1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302
|
Example configurations
======================
.. note::
All configuration examples below must be customized for the user's
allocation, Python environment, file system, etc.
The configuration specifies what, and how, resources are to be used for executing
the Parsl program and its apps.
It is important to carefully consider the needs of the Parsl program and its apps,
and the characteristics of the compute resources, to determine an ideal configuration.
Aspects to consider include:
1) where the Parsl apps will execute;
2) how many nodes will be used to execute the apps, and how long the apps will run;
3) should Parsl request multiple nodes in an individual scheduler job; and
4) where will the main Parsl program run and how will it communicate with the apps.
Stepping through the following question should help formulate a suitable configuration object.
1. Where should apps be executed?
+---------------------+-----------------------------------------------+----------------------------------------+
| Target | Executor | Provider |
+=====================+===============================================+========================================+
| Laptop/Workstation | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.LocalProvider` |
| | * `parsl.executors.ThreadPoolExecutor` | |
| | * `parsl.executors.WorkQueueExecutor` | |
| | * `parsl.executors.taskvine.TaskVineExecutor` | |
+---------------------+-----------------------------------------------+----------------------------------------+
| Amazon Web Services | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.AWSProvider` |
+---------------------+-----------------------------------------------+----------------------------------------+
| Google Cloud | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.GoogleCloudProvider` |
+---------------------+-----------------------------------------------+----------------------------------------+
| Slurm based system | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.SlurmProvider` |
| | * `parsl.executors.WorkQueueExecutor` | |
| | * `parsl.executors.taskvine.TaskVineExecutor` | |
+---------------------+-----------------------------------------------+----------------------------------------+
| Torque/PBS based | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.TorqueProvider` |
| system | * `parsl.executors.WorkQueueExecutor` | |
+---------------------+-----------------------------------------------+----------------------------------------+
| GridEngine based | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.GridEngineProvider` |
| system | * `parsl.executors.WorkQueueExecutor` | |
+---------------------+-----------------------------------------------+----------------------------------------+
| Condor based | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.CondorProvider` |
| cluster or grid | * `parsl.executors.WorkQueueExecutor` | |
| | * `parsl.executors.taskvine.TaskVineExecutor` | |
+---------------------+-----------------------------------------------+----------------------------------------+
| Kubernetes cluster | * `parsl.executors.HighThroughputExecutor` | `parsl.providers.KubernetesProvider` |
+---------------------+-----------------------------------------------+----------------------------------------+
2. How many nodes will be used to execute the apps? What task durations are necessary to achieve good performance?
+--------------------------------------------+----------------------+-------------------------------------+
| Executor | Number of Nodes [*]_ | Task duration for good performance |
+============================================+======================+=====================================+
| `parsl.executors.ThreadPoolExecutor` | 1 (Only local) | Any |
+--------------------------------------------+----------------------+-------------------------------------+
| `parsl.executors.HighThroughputExecutor` | <=2000 | Task duration(s)/#nodes >= 0.01 |
| | | longer tasks needed at higher scale |
+--------------------------------------------+----------------------+-------------------------------------+
| `parsl.executors.WorkQueueExecutor` | <=1000 [*]_ | 10s+ |
+--------------------------------------------+----------------------+-------------------------------------+
| `parsl.executors.taskvine.TaskVineExecutor`| <=1000 [*]_ | 10s+ |
+--------------------------------------------+----------------------+-------------------------------------+
.. [*] Assuming 32 workers per node. If there are fewer workers launched
per node, a larger number of nodes could be supported.
.. [*] The maximum number of nodes tested for the `parsl.executors.WorkQueueExecutor` is 10,000 GPU cores and
20,000 CPU cores.
.. [*] The maximum number of nodes tested for the `parsl.executors.taskvine.TaskVineExecutor` is
10,000 GPU cores and 20,000 CPU cores.
3. Should Parsl request multiple nodes in an individual scheduler job?
(Here the term block is equivalent to a single scheduler job.)
