File: __init__.py

package info (click to toggle)
python-param 2.1.1-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 2,048 kB
  • sloc: python: 17,980; makefile: 3
file content (767 lines) | stat: -rw-r--r-- 27,942 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
"""
Callable objects that generate numbers according to different distributions.
"""

import random
import operator
import hashlib
import struct
import fractions

from ctypes import c_size_t
from math import e,pi

import param


from param import __version__  # noqa: API import

class TimeAware(param.Parameterized):
    """
    Class of objects that have access to a global time function
    and have the option of using it to generate time-dependent values
    as necessary.

    In the simplest case, an object could act as a strict function of
    time, returning the current time transformed according to a fixed
    equation.  Other objects may support locking their results to a
    timebase, but also work without time.  For instance, objects with
    random state could return a new random value for every call, with
    no notion of time, or could always return the same value until the
    global time changes.  Subclasses should thus provide an ability to
    return a time-dependent value, but may not always do so.
    """

    time_dependent = param.Boolean(default=False,  doc="""
       Whether the given time_fn should be used to constrain the
       results generated.""")

    time_fn = param.Callable(default=param.Dynamic.time_fn, doc="""
        Callable used to specify the time that determines the state
        and return value of the object, if time_dependent=True.""")


    def __init__(self, **params):
        super().__init__(**params)
        self._check_time_fn()


    def _check_time_fn(self, time_instance=False):
        """
        If time_fn is the global time function supplied by
        param.Dynamic.time_fn, make sure Dynamic parameters are using
        this time function to control their behaviour.

        If time_instance is True, time_fn must be a param.Time instance.
        """
        if time_instance and not isinstance(self.time_fn, param.Time):
            raise AssertionError("%s requires a Time object"
                                 % self.__class__.__name__)

        if self.time_dependent:
            global_timefn = self.time_fn is param.Dynamic.time_fn
            if global_timefn and not param.Dynamic.time_dependent:
                raise AssertionError("Cannot use Dynamic.time_fn as"
                                     " parameters are ignoring time.")


class TimeDependent(TimeAware):
    """
    Objects that have access to a time function that determines the
    output value. As a function of time, this type of object should
    allow time values to be randomly jumped forwards or backwards,
    but for a given time point, the results should remain constant.

    The time_fn must be an instance of param.Time, to ensure all the
    facilities necessary for safely navigating the timeline are
    available.
    """

    time_dependent = param.Boolean(default=True, readonly=True, doc="""
       Read-only parameter that is always True.""")

    def _check_time_fn(self):
        super()._check_time_fn(time_instance=True)



class NumberGenerator(param.Parameterized):
    """
    Abstract base class for any object that when called produces a number.

    Primarily provides support for using NumberGenerators in simple
    arithmetic expressions, such as abs((x+y)/z), where x,y,z are
    NumberGenerators or numbers.
    """

    def __call__(self):
        raise NotImplementedError

    # Could define any of Python's operators here, esp. if they have operator or ufunc equivalents
    def __add__      (self,operand): return BinaryOperator(self,operand,operator.add)
    def __sub__      (self,operand): return BinaryOperator(self,operand,operator.sub)
    def __mul__      (self,operand): return BinaryOperator(self,operand,operator.mul)
    def __mod__      (self,operand): return BinaryOperator(self,operand,operator.mod)
    def __pow__      (self,operand): return BinaryOperator(self,operand,operator.pow)
    def __div__      (self,operand): return BinaryOperator(self,operand,operator.div)
    def __truediv__  (self,operand): return BinaryOperator(self,operand,operator.truediv)
    def __floordiv__ (self,operand): return BinaryOperator(self,operand,operator.floordiv)

