File: dflow.py

package info (click to toggle)
python-parsl 2025.01.13%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 12,072 kB
  • sloc: python: 23,817; makefile: 349; sh: 276; ansic: 45
file content (1490 lines) | stat: -rw-r--r-- 65,253 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
from __future__ import annotations

import atexit
import concurrent.futures as cf
import datetime
import inspect
import logging
import os
import pickle
import random
import sys
import threading
import time
from concurrent.futures import Future
from functools import partial
from getpass import getuser
from socket import gethostname
from typing import Any, Callable, Dict, List, Optional, Sequence, Tuple, Union
from uuid import uuid4

import typeguard
from typeguard import typechecked

import parsl
from parsl.app.errors import RemoteExceptionWrapper
from parsl.app.futures import DataFuture
from parsl.config import Config
from parsl.data_provider.data_manager import DataManager
from parsl.data_provider.files import File
from parsl.dataflow.dependency_resolvers import SHALLOW_DEPENDENCY_RESOLVER
from parsl.dataflow.errors import BadCheckpoint, DependencyError, JoinError
from parsl.dataflow.futures import AppFuture
from parsl.dataflow.memoization import Memoizer
from parsl.dataflow.rundirs import make_rundir
from parsl.dataflow.states import FINAL_FAILURE_STATES, FINAL_STATES, States
from parsl.dataflow.taskrecord import TaskRecord
from parsl.errors import (
    ConfigurationError,
    InternalConsistencyError,
    NoDataFlowKernelError,
)
from parsl.executors.base import ParslExecutor
from parsl.executors.status_handling import BlockProviderExecutor
from parsl.executors.threads import ThreadPoolExecutor
from parsl.jobs.job_status_poller import JobStatusPoller
from parsl.monitoring import MonitoringHub
from parsl.monitoring.message_type import MessageType
from parsl.monitoring.remote import monitor_wrapper
from parsl.process_loggers import wrap_with_logs
from parsl.usage_tracking.usage import UsageTracker
from parsl.utils import Timer, get_all_checkpoints, get_std_fname_mode, get_version

logger = logging.getLogger(__name__)


class DataFlowKernel:
    """The DataFlowKernel adds dependency awareness to an existing executor.

    It is responsible for managing futures, such that when dependencies are resolved,
    pending tasks move to the runnable state.

    Here is a simplified diagram of what happens internally::

         User             |        DFK         |    Executor
        ----------------------------------------------------------
                          |                    |
               Task-------+> +Submit           |
             App_Fu<------+--|                 |
                          |  Dependencies met  |
                          |         task-------+--> +Submit
                          |        Ex_Fu<------+----|

    """

    @typechecked
    def __init__(self, config: Config) -> None:
        """Initialize the DataFlowKernel.

        Parameters
        ----------
        config : Config
            A specification of all configuration options. For more details see the
            :class:~`parsl.config.Config` documentation.
        """

        # this will be used to check cleanup only happens once
        self.cleanup_called = False

        self._config = config
        self.run_dir = make_rundir(config.run_dir)

        if config.initialize_logging:
            parsl.set_file_logger("{}/parsl.log".format(self.run_dir), level=logging.DEBUG)

        logger.info("Starting DataFlowKernel with config\n{}".format(config))

        logger.info("Parsl version: {}".format(get_version()))

        self.checkpoint_lock = threading.Lock()

        self.usage_tracker = UsageTracker(self)
        self.usage_tracker.send_start_message()

        self.task_state_counts_lock = threading.Lock()
        self.task_state_counts = {state: 0 for state in States}

        # Monitoring
        self.run_id = str(uuid4())

        self.monitoring: Optional[MonitoringHub]
        self.monitoring = config.monitoring

        if self.monitoring:
            self.monitoring.start(self.run_dir, self.config.run_dir)

        self.time_began = datetime.datetime.now()
        self.time_completed: Optional[datetime.datetime] = None

        logger.info("Run id is: " + self.run_id)

        self.workflow_name = None
        if self.monitoring is not None and self.monitoring.workflow_name is not None:
            self.workflow_name = self.monitoring.workflow_name
        else:
            for frame in inspect.stack():
                logger.debug("Considering candidate for workflow name: {}".format(frame.filename))
                fname = os.path.basename(str(frame.filename))
                parsl_file_names = ['dflow.py', 'typeguard.py', '__init__.py']
                # Find first file name not considered a parsl file
                if fname not in parsl_file_names:
                    self.workflow_name = fname
                    logger.debug("Using {} as workflow name".format(fname))
                    break
            else:
                logger.debug("Could not choose a name automatically")
                self.workflow_name = "unnamed"

