1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347
|
"""
Testing JSON serialization of parameters and the corresponding schemas.
"""
import datetime
import json
import unittest
from unittest import SkipTest, skipIf
import param
try:
from jsonschema import validate, ValidationError
except ImportError:
import os
if os.getenv('PARAM_TEST_JSONSCHEMA','0') == '1':
raise ImportError("PARAM_TEST_JSONSCHEMA=1 but jsonschema not available.")
validate = None
now = datetime.datetime.now()
after_now = now + datetime.timedelta(days=1)
try:
import numpy as np
ndarray = np.array([[1,2,3],[4,5,6]])
npdt1 = np.datetime64(now)
npdt2 = np.datetime64(after_now)
except:
np, ndarray, npdt1, npdt2 = None, None, None, None
np_skip = skipIf(np is None, "NumPy is not available")
try:
import pandas as pd
df1 = pd.DataFrame({'A':[1,2,3], 'B':[1.1,2.2,3.3]})
df2 = pd.DataFrame({'A':[1.1,2.2,3.3], 'B':[1.1,2.2,3.3]})
pdts1 = pd.Timestamp(now)
pdts2 = pd.Timestamp(after_now)
except:
pd, df1, df2, pdts1, pdts2 = None, None, None, None, None
pd_skip = skipIf(pd is None, "pandas is not available")
simple_list = [1]
class TestSet(param.Parameterized):
__test__ = False
numpy_params = ['r','y']
pandas_params = ['s','t','u','z']
conditionally_unsafe = ['f', 'o']
a = param.Integer(default=5, doc='Example doc', bounds=(2,30), inclusive_bounds=(True, False))
b = param.Number(default=4.3, allow_None=True)
c = param.String(default='foo')
d = param.Boolean(default=False)
e = param.List([1,2,3], item_type=int)
f = param.List([1,2,3])
g = param.Date(default=datetime.datetime.now())
g2 = None if np is None else param.Date(default=npdt1)
g3 = None if pd is None else param.Date(default=pdts1)
h = param.Tuple(default=(1,2,3), length=3)
i = param.NumericTuple(default=(1,2,3,4))
j = param.XYCoordinates(default=(32.1, 51.5))
k = param.Integer(default=1)
l = param.Range(default=(1.1,2.3), bounds=(1,3))
m = param.String(default='baz', allow_None=True)
n = param.ObjectSelector(default=3, objects=[3,'foo'], allow_None=False)
o = param.ObjectSelector(default=simple_list, objects=[simple_list], allow_None=False)
p = param.ListSelector(default=[1,4,5], objects=[1,2,3,4,5,6])
q = param.CalendarDate(default=datetime.date.today())
r = None if np is None else param.Array(default=ndarray)
s = None if pd is None else param.DataFrame(default=df1, columns=2)
t = None if pd is None else param.DataFrame(default=pd.DataFrame(
{'A':[1,2,3], 'B':[1.1,2.2,3.3]}), columns=(1,4), rows=(2,5))
u = None if pd is None else param.DataFrame(default=df2, columns=['A', 'B'])
v = param.Dict({'1':2})
w = param.Date(default=None, allow_None=True)
x = param.CalendarDate(default=None, allow_None=True)
y = None if np is None else param.Array(default=None)
z = None if pd is None else param.DataFrame(default=None, allow_None=True)
aa = param.Tuple(default=None, allow_None=True, length=1)
ab = param.CalendarDateRange(default=(
datetime.date(2020, 1, 1),
datetime.date(2021, 1, 1)
))
ac = param.DateRange(default=(
datetime.date(2020, 1, 1),
datetime.date(2021, 1, 1)
))
ad = param.DateRange(default=(
datetime.datetime(2020, 1, 1, 1, 1, 1, 1),
datetime.datetime(2021, 1, 1, 1, 1, 1, 1)
))
ae = None if np is None else param.DateRange(default=(npdt1, npdt2))
af = None if pd is None else param.DateRange(default=(pdts1, pdts2))
test = TestSet(a=29)
class TestSerialization(unittest.TestCase):
"""
Base class for testing serialization of Parameter values
"""
mode = None
__test__ = False
def _test_serialize(self, obj, pname):
serialized = obj.param.serialize_value(pname, mode=self.mode)
deserialized = obj.param.deserialize_value(pname, serialized, mode=self.mode)
self.assertEqual(deserialized, getattr(obj, pname))
def test_serialize_integer_class(self):
self._test_serialize(TestSet, 'a')
def test_serialize_integer_instance(self):
self._test_serialize(test, 'a')
