, so no need to
# check it here.
return
elif ver != 3:
raise SafetyViolation('Unsupported qcow2 version')
i_features = self.region('header').data[
self.I_FEATURES:self.I_FEATURES + self.I_FEATURES_LEN]
# This is the maximum byte number we should expect any bits to be set
max_byte = self.I_FEATURES_MAX_BIT // 8
# The flag bytes are in big-endian ordering, so if we process
# them in index-order, they're reversed
for i, byte_num in enumerate(reversed(range(self.I_FEATURES_LEN))):
if byte_num == max_byte:
# If we're in the max-allowed byte, allow any bits less than
# the maximum-known feature flag bit to be set
allow_mask = ((1 << (self.I_FEATURES_MAX_BIT % 8)) - 1)
elif byte_num > max_byte:
# If we're above the byte with the maximum known feature flag
# bit, then we expect all zeroes
allow_mask = 0x0
else:
# Any earlier-than-the-maximum byte can have any of the flag
# bits set
allow_mask = 0xFF
if i_features[i] & ~allow_mask:
LOG.warning('Found unknown feature bit in byte %i: %s/%s',
byte_num, bin(i_features[byte_num] & ~allow_mask),
bin(allow_mask))
raise SafetyViolation('Unknown QCOW2 features found')
def check_data_file(self):
i_features = self.region('header').data[
self.I_FEATURES:self.I_FEATURES + self.I_FEATURES_LEN]
# First byte of bitfield, which is i_features[7]
byte = self.I_FEATURES_LEN - 1 - self.I_FEATURES_DATAFILE_BIT // 8
# Third bit of bitfield, which is 0x04
bit = 1 << (self.I_FEATURES_DATAFILE_BIT - 1 % 8)
if bool(i_features[byte] & bit):
raise SafetyViolation('Image has data_file set')
class QEDInspector(FileInspector):
NAME = 'qed'
def _initialize(self):
self.new_region('header', CaptureRegion(0, 512))
# QED format is not supported by anyone, but we want to detect it
# and mark it as just always unsafe.
self.add_safety_check(SafetyCheck.banned())
@property
def format_match(self):
if not self.region('header').complete:
return False
return self.region('header').data.startswith(b'QED\x00')
# The VHD (or VPC as QEMU calls it) format consists of a big-endian
# 512-byte "footer" at the beginning of the file with various
# information, most of which does not matter to us:
#
# Dec Hex Name
# 0 0x00 Magic string (8-bytes, always 'conectix')
# 40 0x28 Disk size (uint64_t)
#
# https://github.com/qemu/qemu/blob/master/block/vpc.c
class VHDInspector(FileInspector):
"""Connectix/MS VPC VHD Format
This should only require about 512 bytes of the beginning of the file
to determine the virtual size.
"""
NAME = 'vhd'
def _initialize(self):
self.new_region('header', CaptureRegion(0, 512))
self.add_safety_check(SafetyCheck.null())
@property
def format_match(self):
return self.region('header').data.startswith(b'conectix')
@property
def virtual_size(self):
if not self.region('header').complete:
return 0
if not self.format_match:
return 0
return struct.unpack('>Q', self.region('header').data[40:48])[0]
