File: getDecisionTreeRules.py

package info (click to toggle)
python-pangolearn 2022-07-09%2Bdfsg-2
  • links: PTS, VCS
  • area: main
  • in suites: bookworm, forky, sid, trixie
  • size: 184,720 kB
  • sloc: python: 801; sh: 77; makefile: 16
file content (145 lines) | stat: -rw-r--r-- 3,139 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import export_text
import joblib
import sys
from sklearn.tree import _tree

sys.setrecursionlimit(4000)

loaded_model = joblib.load(sys.argv[1])
headers = joblib.load(sys.argv[2])
output_file = sys.argv[3]

finalHeaders = []

with open(output_file, 'r') as f:
	for line in f:
		if line[0] == "[" and len(line) > 1000:
			print(line)
			finalHeaders = line[1:-1].split(",")

			for i in range(len(finalHeaders)):
				finalHeaders[i] = finalHeaders[i].strip()
				finalHeaders[i] = finalHeaders[i].replace("'", "")

print(finalHeaders)

categories = ['A', 'C', 'G', 'T', 'N', '-']

classes = loaded_model.classes_


def getClass(weightArray):
	weightArray = weightArray[0]

	maxValue = 0
	maxIndex = 0

	for i in range(len(weightArray)):
		if weightArray[i] > maxValue:
			maxValue = weightArray[i]
			maxIndex = i

	return classes[maxIndex]


def reformatRule(sign, name, threshold):
	position = name.split("_")[0]
	letter = name.split("_")[1]

	symbol = "=="
	if sign == "<=":
		symbol = "!="

	return position + symbol + "'" + letter + "'"


outcomesToRules = dict()


def tree_to_code(tree, feature_names):
    tree_ = tree.tree_
    feature_name = [
        feature_names[i] if i != _tree.TREE_UNDEFINED else "undefined!"
        for i in tree_.feature
    ]

    prevRules = []

    def recurse(node, depth, prevRules):
        indent = "  " * depth
        if tree_.feature[node] != _tree.TREE_UNDEFINED:
            name = feature_name[node]
            threshold = tree_.threshold[node]

            prevRulesRight = prevRules.copy()
            prevRulesLeft = prevRules.copy()

            prevRulesLeft.append(reformatRule("<=", name, threshold))
            prevRulesRight.append(reformatRule(">", name, threshold))

            recurse(tree_.children_left[node], depth + 1, prevRulesLeft)
            recurse(tree_.children_right[node], depth + 1, prevRulesRight)
        else:
            rulesString = prevRules[0]
            for rule in prevRules[1:]:
            	rule = rule.strip()

            	rulesString = rulesString + "," + rule

            outcome = getClass(tree_.value[node])

            if outcome not in outcomesToRules:
            	outcomesToRules[outcome] = []

            print(outcome + "\t" + rulesString)

    recurse(0, 1, prevRules)

tree_to_code(loaded_model, finalHeaders)


def formatCommonRules(ruleSets):
	splitRuleSets = []
	totalRules = []
	commonRules = []

	for r in ruleSets:
		splitRuleSets.append(r.split(","))

		for i in r.split(","):
			totalRules.append(i)

	for i in totalRules:

		addRule = True
		for r in splitRuleSets:
			if i not in r:
				addRule = False

		if addRule:
			commonRules.append(i)

			for r in splitRuleSets:
				r.remove(i)

	retString = ""

	if len(commonRules) > 0:
		retString = commonRules[0]

		for c in commonRules[1:]:
			retString = retString + "," + c

		retString = retString + " AND "

	for s in splitRuleSets:
		if len(s) > 0:
			retString = retString + "(" + s[0]
			for r in s[1:]:
				retString = retString + "," + r

			retString = retString + ") OR "


	return retString[:-3]