    def __radd__     (self,operand): return BinaryOperator(self,operand,operator.add,True)
    def __rsub__     (self,operand): return BinaryOperator(self,operand,operator.sub,True)
    def __rmul__     (self,operand): return BinaryOperator(self,operand,operator.mul,True)
    def __rmod__     (self,operand): return BinaryOperator(self,operand,operator.mod,True)
    def __rpow__     (self,operand): return BinaryOperator(self,operand,operator.pow,True)
    def __rdiv__     (self,operand): return BinaryOperator(self,operand,operator.div,True)
    def __rtruediv__ (self,operand): return BinaryOperator(self,operand,operator.truediv,True)
    def __rfloordiv__(self,operand): return BinaryOperator(self,operand,operator.floordiv,True)

    def __neg__ (self): return UnaryOperator(self,operator.neg)
    def __pos__ (self): return UnaryOperator(self,operator.pos)
    def __abs__ (self): return UnaryOperator(self,operator.abs)


operator_symbols = {
    operator.add:'+',
    operator.sub:'-',
    operator.mul:'*',
    operator.mod:'%',
    operator.pow:'**',
    operator.truediv:'/',
    operator.floordiv:'//',
    operator.neg:'-',
    operator.pos:'+',
    operator.abs:'abs',
}

def pprint(x, *args, **kwargs):
    "Pretty-print the provided item, translating operators to their symbols"
    return x.pprint(*args, **kwargs) if hasattr(x,'pprint') else operator_symbols.get(x, repr(x))


class BinaryOperator(NumberGenerator):
    """Applies any binary operator to NumberGenerators or numbers to yield a NumberGenerator."""

    def __init__(self,lhs,rhs,operator,reverse=False,**args):
        """
        Accepts two NumberGenerator operands, an operator, and
        optional arguments to be provided to the operator when calling
        it on the two operands.
        """
        # Note that it's currently not possible to set
        # parameters in the superclass when creating an instance,
        # because **args is used by this class itself.
        super().__init__()

        if reverse:
            self.lhs=rhs
            self.rhs=lhs
        else:
            self.lhs=lhs
            self.rhs=rhs
        self.operator=operator
        self.args=args

    def __call__(self):
        return self.operator(self.lhs() if callable(self.lhs) else self.lhs,
                             self.rhs() if callable(self.rhs) else self.rhs, **self.args)

    def pprint(self, *args, **kwargs):
        return (pprint(self.lhs,      *args, **kwargs) +
                pprint(self.operator, *args, **kwargs) +
                pprint(self.rhs,      *args, **kwargs))


class UnaryOperator(NumberGenerator):
    """Applies any unary operator to a NumberGenerator to yield another NumberGenerator."""

    def __init__(self,operand,operator,**args):
        """
        Accepts a NumberGenerator operand, an operator, and
        optional arguments to be provided to the operator when calling
        it on the operand.
        """
        # Note that it's currently not possible to set
        # parameters in the superclass when creating an instance,
        # because **args is used by this class itself.
        super().__init__()

        self.operand=operand
        self.operator=operator
        self.args=args

    def __call__(self):
        return self.operator(self.operand(),**self.args)

    def pprint(self, *args, **kwargs):
        return (pprint(self.operator, *args, **kwargs) + '(' +
                pprint(self.operand,  *args, **kwargs) + ')')


class Hash:
    """
    A platform- and architecture-independent hash function (unlike
    Python's inbuilt hash function) for use with an ordered collection
    of rationals or integers.

    The supplied name sets the initial hash state.  The output from
    each call is a 32-bit integer to ensure the value is a regular
    Python integer (and not a Python long) on both 32-bit and 64-bit
    platforms. This can be important to seed Numpy's random number
    generator safely (a bad Numpy bug!).

    The number of inputs (integer or rational numbers) to be supplied
    for __call__ must be specified in the constructor and must stay
    constant across calls.
    """
    def __init__(self, name, input_count):
        self.name = name
        self.input_count = input_count
        self._digest = hashlib.md5()
        self._digest.update(name.encode())
        self._hash_struct = struct.Struct( "!" +" ".join(["I"] * (input_count * 2)))


    def _rational(self, val):
        """Convert the given value to a rational, if necessary."""