# The VHDX format consists of a complex dynamic little-endian
# structure with multiple regions of metadata and data, linked by
# offsets with in the file (and within regions), identified by MSFT
# GUID strings. The header is a 320KiB structure, only a few pieces of
# which we actually need to capture and interpret:
#
# Dec Hex Name
# 0 0x00000 Identity (Technically 9-bytes, padded to 64KiB, the first
# 8 bytes of which are 'vhdxfile')
# 196608 0x30000 The Region table (64KiB of a 32-byte header, followed
# by up to 2047 36-byte region table entry structures)
#
# The region table header includes two items we need to read and parse,
# which are:
#
# 196608 0x30000 4-byte signature ('regi')
# 196616 0x30008 Entry count (uint32-t)
#
# The region table entries follow the region table header immediately
# and are identified by a 16-byte GUID, and provide an offset of the
# start of that region. We care about the "metadata region", identified
# by the METAREGION class variable. The region table entry is (offsets
# from the beginning of the entry, since it could be in multiple places):
#
# 0 0x00000 16-byte MSFT GUID
# 16 0x00010 Offset of the actual metadata region (uint64_t)
#
# When we find the METAREGION table entry, we need to grab that offset
# and start examining the region structure at that point. That
# consists of a metadata table of structures, which point to places in
# the data in an unstructured space that follows. The header is
# (offsets relative to the region start):
#
# 0 0x00000 8-byte signature ('metadata')
# . . .
# 16 0x00010 2-byte entry count (up to 2047 entries max)
#
# This header is followed by the specified number of metadata entry
# structures, identified by GUID:
#
# 0 0x00000 16-byte MSFT GUID
# 16 0x00010 4-byte offset (uint32_t, relative to the beginning of
# the metadata region)
#
# We need to find the "Virtual Disk Size" metadata item, identified by
# the GUID in the VIRTUAL_DISK_SIZE class variable, grab the offset,
# add it to the offset of the metadata region, and examine that 8-byte
# chunk of data that follows.
#
# The "Virtual Disk Size" is a naked uint64_t which contains the size
# of the virtual disk, and is our ultimate target here.
#
# https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-vhdx/83e061f8-f6e2-4de1-91bd-5d518a43d477
class VHDXInspector(FileInspector):
"""MS VHDX Format
This requires some complex parsing of the stream. The first 256KiB
of the image is stored to get the header and region information,
and then we capture the first metadata region to read those
records, find the location of the virtual size data and parse
it. This needs to store the metadata table entries up until the
VDS record, which may consist of up to 2047 32-byte entries at
max. Finally, it must store a chunk of data at the offset of the
actual VDS uint64.
"""
NAME = 'vhdx'
METAREGION = '8B7CA206-4790-4B9A-B8FE-575F050F886E'
VIRTUAL_DISK_SIZE = '2FA54224-CD1B-4876-B211-5DBED83BF4B8'
VHDX_METADATA_TABLE_MAX_SIZE = 32 * 2048 # From qemu
def _initialize(self):
self.new_region('ident', CaptureRegion(0, 32))
self.new_region('header', CaptureRegion(192 * 1024, 64 * 1024))
self.add_safety_check(SafetyCheck.null())
def post_process(self):
# After reading a chunk, we may have the following conditions:
#
# 1. We may have just completed the header region, and if so,
# we need to immediately read and calculate the location of
# the metadata region, as it may be starting in the same
# read we just did.
# 2. We may have just completed the metadata region, and if so,
# we need to immediately calculate the location of the
# "virtual disk size" record, as it may be starting in the
# same read we just did.
if self.region('header').complete and not self.has_region('metadata'):
region = self._find_meta_region()
if region:
self.new_region('metadata', region)
elif self.has_region('metadata') and not self.has_region('vds'):
region = self._find_meta_entry(self.VIRTUAL_DISK_SIZE)
if region:
self.new_region('vds', region)
@property
def format_match(self):
return self.region('ident').data.startswith(b'vhdxfile')
@staticmethod
def _guid(buf):
"""Format a MSFT GUID from the 16-byte input buffer."""
guid_format = '<IHHBBBBBBBB'
return '%08X-%04X-%04X-%02X%02X-%02X%02X%02X%02X%02X%02X' % (
struct.unpack(guid_format, buf))
def _find_meta_region(self):
# The region table entries start after a 16-byte table header
region_entry_first = 16
# Parse the region table header to find the number of regions
regi, cksum, count, reserved = struct.unpack(
'<IIII', self.region('header').data[:16])
if regi != 0x69676572:
raise ImageFormatError('Region signature not found at %x' % (
self.region('header').offset))
if count >= 2048:
raise ImageFormatError('Region count is %i (limit 2047)' % count)
# Process the regions until we find the metadata one; grab the
# offset and return
self._trace('Region entry first is %x', region_entry_first)
self._trace('Region entries %i', count)
meta_offset = 0
for i in range(0, count):
entry_start = region_entry_first + (i * 32)
entry_end = entry_start + 32
entry = self.region('header').data[entry_start:entry_end]
self._trace('Entry offset is %x', entry_start)
# GUID is the first 16 bytes
guid = self._guid(entry[:16])
if guid == self.METAREGION:
# This entry is the metadata region entry
meta_offset, meta_len, meta_req = struct.unpack(
'<QII', entry[16:])
self._trace('Meta entry %i specifies offset: %x',
i, meta_offset)
