File: dataframe.py

package info (click to toggle)
python-panwid 0.3.0.dev15-2
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 308 kB
  • sloc: python: 3,702; makefile: 3
file content (152 lines) | stat: -rw-r--r-- 5,123 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
import logging
logger = logging.getLogger("panwid.datatable")
import raccoon as rc
import collections

class DataTableDataFrame(rc.DataFrame):

    DATA_TABLE_COLUMNS = ["_dirty", "_focus_position", "_value_fn", "_cls", "_details", "_rendered_row"]

    def __init__(self, data=None, columns=None, index=None, index_name="index", sort=None):

        if columns and not index_name in columns:
            columns.insert(0, index_name)
        columns += self.DATA_TABLE_COLUMNS
        super(DataTableDataFrame, self).__init__(
            data=data,
            columns=columns,
            index=index,
            index_name=index_name,
            sort=sort
        )
        # for c in self.DATA_TABLE_COLUMNS:
        #     self[c] = None

    def _validate_index(self, indexes):
        try:
            return super(DataTableDataFrame, self)._validate_index(indexes)
        except ValueError:
            logger.error("duplicates in index: %s" %(
                [item for item, count
                 in list(collections.Counter(indexes).items()) if count > 1
                ]))
            raise


    def log_dump(self, n=5, columns=None, label=None):
        df = self
        if columns:
            if not isinstance(columns, list):
                columns = [columns]
            df = df[columns]
        logger.info("%slength: %d, index: %s [%s%s]\n%s" %(
            "%s, " %(label) if label else "",
            len(self),
            self.index_name,
            ",".join([str(x) for x in self.index[0:min(n, len(self.index))]]),
            "..." if len(self.index) > n else "",
            df.head(n)))

    def transpose_data(self, rows):
        data_columns = list(set().union(*(list(d.keys()) for d in rows)))
        data_columns += [
            c for c in self.columns
            if c not in data_columns
            and c != self.index_name
            and c not in self.DATA_TABLE_COLUMNS
        ]
        data_columns += ["_cls", "_details"]

        data = dict(
            list(zip((data_columns),
                [ list(z) for z in zip(*[[
                    d.get(k, None if k != "_details" else {"open": False, "disabled": False})
                    if isinstance(d, collections.abc.MutableMapping)
                    else getattr(d, k, None if k != "_details" else {"open": False, "disabled": False})
                    # for k in data_columns + self.DATA_TABLE_COLUMNS] for d in rows])]
                    for k in data_columns] for d in rows])]
            ))
        )
        return data

    def update_rows(self, rows, limit=None):

        data = self.transpose_data(rows)
        # data["_details"] = [{"open": False, "disabled": False}] * len(rows)
        # if not "_details" in data:
        #     data["_details"] = [{"open": False, "disabled": False}] * len(rows)

        if not limit:
            if len(rows):
                indexes = [x for x in self.index if x not in data.get(self.index_name, [])]
                if len(indexes):
                    self.delete_rows(indexes)
            else:
                self.delete_all_rows()

            # logger.info(f"update_rowGs: {self.index}, {data[self.index_name]}")

        if not len(rows):
            return []

        if self.index_name not in data:
            index = list(range(len(self), len(self) + len(rows)))
            data[self.index_name] = index
        else:
            index = data[self.index_name]

        for c in data.keys():
            try:
                self.set(data[self.index_name], c, data[c])
            except ValueError as e:
                logger.error(e)
                logger.info(f"update_rows: {self.index}, {data}")
                raise Exception(c, len(self.index), len(data[c]))
        return data.get(self.index_name, [])

    def append_rows(self, rows):

        length = len(rows)
        if not length:
            return

        colnames = list(self.columns) + [c for c in self.DATA_TABLE_COLUMNS if c not in self.columns]

        # data_columns = list(set().union(*(list(d.keys()) for d in rows)))
        data = self.transpose_data(rows)
        colnames += [c for c in data.keys() if c not in colnames]

        for c in self.columns:
            if not c in data:
                data[c] = [None]*length

        for c in colnames:
            if not c in self.columns:
                self[c] = None

        kwargs = dict(
            columns =  colnames,
            data = data,
            sort=False,
            index=data[self.index_name],
            index_name = self.index_name,
        )

        try:
            newdata = DataTableDataFrame(**kwargs)
        except ValueError:
            raise Exception(kwargs)
        # newdata.log_dump()
        # self.log_dump(10, label="before")
        try:
            self.append(newdata)
        except ValueError:
            raise Exception(f"{self.index}, {newdata}")
        # self.log_dump(10, label="after")

    # def add_column(self, column, data=None):
    #     self[column] = data

    def clear(self):
        self.delete_all_rows()
        # self.delete_rows(self.index)