def test_serialize_number_class(self):
self._test_serialize(TestSet, 'b')
def test_serialize_number_instance(self):
self._test_serialize(test, 'b')
def test_serialize_string_class(self):
self._test_serialize(TestSet, 'c')
def test_serialize_string_instance(self):
self._test_serialize(test, 'c')
def test_serialize_boolean_class(self):
self._test_serialize(TestSet, 'd')
def test_serialize_boolean_instance(self):
self._test_serialize(test, 'd')
def test_serialize_list_class(self):
self._test_serialize(TestSet, 'e')
def test_serialize_list_instance(self):
self._test_serialize(test, 'e')
def test_serialize_date_class(self):
self._test_serialize(TestSet, 'g')
def test_serialize_date_instance(self):
self._test_serialize(test, 'g')
@np_skip
def test_serialize_date_numpy_class(self):
self._test_serialize(TestSet, 'g2')
@np_skip
def test_serialize_date_numpy_instance(self):
self._test_serialize(test, 'g2')
@pd_skip
def test_serialize_date_pandas_class(self):
self._test_serialize(TestSet, 'g3')
@pd_skip
def test_serialize_date_pandas_instance(self):
self._test_serialize(test, 'g3')
def test_serialize_tuple_class(self):
self._test_serialize(TestSet, 'h')
def test_serialize_tuple_instance(self):
self._test_serialize(test, 'h')
def test_serialize_calendar_date_class(self):
self._test_serialize(TestSet, 'q')
def test_serialize_calendar_date_instance(self):
self._test_serialize(test, 'q')
@np_skip
def test_serialize_array_class(self):
serialized = TestSet.param.serialize_value('r', mode=self.mode)
deserialized = TestSet.param.deserialize_value('r', serialized, mode=self.mode)
self.assertTrue(np.array_equal(deserialized, getattr(TestSet, 'r')))
@np_skip
def test_serialize_array_instance(self):
serialized = test.param.serialize_value('r', mode=self.mode)
deserialized = test.param.deserialize_value('r', serialized, mode=self.mode)
self.assertTrue(np.array_equal(deserialized, getattr(test, 'r')))
@pd_skip
def test_serialize_dataframe_class(self):
serialized = TestSet.param.serialize_value('s', mode=self.mode)
deserialized = TestSet.param.deserialize_value('s', serialized, mode=self.mode)
self.assertTrue(getattr(TestSet, 's').equals(deserialized))
@pd_skip
def test_serialize_dataframe_instance(self):
serialized = test.param.serialize_value('s', mode=self.mode)
deserialized = test.param.deserialize_value('s', serialized, mode=self.mode)
self.assertTrue(getattr(test, 's').equals(deserialized))
def test_serialize_dict_class(self):
self._test_serialize(TestSet, 'v')
def test_serialize_dict_instance(self):
self._test_serialize(test, 'v')
def test_instance_serialization(self):
parameters = [p for p in test.param if p not in test.numpy_params + test.pandas_params]
serialized = test.param.serialize_parameters(subset=parameters, mode=self.mode)
deserialized = TestSet.param.deserialize_parameters(serialized, mode=self.mode)
for pname in parameters:
self.assertEqual(deserialized[pname], getattr(test, pname))
@np_skip
def test_numpy_instance_serialization(self):
serialized = test.param.serialize_parameters(subset=test.numpy_params, mode=self.mode)
deserialized = TestSet.param.deserialize_parameters(serialized, mode=self.mode)
for pname in test.numpy_params:
self.assertTrue(np.array_equal(deserialized[pname], getattr(test, pname)))
@pd_skip
def test_pandas_instance_serialization(self):
serialized = test.param.serialize_parameters(subset=test.pandas_params, mode=self.mode)
deserialized = TestSet.param.deserialize_parameters(serialized, mode=self.mode)
for pname in test.pandas_params:
if getattr(test, pname) is None:
self.assertTrue(deserialized[pname] is None)
else:
self.assertTrue(getattr(test, pname).equals(deserialized[pname]))
def test_serialize_calendar_date_range_class(self):
self._test_serialize(TestSet, 'ab')
def test_serialize_calendar_date_range_instance(self):
self._test_serialize(test, 'ab')