# NOTE(danms): The meta_len in the region descriptor is the
# entire size of the metadata table and data. This can be
# very large, so we should only capture the size required
# for the maximum length of the table, which is one 32-byte
# table header, plus up to 2047 32-byte entries.
meta_len = 2048 * 32
return CaptureRegion(meta_offset, meta_len)
self._trace('Did not find metadata region')
return None
def _find_meta_entry(self, desired_guid):
meta_buffer = self.region('metadata').data
if len(meta_buffer) < 32:
# Not enough data yet for full header
return None
# Make sure we found the metadata region by checking the signature
sig, reserved, count = struct.unpack('<8sHH', meta_buffer[:12])
if sig != b'metadata':
raise ImageFormatError(
'Invalid signature for metadata region: %r' % sig)
entries_size = 32 + (count * 32)
if len(meta_buffer) < entries_size:
# Not enough data yet for all metadata entries. This is not
# strictly necessary as we could process whatever we have until
# we find the V-D-S one, but there are only 2047 32-byte
# entries max (~64k).
return None
if count >= 2048:
raise ImageFormatError(
'Metadata item count is %i (limit 2047)' % count)
for i in range(0, count):
entry_offset = 32 + (i * 32)
guid = self._guid(meta_buffer[entry_offset:entry_offset + 16])
if guid == desired_guid:
# Found the item we are looking for by id.
# Stop our region from capturing
item_offset, item_length, _reserved = struct.unpack(
'<III',
meta_buffer[entry_offset + 16:entry_offset + 28])
item_length = min(item_length,
self.VHDX_METADATA_TABLE_MAX_SIZE)
self.region('metadata').length = len(meta_buffer)
self._trace('Found entry at offset %x', item_offset)
# Metadata item offset is from the beginning of the metadata
# region, not the file.
return CaptureRegion(
self.region('metadata').offset + item_offset,
item_length)
self._trace('Did not find guid %s', desired_guid)
return None
@property
def virtual_size(self):
# Until we have found the offset and have enough metadata buffered
# to read it, return "unknown"
if not self.has_region('vds') or not self.region('vds').complete:
return 0
size, = struct.unpack('<Q', self.region('vds').data)
return size
# The VMDK format comes in a large number of variations, but the
# single-file 'monolithicSparse' version 4 one is mostly what we care
# about. It contains a 512-byte little-endian header, followed by a
# variable-length "descriptor" region of text. The header looks like:
#
# Dec Hex Name
# 0 0x00 4-byte magic string 'KDMV'
# 4 0x04 Version (uint32_t)
# 8 0x08 Flags (uint32_t, unused by us)
# 12 0x0C Number of 512 byte sectors in the disk (uint64_t)
# 20 0x14 Granularity (uint64_t, unused by us)
# 28 0x1C Descriptor offset in 512-byte sectors (uint64_t)
# 36 0x24 Descriptor size in 512-byte sectors (uint64_t)
# 44 0x2C Number of GTEs per GT (uint32_t)
# 48 0x30 Redundant level 0 metadata offset (uint64_t)
# 56 0x38 Pointer to level 0 of metadata (uint32_t)
#
# After we have the header, we need to find the descriptor region,
# which starts at the sector identified in the "descriptor offset"
# field, and is "descriptor size" 512-byte sectors long. Once we have
# that region, we need to parse it as text, looking for the
# createType=XXX line that specifies the mechanism by which the data
# extents are stored in this file. We only support the
# "monolithicSparse" format, so we just need to confirm that this file
# contains that specifier.
#
# https://www.vmware.com/app/vmdk/?src=vmdk
class VMDKInspector(FileInspector):
"""vmware VMDK format (monolithicSparse and streamOptimized variants only)
This needs to store the 512 byte header and the descriptor region
which should be just after that. The descriptor region is some
variable number of 512 byte sectors, but is just text defining the
layout of the disk.