        I32 = 4294967296 # Maximum 32 bit unsigned int (i.e. 'I') value
        if isinstance(val, int):
            numer, denom = val, 1
        elif isinstance(val, fractions.Fraction):
            numer, denom = val.numerator, val.denominator
        elif hasattr(val, 'numer'):
            (numer, denom) = (int(val.numer()), int(val.denom()))
        else:
            param.main.param.log(param.WARNING, "Casting type '%s' to Fraction.fraction"
                               % type(val).__name__)
            frac = fractions.Fraction(str(val))
            numer, denom = frac.numerator, frac.denominator
        return numer % I32, denom % I32


    def __getstate__(self):
        """
        Avoid Hashlib.md5 TypeError in deepcopy (hashlib issue)
        """
        d = self.__dict__.copy()
        d.pop('_digest')
        d.pop('_hash_struct')
        return d


    def __setstate__(self, d):
        self._digest = hashlib.md5()
        name, input_count = d['name'], d['input_count']
        self._digest.update(name.encode())
        self._hash_struct = struct.Struct( "!" +" ".join(["I"] * (input_count * 2)))
        self.__dict__.update(d)


    def __call__(self, *vals):
        """
        Given integer or rational inputs, generate a cross-platform,
        architecture-independent 32-bit integer hash.
        """
        # Convert inputs to (numer, denom) pairs with integers
        # becoming (int, 1) pairs to match gmpy.mpqs for int values.
        pairs = [self._rational(val) for val in vals]
        # Unpack pairs and fill struct with ints to update md5 hash
        ints = [el for pair in pairs for el in pair]
        digest = self._digest.copy()
        digest.update(self._hash_struct.pack(*ints))
        # Convert from hex string to 32 bit int
        return int(digest.hexdigest()[:7], 16)



class TimeAwareRandomState(TimeAware):
    """
    Generic base class to enable time-dependent random
    streams. Although this class is the basis of all random numbergen
    classes, it is designed to be useful whenever time-dependent
    randomness is needed using param's notion of time. For instance,
    this class is used by the imagen package to define time-dependent,
    random distributions over 2D arrays.

    For generality, this class may use either the Random class from
    Python's random module or numpy.random.RandomState. Either of
    these random state objects may be used to generate numbers from
    any of several different random distributions (e.g. uniform,
    Gaussian). The latter offers the ability to generate
    multi-dimensional random arrays and more random distributions but
    requires numpy as a dependency.

    If declared time_dependent, the random state is fully determined
    by a hash value per call. The hash is initialized once with the
    object name and then per call using a tuple consisting of the time
    (via time_fn) and the global param.random_seed.  As a consequence,
    for a given name and fixed value of param.random_seed, the random
    values generated will be a fixed function of time.

    If the object name has not been set and time_dependent is True, a
    message is generated warning that the default object name is
    dependent on the order of instantiation.  To ensure that the
    random number stream will remain constant even if other objects
    are added or reordered in your file, supply a unique name
    explicitly when you construct the RandomDistribution object.
    """

    # Historically, the default random state was seeded with the tuple
    # (500, 500). The CPython implementation implicitly formed an unsigned
    # integer seed using the hash of the tuple as in the expression below. Note
    # that the resulting integer, and therefore the default initial random
    # state, varies across CPython versions (as the hash algorithm has changed)
    # and also between 32-bit and 64-bit interpreters.
    #
    # Seeding based on hashing is deprecated since Python 3.9 and removed in
    # Python 3.11; we explicitly continue the historical behavior for the time
    # being.
    random_generator = param.Parameter(
        default=random.Random(c_size_t(hash((500,500))).value), doc=
        """
        Random state used by the object. This may be an instance
        of random.Random from the Python standard library or an
        instance of numpy.random.RandomState.

        This random state may be exclusively owned by the object or
        may be shared by all instance of the same class. It is always
        possible to give an object its own unique random state by
        setting this parameter with a new random state instance.
        """)

    __abstract = True

    def _initialize_random_state(self, seed=None, shared=True, name=None):
        """
        Initialization method to be called in the constructor of
        subclasses to initialize the random state correctly.

        If seed is None, there is no control over the random stream
        (no reproducibility of the stream).