        self.workflow_version = str(self.time_began.replace(microsecond=0))
        if self.monitoring is not None and self.monitoring.workflow_version is not None:
            self.workflow_version = self.monitoring.workflow_version

        workflow_info = {
                'python_version': "{}.{}.{}".format(sys.version_info.major,
                                                    sys.version_info.minor,
                                                    sys.version_info.micro),
                'parsl_version': get_version(),
                "time_began": self.time_began,
                'time_completed': None,
                'run_id': self.run_id,
                'workflow_name': self.workflow_name,
                'workflow_version': self.workflow_version,
                'rundir': self.run_dir,
                'tasks_completed_count': self.task_state_counts[States.exec_done],
                'tasks_failed_count': self.task_state_counts[States.failed],
                'user': getuser(),
                'host': gethostname(),
        }

        if self.monitoring:
            self.monitoring.send((MessageType.WORKFLOW_INFO,
                                 workflow_info))

        if config.checkpoint_files is not None:
            checkpoints = self.load_checkpoints(config.checkpoint_files)
        elif config.checkpoint_files is None and config.checkpoint_mode is not None:
            checkpoints = self.load_checkpoints(get_all_checkpoints(self.run_dir))
        else:
            checkpoints = {}

        self.memoizer = Memoizer(self, memoize=config.app_cache, checkpoint=checkpoints)
        self.checkpointed_tasks = 0
        self._checkpoint_timer = None
        self.checkpoint_mode = config.checkpoint_mode
        self.checkpointable_tasks: List[TaskRecord] = []

        # this must be set before executors are added since add_executors calls
        # job_status_poller.add_executors.
        self.job_status_poller = JobStatusPoller(strategy=self.config.strategy,
                                                 strategy_period=self.config.strategy_period,
                                                 max_idletime=self.config.max_idletime)

        self.executors: Dict[str, ParslExecutor] = {}

        self.data_manager = DataManager(self)
        parsl_internal_executor = ThreadPoolExecutor(max_threads=config.internal_tasks_max_threads, label='_parsl_internal')
        self.add_executors(config.executors)
        self.add_executors([parsl_internal_executor])

        if self.checkpoint_mode == "periodic":
            if config.checkpoint_period is None:
                raise ConfigurationError("Checkpoint period must be specified with periodic checkpoint mode")
            else:
                try:
                    h, m, s = map(int, config.checkpoint_period.split(':'))
                except Exception:
                    raise ConfigurationError("invalid checkpoint_period provided: {0} expected HH:MM:SS".format(config.checkpoint_period))
                checkpoint_period = (h * 3600) + (m * 60) + s
                self._checkpoint_timer = Timer(self.checkpoint, interval=checkpoint_period, name="Checkpoint")

        self.task_count = 0
        self.tasks: Dict[int, TaskRecord] = {}
        self.submitter_lock = threading.Lock()

        self.dependency_launch_pool = cf.ThreadPoolExecutor(max_workers=1, thread_name_prefix="Dependency-Launch")

        self.dependency_resolver = self.config.dependency_resolver if self.config.dependency_resolver is not None \
            else SHALLOW_DEPENDENCY_RESOLVER

        atexit.register(self.atexit_cleanup)

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback) -> None:
        mode = self.config.exit_mode
        logger.debug("Exiting context manager, with exit mode '%s'", mode)
        if mode == "cleanup":
            logger.info("Calling cleanup for DFK")
            self.cleanup()
        elif mode == "skip":
            logger.info("Skipping all cleanup handling")
        elif mode == "wait":
            if exc_type is None:
                logger.info("Waiting for all tasks to complete")
                self.wait_for_current_tasks()
                self.cleanup()
            else:
                logger.info("There was an exception - cleaning up without waiting for task completion")
                self.cleanup()
        else:
            raise InternalConsistencyError(f"Exit case for {mode} should be unreachable, validated by typeguard on Config()")

    def _send_task_log_info(self, task_record: TaskRecord) -> None:
        if self.monitoring:
            task_log_info = self._create_task_log_info(task_record)
            self.monitoring.send((MessageType.TASK_INFO, task_log_info))

    def _create_task_log_info(self, task_record: TaskRecord) -> Dict[str, Any]:
        """
        Create the dictionary that will be included in the log.
        """
        info_to_monitor = ['func_name', 'memoize', 'hashsum', 'fail_count', 'fail_cost', 'status',
                           'id', 'time_invoked', 'try_time_launched', 'time_returned', 'try_time_returned', 'executor']