+--------------------------------------------------------------------------------------------+
| ``nodes_per_block = 1`` |
+---------------------+--------------------------+-------------------------------------------+
| Provider | Executor choice | Suitable Launchers |
+=====================+==========================+===========================================+
| Systems that don't | Any | * `parsl.launchers.SingleNodeLauncher` |
| use Aprun | | * `parsl.launchers.SimpleLauncher` |
+---------------------+--------------------------+-------------------------------------------+
| Aprun based systems | Any | * `parsl.launchers.AprunLauncher` |
+---------------------+--------------------------+-------------------------------------------+
+---------------------------------------------------------------------------------------------------------------------+
| ``nodes_per_block > 1`` |
+-------------------------------------+--------------------------+----------------------------------------------------+
| Provider | Executor choice | Suitable Launchers |
+=====================================+==========================+====================================================+
| `parsl.providers.TorqueProvider` | Any | * `parsl.launchers.AprunLauncher` |
| | | * `parsl.launchers.MpiExecLauncher` |
+-------------------------------------+--------------------------+----------------------------------------------------+
| `parsl.providers.SlurmProvider` | Any | * `parsl.launchers.SrunLauncher` if native slurm |
| | | * `parsl.launchers.AprunLauncher`, otherwise |
+-------------------------------------+--------------------------+----------------------------------------------------+
.. note:: If using a Cray system, you most likely need to use the `parsl.launchers.AprunLauncher` to launch workers unless you
are on a **native Slurm** system like :ref:`configuring_nersc_cori`
Ad-Hoc Clusters
---------------
Parsl's support of ad-hoc clusters of compute nodes without a scheduler
is deprecated.
See
`issue #3515 <https://github.com/Parsl/parsl/issues/3515>`_
for further discussion.
Amazon Web Services
-------------------
.. image:: img/aws_image.png
.. note::
To use AWS with Parsl, install Parsl with AWS dependencies via ``python3 -m pip install 'parsl[aws]'``
Amazon Web Services is a commercial cloud service which allows users to rent a range of computers and other computing services.
The following snippet shows how Parsl can be configured to provision nodes from the Elastic Compute Cloud (EC2) service.
The first time this configuration is used, Parsl will configure a Virtual Private Cloud and other networking and security infrastructure that will be
re-used in subsequent executions. The configuration uses the `parsl.providers.AWSProvider` to connect to AWS.
.. literalinclude:: ../../../parsl/configs/ec2.py
ASPIRE 1 (NSCC)
---------------
The following snippet shows an example configuration for accessing NSCC's **ASPIRE 1** supercomputer. This example uses the `parsl.executors.HighThroughputExecutor` executor and connects to ASPIRE1's PBSPro scheduler. It also shows how ``scheduler_options`` parameter could be used for scheduling array jobs in PBSPro.
.. literalinclude:: ../../../parsl/configs/ASPIRE1.py
Illinois Campus Cluster (UIUC)
------------------------------
The following snippet shows an example configuration for executing on the Illinois Campus Cluster.
The configuration assumes the user is running on a login node and uses the `parsl.providers.SlurmProvider` to interface
with the scheduler, and uses the `parsl.launchers.SrunLauncher` to launch workers.
.. literalinclude:: ../../../parsl/configs/illinoiscluster.py
Bridges (PSC)
-------------
The following snippet shows an example configuration for executing on the Bridges supercomputer at the Pittsburgh Supercomputing Center.
The configuration assumes the user is running on a login node and uses the `parsl.providers.SlurmProvider` to interface
with the scheduler, and uses the `parsl.launchers.SrunLauncher` to launch workers.
.. literalinclude:: ../../../parsl/configs/bridges.py
CC-IN2P3
--------
The snippet below shows an example configuration for executing from a login node on IN2P3's Computing Centre.
The configuration uses the `parsl.providers.LocalProvider` to run on a login node primarily to avoid GSISSH, which Parsl does not support.
This system uses Grid Engine which Parsl interfaces with using the `parsl.providers.GridEngineProvider`.
.. literalinclude:: ../../../parsl/configs/cc_in2p3.py
CCL (Notre Dame, TaskVine)
--------------------------
To utilize TaskVine with Parsl, please install the full CCTools software package within an appropriate Anaconda or Miniconda environment
(instructions for installing Miniconda can be found `in the Conda install guide <https://docs.conda.io/projects/conda/en/latest/user-guide/install/>`_):
.. code-block:: bash
$ conda create -y --name <environment> python=<version> conda-pack
$ conda activate <environment>
$ conda install -y -c conda-forge ndcctools parsl
This creates a Conda environment on your machine with all the necessary tools and setup needed to utilize TaskVine with the Parsl library.
The following snippet shows an example configuration for using the Parsl/TaskVine executor to run applications on the local machine.
This examples uses the `parsl.executors.taskvine.TaskVineExecutor` to schedule tasks, and a local worker will be started automatically.
For more information on using TaskVine, including configurations for remote execution, visit the
`TaskVine/Parsl documentation online <https://cctools.readthedocs.io/en/latest/taskvine/#parsl>`_.
.. literalinclude:: ../../../parsl/configs/vineex_local.py
TaskVine's predecessor, WorkQueue, may continue to be used with Parsl.