        If shared is True (and not time-dependent), the random state
        is shared across all objects of the given class. This can be
        overridden per object by creating new random state to assign
        to the random_generator parameter.
        """
        if seed is None: # Equivalent to an uncontrolled seed.
            seed = random.Random().randint(0, 1000000)
            suffix = ''
        else:
            suffix = str(seed)

        # If time_dependent, independent state required: otherwise
        # time-dependent seeding (via hash) will affect shared
        # state. Note that if all objects have time_dependent=True
        # shared random state is safe and more memory efficient.
        if self.time_dependent or not shared:
            self.random_generator = type(self.random_generator)(seed)

        # Seed appropriately (if not shared)
        if not shared:
            self.random_generator.seed(seed)

        if name is None:
            self._verify_constrained_hash()

        hash_name = name if name else self.name
        if not shared:  hash_name += suffix
        self._hashfn = Hash(hash_name, input_count=2)

        if self.time_dependent:
            self._hash_and_seed()


    def _verify_constrained_hash(self):
        """
        Warn if the object name is not explicitly set.
        """
        changed_params = self.param.values(onlychanged=True)
        if self.time_dependent and ('name' not in changed_params):
            self.param.log(param.WARNING, "Default object name used to set the seed: "
                           "random values conditional on object instantiation order.")

    def _hash_and_seed(self):
        """
        To be called between blocks of random number generation. A
        'block' can be an unbounded sequence of random numbers so long
        as the time value (as returned by time_fn) is guaranteed not
        to change within the block. If this condition holds, each
        block of random numbers is time-dependent.

        Note: param.random_seed is assumed to be integer or rational.
        """
        hashval = self._hashfn(self.time_fn(), param.random_seed)
        self.random_generator.seed(hashval)



class RandomDistribution(NumberGenerator, TimeAwareRandomState):
    """
    The base class for all Numbergenerators using random state.

    Numbergen provides a hierarchy of classes to make it easier to use
    the random distributions made available in Python's random module,
    where each class is tied to a particular random distribution.

    RandomDistributions support setting parameters on creation rather
    than passing them each call, and allow pickling to work properly.
    Code that uses these classes will be independent of how many
    parameters are used by the underlying distribution, and can simply
    treat them as a generic source of random numbers.

    RandomDistributions are examples of TimeAwareRandomState, and thus
    can be locked to a global time if desired.  By default,
    time_dependent=False, and so a new random value will be generated
    each time these objects are called.  If you have a global time
    function, you can set time_dependent=True, so that the random
    values will instead be constant at any given time, changing only
    when the time changes.  Using time_dependent values can help you
    obtain fully reproducible streams of random numbers, even if you
    e.g. move time forwards and backwards for testing.

    Note: Each RandomDistribution object has independent random state.
    """

    seed = param.Integer(default=None, allow_None=True, doc="""
       Sets the seed of the random number generator and can be used to
       randomize time dependent streams.

       If seed is None, there is no control over the random stream
       (i.e. no reproducibility of the stream).""")

    __abstract = True

    def __init__(self,**params):
        """
        Initialize a new Random() instance and store the supplied
        positional and keyword arguments.

        If seed=X is specified, sets the Random() instance's seed.
        Otherwise, calls creates an unseeded Random instance which is
        likely to result in a state very different from any just used.
        """
        super().__init__(**params)
        self._initialize_random_state(seed=self.seed, shared=False)

    def __call__(self):
        if self.time_dependent:
            self._hash_and_seed()


class UniformRandom(RandomDistribution):
    """
    Specified with lbound and ubound; when called, return a random
    number in the range [lbound, ubound).

    See the random module for further details.
    """

    lbound = param.Number(default=0.0,doc="Inclusive lower bound.")

    ubound = param.Number(default=1.0,doc="Exclusive upper bound.")


    def __call__(self):
        super().__call__()
        return self.random_generator.uniform(self.lbound,self.ubound)



class UniformRandomOffset(RandomDistribution):
    """
    Identical to UniformRandom, but specified by mean and range.
    When called, return a random number in the range
    [mean - range/2, mean + range/2).