        # mypy cannot verify that these task_record[k] references are valid:
        # They are valid if all entries in info_to_monitor are declared in the definition of TaskRecord
        # This type: ignore[literal-required] asserts that fact.
        task_log_info = {"task_" + k: task_record[k] for k in info_to_monitor}  # type: ignore[literal-required]

        task_log_info['run_id'] = self.run_id
        task_log_info['try_id'] = task_record['try_id']
        task_log_info['timestamp'] = datetime.datetime.now()
        task_log_info['task_status_name'] = task_record['status'].name
        task_log_info['tasks_failed_count'] = self.task_state_counts[States.failed]
        task_log_info['tasks_completed_count'] = self.task_state_counts[States.exec_done]
        task_log_info['tasks_memo_completed_count'] = self.task_state_counts[States.memo_done]
        task_log_info['from_memo'] = task_record['from_memo']
        task_log_info['task_inputs'] = str(task_record['kwargs'].get('inputs', None))
        task_log_info['task_outputs'] = str(task_record['kwargs'].get('outputs', None))
        task_log_info['task_stdin'] = task_record['kwargs'].get('stdin', None)

        def std_spec_to_name(name, spec):
            if spec is None:
                name = ""
            elif isinstance(spec, File):
                name = spec.url
            else:
                # fallthrough case is various str, os.PathLike, tuple modes that
                # can be interpreted by get_std_fname_mode.
                try:
                    name, _ = get_std_fname_mode(name, spec)
                except Exception:
                    logger.exception(f"Could not parse {name} specification {spec} for task {task_record['id']}")
                    name = ""
            return name

        stdout_spec = task_record['kwargs'].get('stdout')
        task_log_info['task_stdout'] = std_spec_to_name('stdout', stdout_spec)

        stderr_spec = task_record['kwargs'].get('stderr')
        task_log_info['task_stderr'] = std_spec_to_name('stderr', stderr_spec)

        task_log_info['task_fail_history'] = ",".join(task_record['fail_history'])
        task_log_info['task_depends'] = None
        if task_record['depends'] is not None:
            task_log_info['task_depends'] = ",".join([str(t.tid) for t in task_record['depends']
                                                      if isinstance(t, AppFuture) or isinstance(t, DataFuture)])
        task_log_info['task_joins'] = None

        if isinstance(task_record['joins'], list):
            task_log_info['task_joins'] = ",".join([str(t.tid) for t in task_record['joins']
                                                    if isinstance(t, AppFuture) or isinstance(t, DataFuture)])
        elif isinstance(task_record['joins'], Future):
            task_log_info['task_joins'] = ",".join([str(t.tid) for t in [task_record['joins']]
                                                    if isinstance(t, AppFuture) or isinstance(t, DataFuture)])

        return task_log_info

    def _count_deps(self, depends: Sequence[Future]) -> int:
        """Count the number of unresolved futures in the list depends.
        """
        count = 0
        for dep in depends:
            if not dep.done():
                count += 1

        return count

    @property
    def config(self) -> Config:
        """Returns the fully initialized config that the DFK is actively using.

        Returns:
             - Config object
        """
        return self._config

    def handle_exec_update(self, task_record: TaskRecord, future: Future) -> None:
        """This function is called only as a callback from an execution
        attempt reaching a final state (either successfully or failing).

        It will launch retries if necessary, and update the task
        structure.

        Args:
             task_record (dict) : Task record
             future (Future) : The future object corresponding to the task which
             makes this callback
        """

        task_id = task_record['id']

        task_record['try_time_returned'] = datetime.datetime.now()

        if not future.done():
            raise InternalConsistencyError("done callback called, despite future not reporting itself as done")

        try:
            res = self._unwrap_remote_exception_wrapper(future)

        except Exception as e:
            logger.info(f"Task {task_id} try {task_record['try_id']} failed with exception of type {type(e).__name__}")
            # We keep the history separately, since the future itself could be
            # tossed.
            task_record['fail_history'].append(repr(e))
            task_record['fail_count'] += 1
            if self._config.retry_handler:
                try:
                    cost = self._config.retry_handler(e, task_record)
                except Exception as retry_handler_exception:
                    logger.exception("retry_handler raised an exception - will not retry")

                    # this can be any amount > self._config.retries, to stop any more
                    # retries from happening
                    task_record['fail_cost'] = self._config.retries + 1

                    # make the reported exception be the retry handler's exception,
                    # rather than the execution level exception
                    e = retry_handler_exception
                else:
                    task_record['fail_cost'] += cost
            else:
                task_record['fail_cost'] += 1

            if task_record['status'] == States.dep_fail:
                logger.info("Task {} failed due to dependency failure so skipping retries".format(task_id))
                task_record['time_returned'] = datetime.datetime.now()
                self._send_task_log_info(task_record)
                with task_record['app_fu']._update_lock:
                    task_record['app_fu'].set_exception(e)

            elif task_record['fail_cost'] <= self._config.retries:

                # record the final state for this try before we mutate for retries
                self.update_task_state(task_record, States.fail_retryable)
                self._send_task_log_info(task_record)

                task_record['try_id'] += 1
                self.update_task_state(task_record, States.pending)
                task_record['try_time_launched'] = None
                task_record['try_time_returned'] = None
                task_record['fail_history'] = []
                self._send_task_log_info(task_record)

                logger.info("Task {} marked for retry".format(task_id))

            else:
                logger.exception("Task {} failed after {} retry attempts".format(task_id,
                                                                                 task_record['try_id']))
                task_record['time_returned'] = datetime.datetime.now()
                self.update_task_state(task_record, States.failed)
                task_record['time_returned'] = datetime.datetime.now()
                self._send_task_log_info(task_record)
                with task_record['app_fu']._update_lock:
                    task_record['app_fu'].set_exception(e)

        else:
            if task_record['from_memo']:
                self._complete_task(task_record, States.memo_done, res)
                self._send_task_log_info(task_record)
            else:
                if not task_record['join']:
                    self._complete_task(task_record, States.exec_done, res)
                    self._send_task_log_info(task_record)
                else:
                    # This is a join task, and the original task's function code has
                    # completed. That means that the future returned by that code
                    # will be available inside the executor future, so we can now
                    # record the inner app ID in monitoring, and add a completion
                    # listener to that inner future.

                    joinable = future.result()

                    # Fail with a TypeError if the joinapp python body returned
                    # something we can't join on.
                    if isinstance(joinable, Future):
                        self.update_task_state(task_record, States.joining)
                        task_record['joins'] = joinable
                        task_record['join_lock'] = threading.Lock()
                        self._send_task_log_info(task_record)
                        joinable.add_done_callback(partial(self.handle_join_update, task_record))
                    elif joinable == []:  # got a list, but it had no entries, and specifically, no Futures.
                        self.update_task_state(task_record, States.joining)
                        task_record['joins'] = joinable
                        task_record['join_lock'] = threading.Lock()
                        self._send_task_log_info(task_record)
                        self.handle_join_update(task_record, None)
                    elif isinstance(joinable, list) and [j for j in joinable if not isinstance(j, Future)] == []:
                        self.update_task_state(task_record, States.joining)
                        task_record['joins'] = joinable
                        task_record['join_lock'] = threading.Lock()
                        self._send_task_log_info(task_record)
                        for inner_future in joinable:
                            inner_future.add_done_callback(partial(self.handle_join_update, task_record))
                    else:
                        task_record['time_returned'] = datetime.datetime.now()
                        self.update_task_state(task_record, States.failed)
                        task_record['time_returned'] = datetime.datetime.now()
                        self._send_task_log_info(task_record)
                        with task_record['app_fu']._update_lock:
                            task_record['app_fu'].set_exception(
                                TypeError(f"join_app body must return a Future or list of Futures, got {joinable} of type {type(joinable)}"))

        self._log_std_streams(task_record)

        # it might be that in the course of the update, we've gone back to being
        # pending - in which case, we should consider ourself for relaunch
        if task_record['status'] == States.pending:
            self.launch_if_ready(task_record)

    def handle_join_update(self, task_record: TaskRecord, inner_app_future: Optional[AppFuture]) -> None:
        with task_record['join_lock']:
            # inner_app_future has completed, which is one (potentially of many)
            # futures the outer task is joining on.

            # If the outer task is joining on a single future, then
            # use the result of the inner_app_future as the final result of
            # the outer app future.

            # If the outer task is joining on a list of futures, then
            # check if the list is all done, and if so, return a list
            # of the results. Otherwise, this callback can do nothing and
            # processing will happen in another callback (on the final Future
            # to complete)

            # There is no retry handling here: inner apps are responsible for
            # their own retrying, and joining state is responsible for passing
            # on whatever the result of that retrying was (if any).

            outer_task_id = task_record['id']
            logger.debug(f"Join callback for task {outer_task_id}, inner_app_future {inner_app_future}")

            if task_record['status'] != States.joining:
                logger.debug(f"Join callback for task {outer_task_id} skipping because task is not in joining state")
                return

            joinable = task_record['joins']

            if isinstance(joinable, list):
                for future in joinable:
                    if not future.done():
                        logger.debug(f"A joinable future {future} is not done for task {outer_task_id} - skipping callback")
                        return  # abandon this callback processing if joinables are not all done