"""
NAME = 'vmdk'
# The beginning and max size of the descriptor is also hardcoded in Qemu
# at 0x200 and 1MB - 1
DESC_OFFSET = 0x200
DESC_MAX_SIZE = (1 << 20) - 1
GD_AT_END = 0xffffffffffffffff
# This is the minimum amount of data we need to read to recognize and
# process a "Hosted Sparse Extent" header
MIN_SPARSE_HEADER = 64
MARKER_EOS = 0
MARKER_FOOTER = 3
def _initialize(self):
self.desc_text = None
# This is the header for "Hosted Sparse Extent" type files. It may
# or may not be used, depending on what kind of VMDK we are about to
# read.
self.new_region('header',
CaptureRegion(0, 512,
min_length=self.MIN_SPARSE_HEADER))
# The descriptor starts from the beginning in the some of the older
# formats, but we do not know which one we are reading yet. This
# will be deleted and re-created if we are reading one of the formats
# that embeds it later.
self.new_region('descriptor',
CaptureRegion(0, self.DESC_MAX_SIZE, min_length=4))
self.add_safety_check(
SafetyCheck('descriptor', self.check_descriptor))
def _parse_sparse_header(self, region, offset=0):
(sig, ver, _flags, _sectors, _grain, desc_sec, desc_num,
_numGTEsperGT, _rgdOffset, gdOffset) = struct.unpack(
'<4sIIQQQQIQQ',
self.region(region).data[offset:offset + self.MIN_SPARSE_HEADER])
return sig, ver, desc_sec, desc_num, gdOffset
def post_process(self):
# If we have just completed the header region, we need to calculate
# the location and length of the descriptor, which should immediately
# follow and may have been partially-read in this read. If the header
# was previously read and that region was deleted, we have nothing
# to do here.
if not self.has_region('header') or not self.region('header').complete:
return
sig, ver, desc_sec, desc_num, gdOffset = (
self._parse_sparse_header('header'))
try:
is_text = True
for char in self.region('header').data.decode('ascii'):
if not char.isprintable() and not char.isspace():
is_text = False
break
except UnicodeDecodeError:
is_text = False
if sig != b'KDMV':
if is_text:
# We assume that if everything we have read so far is ASCII
# text and the header doesn't have the sparse signature,
# this must (or may be) a text-only VMDK descriptor file,
# which still needs to be parsed and checked since qemu will
# support it.
self.delete_region('header')
return
raise ImageFormatError('Signature KDMV not found: %r' % sig)
if ver not in (1, 2, 3):
raise ImageFormatError('Unsupported format version %i' % ver)
if gdOffset == self.GD_AT_END and not self.has_region('footer'):
# This means we have a footer, which takes precedence over the
# header, which we cannot support since we stream.
self.new_region('footer', EndCaptureRegion(1536))
self.add_safety_check(SafetyCheck('footer', self.check_footer))
# Since we parse both desc_sec and desc_num (the location of the
# VMDK's descriptor, expressed in 512 bytes sectors) we enforce a
# check on the bounds to create a reasonable CaptureRegion. This
# is similar to how it's done in qemu.
desc_offset = desc_sec * 512
desc_size = min(desc_num * 512, self.DESC_MAX_SIZE)
if desc_offset != self.DESC_OFFSET:
raise ImageFormatError("Wrong descriptor location")
# If we parsed a valid sparse header and we still have the original
# descriptor region at BOF, recreate it with the actual offset of the
# embedded one.
if self.region('descriptor').offset == 0:
self.delete_region('descriptor')
self.new_region('descriptor',
CaptureRegion(desc_offset, desc_size))
def region_complete(self, region_name):
if region_name == 'descriptor':
self._parse_descriptor()
def _parse_descriptor(self):
try:
# The sparse descriptor is null-padded to 512 bytes. Find the
# first one and use it as the end of the text string.
desc_data = self.region('descriptor').data
pad_idx = desc_data.index(b'\x00')
desc_data = desc_data[:pad_idx]
except ValueError:
# Not a sparse descriptor, proceed to decode as test
pass
try:
# Descriptor is actually case-insensitive ASCII text
desc_text = desc_data.decode('ascii').lower()
except UnicodeDecodeError:
LOG.error('VMDK descriptor failed to decode as ASCII')
return
try:
type_idx = desc_text.index('createtype="') + len('createtype="')
type_end = desc_text.find('"', type_idx)
except ValueError:
# This means we did not find the createType= header, which is
# fatal, so we should refuse this.
vmdktype = 'formatnotfound'
else:
# Make sure we don't grab and log a huge chunk of data in a
# maliciously-formatted descriptor region
if type_end - type_idx < 64:
vmdktype = desc_text[type_idx:type_end]
else:
vmdktype = 'formatnotfound'
self.desc_text = desc_text
self.vmdktype = vmdktype
@property
def format_match(self):
if self.has_region('header'):
return self.region('header').data.startswith(b'KDMV')
else:
return self.vmdktype != 'formatnotfound'
@property
def virtual_size(self):
if not self.desc_text:
# Not enough data yet
return 0
if self.vmdktype not in ('monolithicsparse', 'streamoptimized'):
LOG.warning('Unsupported VMDK format %r', self.vmdktype)
return 0
# If we have the descriptor, we definitely have the header
_sig, _ver, _flags, sectors, _grain, _desc_sec, _desc_num = (
struct.unpack('<IIIQQQQ', self.region('header').data[:44]))
return sectors * 512
def check_descriptor(self):
if not self.desc_text:
raise SafetyViolation(_('No descriptor found'))
extent_access = ('rw', 'rdonly', 'noaccess')
header_fields = []
extents = []
ddb = []
if self.vmdktype not in ('monolithicsparse', 'streamoptimized'):
LOG.warning('Unsupported VMDK format %r', self.vmdktype)
raise SafetyViolation('Unsupported subformat')
# NOTE(danms): Cautiously parse the VMDK descriptor. Each line must
# be something we understand, otherwise we refuse it.
for line in [x.strip() for x in self.desc_text.split('\n')]:
if line.startswith('#') or not line:
# Blank or comment lines are ignored
continue
elif line.startswith('ddb'):
# DDB lines are allowed (but not used by us)
ddb.append(line)
elif '=' in line and ' ' not in line.split('=')[0]:
# Header fields are a single word followed by an '=' and some
# value
header_fields.append(line)
elif line.split(' ')[0] in extent_access:
# Extent lines start with one of the three access modes
extents.append(line)
else:
# Anything else results in a rejection
LOG.error('Unsupported line %r in VMDK descriptor', line)
raise SafetyViolation(_('Invalid VMDK descriptor data'))
# Check all the extent lines for concerning content
for extent_line in extents:
if '/' in extent_line:
LOG.error('Extent line %r contains unsafe characters',
extent_line)
raise SafetyViolation(_('Invalid extent filenames found'))
if not extents:
LOG.error('VMDK file specified no extents')
raise SafetyViolation(_('No extents found'))
def check_footer(self):
h_sig, h_ver, h_desc_sec, h_desc_num, h_goff = (
self._parse_sparse_header('header'))
f_sig, f_ver, f_desc_sec, f_desc_num, f_goff = (
self._parse_sparse_header('footer', 512))
if h_sig != f_sig:
raise SafetyViolation(
_('Header and footer signature do not match'))
if h_ver != f_ver:
raise SafetyViolation(_('Header and footer versions do not match'))
if h_desc_sec != f_desc_sec or h_desc_num != f_desc_num:
raise SafetyViolation(
_('Footer specifies a different descriptor than header'))
if f_goff == self.GD_AT_END:
raise SafetyViolation(_('Footer indicates another footer'))
pad = b'\x00' * 496
val, size, typ, zero = struct.unpack(
'<QII496s',
self.region('footer').data[:512])
if size != 0 or typ != self.MARKER_FOOTER or zero != pad:
raise SafetyViolation(_('Footer marker is invalid'))
val, size, typ, zero = struct.unpack(
'<QII496s',
self.region('footer').data[-512:])
if val != 0 or size != 0 or typ != self.MARKER_EOS or zero != pad:
raise SafetyViolation(_('End-of-stream marker is invalid'))
# The VirtualBox VDI format consists of a 512-byte little-endian
# header, some of which we care about:
#
# Dec Hex Name
# 64 0x40 4-byte Magic (0xbeda107f)
# . . .
# 368 0x170 Size in bytes (uint64_t)
#
# https://github.com/qemu/qemu/blob/master/block/vdi.c
class VDIInspector(FileInspector):
"""VirtualBox VDI format
This only needs to store the first 512 bytes of the image.
"""
NAME = 'vdi'
def _initialize(self):
self.new_region('header', CaptureRegion(0, 512))
self.add_safety_check(SafetyCheck.null())
@property
def format_match(self):
if not self.region('header').complete:
return False
signature, = struct.unpack('<I', self.region('header').data[0x40:0x44])
return signature == 0xbeda107f
@property
def virtual_size(self):
if not self.region('header').complete:
return 0
if not self.format_match:
return 0
size, = struct.unpack('<Q', self.region('header').data[0x170:0x178])
return size
class ISOInspector(FileInspector):
"""ISO 9660 and UDF format
we need to check the first 32KB + descriptor size
to look for the ISO 9660 or UDF signature.
http://wiki.osdev.org/ISO_9660
http://wiki.osdev.org/UDF
mkisofs --help | grep udf
The Universal Disc Format or UDF is the filesystem used on DVDs and
Blu-Ray discs.UDF is an extension of ISO 9660 and shares the same
header structure and initial layout.