def test_serialize_date_range_class(self):
self._test_serialize(TestSet, 'ac')
def test_serialize_date_range_instance(self):
self._test_serialize(test, 'ac')
def test_serialize_datetime_range_class(self):
self._test_serialize(TestSet, 'ad')
def test_serialize_datetime_range_instance(self):
self._test_serialize(test, 'ad')
@np_skip
def test_serialize_datetime_range_numpy_class(self):
self._test_serialize(TestSet, 'ae')
@np_skip
def test_serialize_datetime_range_numpy_instance(self):
self._test_serialize(test, 'ae')
@pd_skip
def test_serialize_datetime_range_pandas_class(self):
self._test_serialize(TestSet, 'af')
@pd_skip
def test_serialize_datetime_range_pandas_instance(self):
self._test_serialize(test, 'af')
class TestJSONSerialization(TestSerialization):
mode = 'json'
__test__ = True
class TestJSONSchema(unittest.TestCase):
def test_serialize_integer_schema_class(self):
if validate is None:
raise SkipTest('jsonschema needed for schema validation testing')
param_schema = TestSet.param.schema(safe=True, subset=['a'], mode='json')
schema = {"type" : "object", "properties" : param_schema}
serialized = json.loads(TestSet.param.serialize_parameters(subset=['a']))
self.assertEqual({'a':
{'type': 'integer', 'minimum': 2, 'exclusiveMaximum': 30,
'description': 'Example doc', 'title': 'A'}},
param_schema)
validate(instance=serialized, schema=schema)
def test_serialize_integer_schema_class_invalid(self):
if validate is None:
raise SkipTest('jsonschema needed for schema validation testing')
param_schema = TestSet.param.schema(safe=True, subset=['a'], mode='json')
schema = {"type" : "object", "properties" : param_schema}
self.assertEqual({'a':
{'type': 'integer', 'minimum': 2, 'exclusiveMaximum': 30,
'description': 'Example doc', 'title': 'A'}},
param_schema)
exception = "1 is not of type 'object'"
with self.assertRaisesRegex(ValidationError, exception):
validate(instance=1, schema=schema)
def test_serialize_integer_schema_instance(self):
if validate is None:
raise SkipTest('jsonschema needed for schema validation testing')
param_schema = test.param.schema(safe=True, subset=['a'], mode='json')
schema = {"type" : "object", "properties" : param_schema}
serialized = json.loads(test.param.serialize_parameters(subset=['a']))
self.assertEqual({'a':
{'type': 'integer', 'minimum': 2, 'exclusiveMaximum': 30,
'description': 'Example doc', 'title': 'A'}},
param_schema)
validate(instance=serialized, schema=schema)
@np_skip
def test_numpy_schemas_always_unsafe(self):
for param_name in test.numpy_params:
with self.assertRaisesRegex(param.serializer.UnsafeserializableException,''):
test.param.schema(safe=True, subset=[param_name], mode='json')
@pd_skip
def test_pandas_schemas_always_unsafe(self):
for param_name in test.pandas_params:
with self.assertRaisesRegex(param.serializer.UnsafeserializableException,''):
test.param.schema(safe=True, subset=[param_name], mode='json')
def test_class_instance_schemas_match_and_validate_unsafe(self):
if validate is None:
raise SkipTest('jsonschema needed for schema validation testing')
for param_name in list(test.param):
class_schema = TestSet.param.schema(safe=False, subset=[param_name], mode='json')
instance_schema = test.param.schema(safe=False, subset=[param_name], mode='json')
self.assertEqual(class_schema, instance_schema)
instance_serialization_val = test.param.serialize_parameters(subset=[param_name])
validate(instance=instance_serialization_val, schema=class_schema)
class_serialization_val = TestSet.param.serialize_parameters(subset=[param_name])
validate(instance=class_serialization_val, schema=class_schema)
def test_conditionally_unsafe(self):
for param_name in test.conditionally_unsafe:
with self.assertRaisesRegex(param.serializer.UnsafeserializableException,''):
test.param.schema(safe=True, subset=[param_name], mode='json')
|