            # now we know each joinable Future is done
            # so now look for any exceptions
            exceptions_tids: List[Tuple[BaseException, Optional[str]]]
            exceptions_tids = []
            if isinstance(joinable, Future):
                je = joinable.exception()
                if je is not None:
                    if hasattr(joinable, 'task_record'):
                        tid = joinable.task_record['id']
                    else:
                        tid = None
                    exceptions_tids = [(je, tid)]
            elif isinstance(joinable, list):
                for future in joinable:
                    je = future.exception()
                    if je is not None:
                        if hasattr(joinable, 'task_record'):
                            tid = joinable.task_record['id']
                        else:
                            tid = None
                        exceptions_tids.append((je, tid))
            else:
                raise TypeError(f"Unknown joinable type {type(joinable)}")

            if exceptions_tids:
                logger.debug("Task {} failed due to failure of an inner join future".format(outer_task_id))
                e = JoinError(exceptions_tids, outer_task_id)
                # We keep the history separately, since the future itself could be
                # tossed.
                task_record['fail_history'].append(repr(e))
                task_record['fail_count'] += 1
                # no need to update the fail cost because join apps are never
                # retried

                self.update_task_state(task_record, States.failed)
                task_record['time_returned'] = datetime.datetime.now()
                with task_record['app_fu']._update_lock:
                    task_record['app_fu'].set_exception(e)

            else:
                # all the joinables succeeded, so construct a result:
                if isinstance(joinable, Future):
                    assert inner_app_future is joinable
                    res = joinable.result()
                elif isinstance(joinable, list):
                    res = []
                    for future in joinable:
                        res.append(future.result())
                else:
                    raise TypeError(f"Unknown joinable type {type(joinable)}")
                self._complete_task(task_record, States.exec_done, res)

            self._log_std_streams(task_record)

            self._send_task_log_info(task_record)

    def handle_app_update(self, task_record: TaskRecord, future: AppFuture) -> None:
        """This function is called as a callback when an AppFuture
        is in its final state.

        It will trigger post-app processing such as checkpointing.

        Args:
             task_record : Task record
             future (Future) : The relevant app future (which should be
                 consistent with the task structure 'app_fu' entry

        """

        task_id = task_record['id']

        if not task_record['app_fu'].done():
            logger.error("Internal consistency error: app_fu is not done for task {}".format(task_id))
        if not task_record['app_fu'] == future:
            logger.error("Internal consistency error: callback future is not the app_fu in task structure, for task {}".format(task_id))

        self.memoizer.update_memo(task_record, future)

        # Cover all checkpointing cases here:
        # Do we need to checkpoint now, or queue for later,
        # or do nothing?
        if self.checkpoint_mode == 'task_exit':
            self.checkpoint(tasks=[task_record])
        elif self.checkpoint_mode in ('manual', 'periodic', 'dfk_exit'):
            with self.checkpoint_lock:
                self.checkpointable_tasks.append(task_record)
        elif self.checkpoint_mode is None:
            pass
        else:
            raise InternalConsistencyError(f"Invalid checkpoint mode {self.checkpoint_mode}")

        self.wipe_task(task_id)
        return

    def _complete_task(self, task_record: TaskRecord, new_state: States, result: Any) -> None:
        """Set a task into a completed state
        """
        assert new_state in FINAL_STATES
        assert new_state not in FINAL_FAILURE_STATES
        old_state = task_record['status']

        self.update_task_state(task_record, new_state)

        logger.info(f"Task {task_record['id']} completed ({old_state.name} -> {new_state.name})")
        task_record['time_returned'] = datetime.datetime.now()

        with task_record['app_fu']._update_lock:
            task_record['app_fu'].set_result(result)

    def update_task_state(self, task_record: TaskRecord, new_state: States) -> None:
        """Updates a task record state, and recording an appropriate change
        to task state counters.
        """

        with self.task_state_counts_lock:
            if 'status' in task_record:
                self.task_state_counts[task_record['status']] -= 1
            self.task_state_counts[new_state] += 1
            task_record['status'] = new_state

    @staticmethod
    def _unwrap_remote_exception_wrapper(future: Future) -> Any:
        result = future.result()
        if isinstance(result, RemoteExceptionWrapper):
            result.reraise()
        return result

    def wipe_task(self, task_id: int) -> None:
        """Remove task with task_id from the internal tasks table
        """
        if self.config.garbage_collect:
            del self.tasks[task_id]

    @staticmethod
    def check_staging_inhibited(kwargs: Dict[str, Any]) -> bool:
        return kwargs.get('_parsl_staging_inhibit', False)

    def launch_if_ready(self, task_record: TaskRecord) -> None:
        """Schedules a task record for re-inspection to see if it is ready
        for launch and for launch if it is ready. The call will return
        immediately.

        This should be called by any piece of the DataFlowKernel that
        thinks a task may have become ready to run.