    See the random module for further details.
    """

    mean = param.Number(default=0.0, doc="""Mean value""")

    range = param.Number(default=1.0, bounds=(0.0,None), doc="""
        Difference of maximum and minimum value""")


    def __call__(self):
        super().__call__()
        return self.random_generator.uniform(
                self.mean - self.range / 2.0,
                self.mean + self.range / 2.0)



class UniformRandomInt(RandomDistribution):
    """
    Specified with lbound and ubound; when called, return a random
    number in the inclusive range [lbound, ubound].

    See the randint function in the random module for further details.
    """

    lbound = param.Number(default=0,doc="Inclusive lower bound.")
    ubound = param.Number(default=1000,doc="Inclusive upper bound.")


    def __call__(self):
        super().__call__()
        x = self.random_generator.randint(self.lbound,self.ubound)
        return x



class Choice(RandomDistribution):
    """
    Return a random element from the specified list of choices.

    Accepts items of any type, though they are typically numbers.
    See the choice() function in the random module for further details.
    """

    choices = param.List(default=[0,1],
        doc="List of items from which to select.")


    def __call__(self):
        super().__call__()
        return self.random_generator.choice(self.choices)



class NormalRandom(RandomDistribution):
    """
    Normally distributed (Gaussian) random number.

    Specified with mean mu and standard deviation sigma.
    See the random module for further details.
    """

    mu = param.Number(default=0.0,doc="Mean value.")

    sigma = param.Number(default=1.0,bounds=(0.0,None),doc="Standard deviation.")


    def __call__(self):
        super().__call__()
        return self.random_generator.normalvariate(self.mu,self.sigma)



class VonMisesRandom(RandomDistribution):
    """
    Circularly normal distributed random number.

    If kappa is zero, this distribution reduces to a uniform random
    angle over the range 0 to 2*pi.  Otherwise, it is concentrated to
    a greater or lesser degree (determined by kappa) around the mean
    mu.  For large kappa (narrow peaks), this distribution approaches
    the Gaussian (normal) distribution with variance 1/kappa.  See the
    random module for further details.
    """

    mu = param.Number(default=0.0,softbounds=(0.0,2*pi),doc="""
        Mean value, typically in the range 0 to 2*pi.""")

    kappa = param.Number(default=1.0,bounds=(0.0,None),softbounds=(0.0,50.0),doc="""
        Concentration (inverse variance).""")


    def __call__(self):
        super().__call__()
        return self.random_generator.vonmisesvariate(self.mu,self.kappa)




class ScaledTime(NumberGenerator, TimeDependent):
    """
    The current time multiplied by some conversion factor.
    """

    factor = param.Number(default=1.0, doc="""
       The factor to be multiplied by the current time value.""")


    def __call__(self):
        return float(self.time_fn() * self.factor)



class BoxCar(NumberGenerator, TimeDependent):
    """
    The boxcar function over the specified time interval. The bounds
    are exclusive: zero is returned at the onset time and at the
    offset (onset+duration).

    If duration is None, then this reduces to a step function around the
    onset value with no offset.

    See http://en.wikipedia.org/wiki/Boxcar_function
    """

    onset = param.Number(0.0, doc="Time of onset.")

    duration = param.Number(None, allow_None=True, bounds=(0.0,None), doc="""
        Duration of step value.""")


    def __call__(self):
        if self.time_fn() <= self.onset:
            return 0.0
        elif (self.duration is not None) and (self.time_fn() > self.onset + self.duration):
            return 0.0
        else:
            return 1.0



class SquareWave(NumberGenerator, TimeDependent):
    """
    Generate a square wave with 'on' periods returning 1.0 and
    'off'periods returning 0.0 of specified duration(s). By default
    the portion of time spent in the high state matches the time spent
    in the low state (a duty cycle of 50%), but the duty cycle can be
    controlled if desired.