For more information on using WorkQueue visit the `CCTools documentation online <https://cctools.readthedocs.io/en/latest/help/>`_.
Expanse (SDSC)
--------------
The following snippet shows an example configuration for executing remotely on San Diego Supercomputer
Center's **Expanse** supercomputer. The example is designed to be executed on the login nodes, using the
`parsl.providers.SlurmProvider` to interface with the Slurm scheduler used by Comet and the `parsl.launchers.SrunLauncher` to launch workers.
.. literalinclude:: ../../../parsl/configs/expanse.py
Improv (Argonne LCRC)
---------------------
**Improv** is a PBS Pro based supercomputer at Argonne's Laboratory Computing Resource
Center (LCRC). The following snippet is an example configuration that uses `parsl.providers.PBSProProvider`
and `parsl.launchers.MpiRunLauncher` to run on multinode jobs.
.. literalinclude:: ../../../parsl/configs/improv.py
.. _configuring_nersc_cori:
Perlmutter (NERSC)
------------------
NERSC provides documentation on `how to use Parsl on Perlmutter <https://docs.nersc.gov/jobs/workflow/parsl/>`_.
Perlmutter is a Slurm based HPC system and parsl uses `parsl.providers.SlurmProvider` with `parsl.launchers.SrunLauncher`
to launch tasks onto this machine.
Frontera (TACC)
---------------
Deployed in June 2019, Frontera is the 5th most powerful supercomputer in the world. Frontera replaces the NSF Blue Waters system at NCSA
and is the first deployment in the National Science Foundation's petascale computing program. The configuration below assumes that the user is
running on a login node and uses the `parsl.providers.SlurmProvider` to interface with the scheduler, and uses the `parsl.launchers.SrunLauncher` to launch workers.
.. literalinclude:: ../../../parsl/configs/frontera.py
Kubernetes Clusters
-------------------
Kubernetes is an open-source system for container management, such as automating deployment and scaling of containers.
The snippet below shows an example configuration for deploying pods as workers on a Kubernetes cluster.
The KubernetesProvider exploits the Python Kubernetes API, which assumes that you have kube config in ``~/.kube/config``.
.. literalinclude:: ../../../parsl/configs/kubernetes.py
Midway (RCC, UChicago)
----------------------
This Midway cluster is a campus cluster hosted by the Research Computing Center at the University of Chicago.
The snippet below shows an example configuration for executing remotely on Midway.
The configuration assumes the user is running on a login node and uses the `parsl.providers.SlurmProvider` to interface
with the scheduler, and uses the `parsl.launchers.SrunLauncher` to launch workers.
.. literalinclude:: ../../../parsl/configs/midway.py
Open Science Grid
-----------------
The Open Science Grid (OSG) is a national, distributed computing Grid spanning over 100 individual sites to provide tens of thousands of CPU cores.
The snippet below shows an example configuration for executing remotely on OSG. You will need to have a valid project name on the OSG.
The configuration uses the `parsl.providers.CondorProvider` to interface with the scheduler.
.. literalinclude:: ../../../parsl/configs/osg.py
Polaris (ALCF)
--------------
ALCF provides documentation on `how to use Parsl on Polaris <https://docs.alcf.anl.gov/polaris/workflows/parsl/>`_.
Polaris uses `parsl.providers.PBSProProvider` and `parsl.launchers.MpiExecLauncher` to launch tasks onto the HPC system.
Stampede2 (TACC)
----------------
The following snippet shows an example configuration for accessing TACC's **Stampede2** supercomputer. This example uses theHighThroughput executor and connects to Stampede2's Slurm scheduler.
.. literalinclude:: ../../../parsl/configs/stampede2.py
Summit (ORNL)
-------------
The following snippet shows an example configuration for executing from the login node on Summit, the leadership class supercomputer hosted at the Oak Ridge National Laboratory.
The example uses the :class:`parsl.providers.LSFProvider` to provision compute nodes from the LSF cluster scheduler and the `parsl.launchers.JsrunLauncher` to launch workers across the compute nodes.
.. literalinclude:: ../../../parsl/configs/summit.py
TOSS3 (LLNL)
------------
The following snippet shows an example configuration for executing on one of LLNL's **TOSS3**
machines, such as Quartz, Ruby, Topaz, Jade, or Magma. This example uses the `parsl.executors.FluxExecutor`
and connects to Slurm using the `parsl.providers.SlurmProvider`. This configuration assumes that the script
is being executed on the login nodes of one of the machines.
.. literalinclude:: ../../../parsl/configs/toss3_llnl.py
|