        It is not an error to call launch_if_ready on a task that is not
        ready to run - launch_if_ready will not incorrectly launch that
        task.

        launch_if_ready is thread safe, so may be called from any thread
        or callback.
        """
        self.dependency_launch_pool.submit(self._launch_if_ready_async, task_record)

    @wrap_with_logs
    def _launch_if_ready_async(self, task_record: TaskRecord) -> None:
        """
        _launch_if_ready will launch the specified task, if it is ready
        to run (for example, without dependencies, and in pending state).
        """
        exec_fu = None

        task_id = task_record['id']
        with task_record['task_launch_lock']:

            if task_record['status'] != States.pending:
                logger.debug(f"Task {task_id} is not pending, so launch_if_ready skipping")
                return

            if self._count_deps(task_record['depends']) != 0:
                logger.debug(f"Task {task_id} has outstanding dependencies, so launch_if_ready skipping")
                return

            # We can now launch the task or handle any dependency failures

            new_args, kwargs, exceptions_tids = self._unwrap_futures(task_record['args'],
                                                                     task_record['kwargs'])
            task_record['args'] = new_args
            task_record['kwargs'] = kwargs

            if not exceptions_tids:
                # There are no dependency errors
                try:
                    exec_fu = self.launch_task(task_record)
                    assert isinstance(exec_fu, Future)
                except Exception as e:
                    # task launched failed somehow. the execution might
                    # have been launched and an exception raised after
                    # that, though. that's hard to detect from here.
                    # we don't attempt retries here. This is an error with submission
                    # even though it might come from user code such as a plugged-in
                    # executor or memoization hash function.

                    logger.debug("Got an exception launching task", exc_info=True)
                    exec_fu = Future()
                    exec_fu.set_exception(e)
            else:
                logger.info(
                    "Task {} failed due to dependency failure".format(task_id))
                # Raise a dependency exception
                self.update_task_state(task_record, States.dep_fail)

                self._send_task_log_info(task_record)

                exec_fu = Future()
                exec_fu.set_exception(DependencyError(exceptions_tids,
                                                      task_id))

        if exec_fu:
            assert isinstance(exec_fu, Future)
            try:
                exec_fu.add_done_callback(partial(self.handle_exec_update, task_record))
            except Exception:
                # this exception is ignored here because it is assumed that exception
                # comes from directly executing handle_exec_update (because exec_fu is
                # done already). If the callback executes later, then any exception
                # coming out of the callback will be ignored and not propate anywhere,
                # so this block attempts to keep the same behaviour here.
                logger.error("add_done_callback got an exception which will be ignored", exc_info=True)

            task_record['exec_fu'] = exec_fu

    def launch_task(self, task_record: TaskRecord) -> Future:
        """Handle the actual submission of the task to the executor layer.

        Args:
            task_record : The task record

        Returns:
            Future that tracks the execution of the submitted function
        """
        task_id = task_record['id']
        function = task_record['func']
        args = task_record['args']
        kwargs = task_record['kwargs']

        task_record['try_time_launched'] = datetime.datetime.now()

        memo_fu = self.memoizer.check_memo(task_record)
        if memo_fu:
            logger.info("Reusing cached result for task {}".format(task_id))
            task_record['from_memo'] = True
            assert isinstance(memo_fu, Future)
            return memo_fu

        task_record['from_memo'] = False
        executor_label = task_record["executor"]
        try:
            executor = self.executors[executor_label]
        except Exception:
            logger.exception("Task {} requested invalid executor {}: config is\n{}".format(task_id, executor_label, self._config))
            raise ValueError("Task {} requested invalid executor {}".format(task_id, executor_label))

        try_id = task_record['fail_count']

        if self.monitoring is not None and self.monitoring.resource_monitoring_enabled:
            wrapper_logging_level = logging.DEBUG if self.monitoring.monitoring_debug else logging.INFO
            (function, args, kwargs) = monitor_wrapper(f=function,
                                                       args=args,
                                                       kwargs=kwargs,
                                                       x_try_id=try_id,
                                                       x_task_id=task_id,
                                                       monitoring_hub_url=self.monitoring.monitoring_hub_url,
                                                       run_id=self.run_id,
                                                       logging_level=wrapper_logging_level,
                                                       sleep_dur=self.monitoring.resource_monitoring_interval,
                                                       radio_mode=executor.radio_mode,
                                                       monitor_resources=executor.monitor_resources(),
                                                       run_dir=self.run_dir)

        with self.submitter_lock:
            exec_fu = executor.submit(function, task_record['resource_specification'], *args, **kwargs)
        self.update_task_state(task_record, States.launched)

        self._send_task_log_info(task_record)

        if hasattr(exec_fu, "parsl_executor_task_id"):
            logger.info(
                f"Parsl task {task_id} try {try_id} launched on executor {executor.label} "
                f"with executor id {exec_fu.parsl_executor_task_id}")

        else:
            logger.info(f"Parsl task {task_id} try {try_id} launched on executor {executor.label}")

        self._log_std_streams(task_record)

        return exec_fu

    def _add_input_deps(self, executor: str, args: Sequence[Any], kwargs: Dict[str, Any], func: Callable) -> Tuple[Sequence[Any], Dict[str, Any],
                                                                                                                   Callable]:
        """Look for inputs of the app that are files. Give the data manager
        the opportunity to replace a file with a data future for that file,
        for example wrapping the result of a staging action.