Like the CDFS(ISO 9660) file system,
the UDF file system uses a 2048 byte sector size,
and it designates that the first 16 sectors can be used by the OS
to store proprietary data or boot logic.
That means we need to check the first 32KB + descriptor size
to look for the ISO 9660 or UDF signature.
both formats have an extent based layout, so we can't determine
ahead of time where the descriptor will be located.
fortunately, the ISO 9660 and UDF formats have a Primary Volume Descriptor
located at the beginning of the image, which contains the volume size.
"""
NAME = 'iso'
def _initialize(self):
self.new_region('system_area', CaptureRegion(0, 32 * units.Ki))
self.new_region('header', CaptureRegion(32 * units.Ki, 2 * units.Ki))
self.add_safety_check(SafetyCheck.null())
@property
def format_match(self):
if not self.complete:
return False
signature = self.region('header').data[1:6]
return signature in (b'CD001', b'NSR02', b'NSR03')
@property
def virtual_size(self):
if not self.complete:
return 0
if not self.format_match:
return 0
# the header size is 2KB or 1 sector
# the first header field is the descriptor type which is 1 byte
# the second field is the standard identifier which is 5 bytes
# the third field is the version which is 1 byte
# the rest of the header contains type specific data is 2041 bytes
# see http://wiki.osdev.org/ISO_9660#The_Primary_Volume_Descriptor
# we need to check that the descriptor type is 1
# to ensure that this is a primary volume descriptor
descriptor_type = self.region('header').data[0]
if descriptor_type != 1:
return 0
# The size in bytes of a logical block is stored at offset 128
# and is 2 bytes long encoded in both little and big endian
# int16_LSB-MSB so the field is 4 bytes long
logical_block_size_data = self.region('header').data[128:132]
# given the encoding we only need to read half the field so we
# can use the first 2 bytes which are the little endian part
# this is normally 2048 or 2KB but we need to check as it can be
# different according to the ISO 9660 standard.
logical_block_size, = struct.unpack('<H', logical_block_size_data[:2])
# The volume space size is the total number of logical blocks
# and is stored at offset 80 and is 8 bytes long
# as with the logical block size the field is encoded in both
# little and big endian as an int32_LSB-MSB
volume_space_size_data = self.region('header').data[80:88]
# given the encoding we only need to read half the field so we
# can use the first 4 bytes which are the little endian part
volume_space_size, = struct.unpack('<L', volume_space_size_data[:4])
# the virtual size is the volume space size * logical block size
return volume_space_size * logical_block_size
# GPT is a superset of legacy MBR and we can detect the two with the same
# inspector. There may be more we can safety check for GPT, but detecting
# both formats is simpler.
# https://uefi.org/specs/UEFI/2.10/05_GUID_Partition_Table_Format.html
class GPTInspector(FileInspector):
NAME = 'gpt'
MBR_SIGNATURE = 0xAA55
MBR_PTE_START = 446
MEDIA_TYPE_FDISK = 0xF8
def _initialize(self):
self.new_region('mbr', CaptureRegion(0, 512))