    The 'on' state begins after a time specified by the 'onset'
    parameter.  The onset duration supplied must be less than the off
    duration.
    """

    onset = param.Number(0.0, doc="""Time of onset of the first 'on'
        state relative to time 0. Must be set to a value less than the
        'off_duration' parameter.""")

    duration = param.Number(1.0, allow_None=False, bounds=(0.0,None), doc="""
         Duration of the 'on' state during which a value of 1.0 is
         returned.""")

    off_duration = param.Number(default=None, allow_None=True,
                                bounds=(0.0,None), doc="""
        Duration of the 'off' value state during which a value of 0.0
        is returned. By default, this duration matches the value of
        the 'duration' parameter.""")


    def __init__(self, **params):
        super().__init__(**params)

        if self.off_duration is None:
            self.off_duration = self.duration

        if self.onset > self.off_duration:
            raise AssertionError("Onset value needs to be less than %s" % self.onset)


    def __call__(self):
        phase_offset = (self.time_fn() - self.onset) % (self.duration + self.off_duration)
        if phase_offset < self.duration:
            return 1.0
        else:
            return 0.0



class ExponentialDecay(NumberGenerator, TimeDependent):
    """
    Function object that provides a value that decays according to an
    exponential function, based on a given time function.

    Returns starting_value*base^(-time/time_constant).

    See http://en.wikipedia.org/wiki/Exponential_decay.
    """

    starting_value = param.Number(1.0, doc="Value used for time zero.")

    ending_value = param.Number(0.0, doc="Value used for time infinity.")

    time_constant = param.Number(10000,doc="""
        Time scale for the exponential; large values give slow decay.""")

    base = param.Number(e, doc="""
        Base of the exponent; the default yields starting_value*exp(-t/time_constant).
        Another popular choice of base is 2, which allows the
        time_constant to be interpreted as a half-life.""")


    def __call__(self):
        Vi = self.starting_value
        Vm = self.ending_value
        exp = -1.0*float(self.time_fn())/float(self.time_constant)
        return Vm + (Vi - Vm) * self.base**exp



class TimeSampledFn(NumberGenerator, TimeDependent):
    """
    Samples the values supplied by a time_dependent callable at
    regular intervals of duration 'period', with the sampled value
    held constant within each interval.
    """

    period = param.Number(default=1.0, bounds=(0.0,None),
        inclusive_bounds=(False,True), softbounds=(0.0,5.0), doc="""
        The periodicity with which the values of fn are sampled.""")

    offset = param.Number(default=0.0, bounds=(0.0,None),
                          softbounds=(0.0,5.0), doc="""
        The offset from time 0.0 at which the first sample will be drawn.
        Must be less than the value of period.""")

    fn = param.Callable(doc="""
        The time-dependent function used to generate the sampled values.""")


    def __init__(self, **params):
        super().__init__(**params)

        if not getattr(self.fn,'time_dependent', False):
            raise Exception("The function 'fn' needs to be time dependent.")

        if self.time_fn != self.fn.time_fn:
            raise Exception("Objects do not share the same time_fn")

        if self.offset >= self.period:
            raise Exception("The onset value must be less than the period.")


    def __call__(self):
        current_time = self.time_fn()
        current_time += self.offset
        difference = current_time % self.period
        with self.time_fn as t:
            t(current_time - difference - self.offset)
            value = self.fn()
        return value



class BoundedNumber(NumberGenerator):
    """
    Function object that silently enforces numeric bounds on values
    returned by a callable object.
    """

    generator = param.Callable(None, doc="Object to call to generate values.")

    bounds = param.Parameter((None,None), doc="""
        Legal range for the value returned, as a pair.

        The default bounds are (None,None), meaning there are actually
        no bounds.  One or both bounds can be set by specifying a
        value.  For instance, bounds=(None,10) means there is no lower
        bound, and an upper bound of 10.""")


    def __call__(self):
        val = self.generator()
        min_, max_ = self.bounds
        if   min_ is not None and val < min_: return min_
        elif max_ is not None and val > max_: return max_
        else: return val


_public = list({_k for _k,_v in locals().items() if isinstance(_v,type) and issubclass(_v,NumberGenerator)})
__all__ = _public