        Args:
            - executor (str) : executor where the app is going to be launched
            - args (List) : Positional args to app function
            - kwargs (Dict) : Kwargs to app function
        """

        # Return if the task is a data management task, rather than doing
        #  data management on it.
        if self.check_staging_inhibited(kwargs):
            logger.debug("Not performing input staging")
            return args, kwargs, func

        inputs = kwargs.get('inputs', [])
        for idx, f in enumerate(inputs):
            (inputs[idx], func) = self.data_manager.optionally_stage_in(f, func, executor)

        for kwarg, f in kwargs.items():
            # stdout and stderr files should not be staging in (they will be staged *out*
            # in _add_output_deps)
            if kwarg in ['stdout', 'stderr']:
                continue
            (kwargs[kwarg], func) = self.data_manager.optionally_stage_in(f, func, executor)

        newargs = list(args)
        for idx, f in enumerate(newargs):
            (newargs[idx], func) = self.data_manager.optionally_stage_in(f, func, executor)

        return tuple(newargs), kwargs, func

    def _add_output_deps(self, executor: str, args: Sequence[Any], kwargs: Dict[str, Any], app_fut: AppFuture, func: Callable) -> Callable:
        logger.debug("Adding output dependencies")
        outputs = kwargs.get('outputs', [])
        app_fut._outputs = []

        # Pass over all possible outputs: the outputs kwarg, stdout and stderr
        # and for each of those, perform possible stage-out. This can result in:
        # a DataFuture to be exposed in app_fut to represent the completion of
        # that stageout (sometimes backed by a new sub-workflow for separate-task
        # stageout), a replacement for the function to be executed (intended to
        # be the original function wrapped with an in-task stageout wrapper), a
        # rewritten File object to be passed to task to be executed

        def stageout_one_file(file: File, rewritable_func: Callable):
            if not self.check_staging_inhibited(kwargs):
                # replace a File with a DataFuture - either completing when the stageout
                # future completes, or if no stage out future is returned, then when the
                # app itself completes.

                # The staging code will get a clean copy which it is allowed to mutate,
                # while the DataFuture-contained original will not be modified by any staging.
                f_copy = file.cleancopy()

                logger.debug("Submitting stage out for output file {}".format(repr(file)))
                stageout_fut = self.data_manager.stage_out(f_copy, executor, app_fut)
                if stageout_fut:
                    logger.debug("Adding a dependency on stageout future for {}".format(repr(file)))
                    df = DataFuture(stageout_fut, file, tid=app_fut.tid)
                else:
                    logger.debug("No stageout dependency for {}".format(repr(file)))
                    df = DataFuture(app_fut, file, tid=app_fut.tid)

                # this is a hook for post-task stageout
                # note that nothing depends on the output - which is maybe a bug
                # in the not-very-tested stageout system?
                rewritable_func = self.data_manager.replace_task_stage_out(f_copy, rewritable_func, executor)
                return rewritable_func, f_copy, df
            else:
                logger.debug("Not performing output staging for: {}".format(repr(file)))
                return rewritable_func, file, DataFuture(app_fut, file, tid=app_fut.tid)

        for idx, file in enumerate(outputs):
            func, outputs[idx], o = stageout_one_file(file, func)
            app_fut._outputs.append(o)

        file = kwargs.get('stdout')
        if isinstance(file, File):
            func, kwargs['stdout'], app_fut._stdout_future = stageout_one_file(file, func)

        file = kwargs.get('stderr')
        if isinstance(file, File):
            func, kwargs['stderr'], app_fut._stderr_future = stageout_one_file(file, func)

        return func

    def _gather_all_deps(self, args: Sequence[Any], kwargs: Dict[str, Any]) -> List[Future]:
        """Assemble a list of all Futures passed as arguments, kwargs or in the inputs kwarg.