# TODO(danms): If we start inspecting the contents of the GPT
# structures themselves, we need to realize that they are block-aligned
# and not necessarily right after the PMBR at 512 bytes.
# self.new_region('gpt', CaptureRegion(512, 512))
# If we detect that this is a GPT, we may want to capture the backup
# and assert that it is equivalent.
# TODO(danms): Maybe add this region and associated checks:
# self.new_region('gpt_backup', EndCaptureRegion(512))
self.add_safety_check(SafetyCheck('mbr', self.check_mbr_partitions))
def _check_for_fat(self):
# A FAT filesystem looks like an MBR, but actually starts with a VBR,
# which has the same signature as an MBR, but with more specifics in
# the BPB (BIOS Parameter Block).
boot_sector = self.region('mbr').data
# num_fats is almost always 2 (never more or less) for any filesystem
# not super tiny (think 1980s ramdisk)
num_fats = boot_sector[0x10]
# Media descriptor will basically always be "a fixed disk" for any of
# our purposes, not a floppy disk
media_desc = boot_sector[0x15]
return (num_fats == 2 and media_desc == self.MEDIA_TYPE_FDISK)
@property
def format_match(self):
if not self.region('mbr').complete:
return False
# Check to see if this looks like a VBR from a FAT filesystem so we
# can exclude it
is_fat = self._check_for_fat()
mbr_sig, = struct.unpack('<H', self.region('mbr').data[510:512])
return mbr_sig == self.MBR_SIGNATURE and not is_fat
def check_mbr_partitions(self):
valid_partitions = []
found_gpt = False
for i in range(4):
pte_start = self.MBR_PTE_START + (16 * i)
pte = self.region('mbr').data[pte_start:pte_start + 16]
(boot, starth, starts, startt, ostype,
endh, ehds, endt, startlba, sizelba) = struct.unpack(
'<B3BB3BII', pte)
if boot not in (0x00, 0x80):
raise SafetyViolation('MBR PTE %i has invalid boot flag' % i)
if ostype != 0:
valid_partitions.append(i)
if ostype == 0xEE:
found_gpt = True
if (starth, starts, startt) != (0x00, 0x02, 0x00):
raise SafetyViolation('GPT MBR has invalid start CHS')
if startlba != 0x00000001:
raise SafetyViolation('GPT MBR has invalid start LBA')
if found_gpt and valid_partitions != [0]:
raise SafetyViolation('GPT MBR defines invalid extra partitions')
if not valid_partitions:
raise SafetyViolation('GPT MBR has no partitions defined')
# The LUKSv1 format consists of a header with some metadata and key
# information followed by a bulk non-sparse data payload which is the
# encyrpted disk image.
# https://gitlab.com/cryptsetup/cryptsetup/-/wikis/LUKS-standard/on-disk-format.pdf
# LUKSv2 is a different but similar spec, which is not yet covered here (or
# in qemu).
class LUKSInspector(FileInspector):
NAME = 'luks'
def _initialize(self):
self.new_region('header', CaptureRegion(0, 592))
self.add_safety_check(SafetyCheck('version', self.check_version))
@property
def format_match(self):
return self.region('header').data[:6] == b'LUKS\xBA\xBE'
@property
def header_items(self):
fields = struct.unpack('>6sh32s32s32sI',
self.region('header').data[:108])
names = ['magic', 'version', 'cipher_alg', 'cipher_mode', 'hash',
'payload_offset']
return dict(zip(names, fields))
def check_version(self):
header = self.header_items
if header['version'] != 1:
raise SafetyViolation(
'LUKS version %i is not supported' % header['version'])
@property
def virtual_size(self):
# NOTE(danms): This will not be correct until/unless the whole stream
# has been read, since all we have is (effectively the size of the
# header. This is similar to how RawFileInspector works.
return super().virtual_size - self.header_items['payload_offset'] * 512
class InspectWrapper:
"""A file-like object that wraps another and detects the format.
This passes chunks to a group of format inspectors (default: all)
while reading. After the stream is finished (or enough has been read to
make a confident decision), the format attribute will provide the
inspector object that matched.
:param source: The file-like input stream to wrap
:param expected_format: The format name anticipated to match, if any.
If set to a format name, reading of the stream will
be interrupted if the matching inspector raises
an error (indicting a mismatch or any other
problem). This allows the caller to abort before
all data is processed.
:param allowed_formats: A list of format names that limits the inspector
objects that will be used. This may be a security
hole if used improperly, but may be used to limit
the detected formats to some smaller scope.
"""
def __init__(self, source, expected_format=None, allowed_formats=None):
self._source = source
self._expected_format = expected_format
self._errored_inspectors = set()
self._inspectors = {v() for k, v in ALL_FORMATS.items()
if not allowed_formats or k in allowed_formats}
self._finished = False
def __iter__(self):
return self
def _process_chunk(self, chunk):
for inspector in [i for i in self._inspectors
if i not in self._errored_inspectors]:
try:
inspector.eat_chunk(chunk)
except Exception as e:
if inspector.NAME == self._expected_format:
# If our desired inspector has failed, we cannot continue
raise
# Absolutely do not allow the format inspector to break
# our streaming of the image for non-expected formats. If we
# failed, just stop trying, log and keep going.
if not self._expected_format:
# If we are expecting to parse a specific format, we do
# not need to log scary messages about the other formats
# failing to parse the data as expected.
LOG.debug('Format inspector for %s does not match, '
'excluding from consideration (%s)',
inspector.NAME, e)
self._errored_inspectors.add(inspector)
else:
# If we are expecting a format, have read enough data to
# satisfy that format's inspector, and no match is detected,
# abort the stream immediately to save having to read the
# entire thing before we signal the mismatch.
if (inspector.NAME == self._expected_format and
inspector.complete and not inspector.format_match):
raise ImageFormatError(
'Content does not match expected format %r' % (
inspector.NAME))
def __next__(self):
try:
chunk = next(self._source)
except StopIteration:
self._finish()
raise
self._process_chunk(chunk)
return chunk
def read(self, size):
chunk = self._source.read(size)
self._process_chunk(chunk)
return chunk
def _finish(self):
for inspector in self._inspectors:
inspector.finish()
self._finished = True
def close(self):
if hasattr(self._source, 'close'):
self._source.close()
self._finish()
@property
def formats(self):
"""The formats (potentially multiple) determined from the content.
This is just like format, but returns a list of formats that matched,
which may be more than one if appropriate. This should generally not
be used as it is safer to allow one and only one format. However, there
are situations where multiple formats could be detected legitimately
(i.e. bootable ISOs) where we need to expose the case where we have
found more than one. If no specific matches are made, this will return
a list with just the Raw inspector, but will never include Raw in
combination with others.
This will be None if a decision has not been reached.
"""
non_raw = {i for i in self._inspectors if i.NAME != 'raw'}
complete = all([i.complete for i in non_raw])
matches = [i for i in non_raw if i.format_match]
if not complete and not self._finished:
# We do not know what our format is if we're still in progress
# of reading the stream and have incomplete inspectors. However,
# if EOF has been signaled, then we can assume the incomplete ones
# are not matches.
return None
if not matches:
try:
# If nothing *specific* matched, we return the raw format to
# indicate that we do not recognize this content at all.
return [x for x in self._inspectors if str(x) == 'raw']
except IndexError:
raise ImageFormatError(
'Content does not match any allowed format')
return matches
@property
def format(self):
"""The format determined from the content.
If this is None, a decision has not been reached. Otherwise,
it is a FileInspector that matches (which may be RawFileInspector
if no other formats matched and enough of the stream has been read
to make that determination). If more than one format matched, then
ImageFormatError is raised. If the allowed_formats was constrained
and raw was not included, then this will raise ImageFormatError to
indicate that no suitable match was found.
"""
matches = self.formats
if matches is None:
return matches
elif len(matches) > 1:
# Multiple format matches mean that not only can we not return a
# decision here, but also means that there may be something
# nefarious going on (i.e. hiding one header in another).
raise ImageFormatError('Multiple formats detected: %s' % ','.join(
str(i) for i in matches))
else:
try:
# The expected outcome of this is a single match of something
# specific
return matches[0]
except IndexError:
raise ImageFormatError(
'Content does not match any allowed format')
ALL_FORMATS = {
'raw': RawFileInspector,
'qcow2': QcowInspector,
'vhd': VHDInspector,
'vhdx': VHDXInspector,
'vmdk': VMDKInspector,
'vdi': VDIInspector,
'qed': QEDInspector,
'iso': ISOInspector,
'gpt': GPTInspector,
'luks': LUKSInspector,
}
def get_inspector(format_name):
"""Returns a FormatInspector class based on the given name.
:param format_name: The name of the disk_format (raw, qcow2, etc).
:returns: A FormatInspector or None if unsupported.
"""
return ALL_FORMATS.get(format_name)
def detect_file_format(filename):
"""Attempts to detect the format of a file.
This runs through a file one time, running all the known inspectors in
parallel. It stops reading the file once all of them matches or all of
them are sure they don't match.
:param filename: The path to the file to inspect.
:returns: A FormatInspector instance matching the file.
:raises: ImageFormatError if multiple formats are detected.
"""
with open(filename, 'rb') as f:
wrapper = InspectWrapper(f)
try:
for _chunk in _chunked_reader(wrapper, 4096):
if wrapper.format:
return wrapper.format
finally:
wrapper.close()
return wrapper.format
|