        Args:
            - args: The list of args pass to the app
            - kwargs: The dict of all kwargs passed to the app

        Returns:
            - list of dependencies

        """
        depends: List[Future] = []

        def check_dep(d: Any) -> None:
            try:
                depends.extend(self.dependency_resolver.traverse_to_gather(d))
            except Exception:
                logger.exception("Exception in dependency_resolver.traverse_to_gather")
                raise

        # Check the positional args
        for dep in args:
            check_dep(dep)

        # Check for explicit kwargs ex, fu_1=<fut>
        for key in kwargs:
            dep = kwargs[key]
            check_dep(dep)

        # Check for futures in inputs=[<fut>...]
        for dep in kwargs.get('inputs', []):
            check_dep(dep)

        return depends

    def _unwrap_futures(self, args: Sequence[Any], kwargs: Dict[str, Any]) \
            -> Tuple[Sequence[Any], Dict[str, Any], Sequence[Tuple[Exception, str]]]:
        """This function should be called when all dependencies have completed.

        It will rewrite the arguments for that task, replacing each Future
        with the result of that future.

        If the user hid futures a level below, we will not catch
        it, and will (most likely) result in a type error.

        Args:
             args (List) : Positional args to app function
             kwargs (Dict) : Kwargs to app function

        Return:
            a rewritten args list
            a rewritten kwargs dict
            pairs of exceptions, task ids from any Futures which stored
            exceptions rather than results.
        """
        dep_failures = []

        def append_failure(e: Exception, dep: Future) -> None:
            # If this Future is associated with a task inside this DFK,
            # then refer to the task ID.
            # Otherwise make a repr of the Future object.
            if hasattr(dep, 'task_record') and dep.task_record['dfk'] == self:
                tid = "task " + repr(dep.task_record['id'])
            else:
                tid = repr(dep)
            dep_failures.extend([(e, tid)])

        # Replace item in args
        new_args = []
        for dep in args:
            try:
                new_args.extend([self.dependency_resolver.traverse_to_unwrap(dep)])
            except Exception as e:
                append_failure(e, dep)

        # Check for explicit kwargs ex, fu_1=<fut>
        for key in kwargs:
            dep = kwargs[key]
            try:
                kwargs[key] = self.dependency_resolver.traverse_to_unwrap(dep)
            except Exception as e:
                append_failure(e, dep)

        # Check for futures in inputs=[<fut>...]
        if 'inputs' in kwargs:
            new_inputs = []
            for dep in kwargs['inputs']:
                try:
                    new_inputs.extend([self.dependency_resolver.traverse_to_unwrap(dep)])
                except Exception as e:
                    append_failure(e, dep)
            kwargs['inputs'] = new_inputs

        return new_args, kwargs, dep_failures

    def submit(self,
               func: Callable,
               app_args: Sequence[Any],
               executors: Union[str, Sequence[str]],
               cache: bool,
               ignore_for_cache: Optional[Sequence[str]],
               app_kwargs: Dict[str, Any],
               join: bool = False) -> AppFuture:
        """Add task to the dataflow system.

        If the app task has the executors attributes not set (default=='all')
        the task will be launched on a randomly selected executor from the
        list of executors. If the app task specifies a particular set of
        executors, it will be targeted at the specified executors.

        Args:
            - func : A function object

        KWargs :
            - app_args : Args to the function
            - executors (list or string) : List of executors this call could go to.
                    Default='all'
            - cache (Bool) : To enable memoization or not
            - ignore_for_cache (sequence) : List of kwargs to be ignored for memoization/checkpointing
            - app_kwargs (dict) : Rest of the kwargs to the fn passed as dict.

        Returns:
            AppFuture

        """

        if ignore_for_cache is None:
            ignore_for_cache = []
        else:
            # duplicate so that it can be modified safely later
            ignore_for_cache = list(ignore_for_cache)

        if self.cleanup_called:
            raise NoDataFlowKernelError("Cannot submit to a DFK that has been cleaned up")

        task_id = self.task_count
        self.task_count += 1
        if isinstance(executors, str) and executors.lower() == 'all':
            choices = list(e for e in self.executors if e != '_parsl_internal')
        elif isinstance(executors, list):
            choices = executors
        else:
            raise ValueError("Task {} supplied invalid type for executors: {}".format(task_id, type(executors)))
        executor = random.choice(choices)
        logger.debug("Task {} will be sent to executor {}".format(task_id, executor))

        resource_specification = app_kwargs.get('parsl_resource_specification', {})

        task_record: TaskRecord
        task_record = {'args': app_args,
                       'depends': [],
                       'dfk': self,
                       'executor': executor,
                       'func': func,
                       'func_name': func.__name__,
                       'kwargs': app_kwargs,
                       'memoize': cache,
                       'hashsum': None,
                       'exec_fu': None,
                       'fail_count': 0,
                       'fail_cost': 0,
                       'fail_history': [],
                       'from_memo': None,
                       'ignore_for_cache': ignore_for_cache,
                       'join': join,
                       'joins': None,
                       'try_id': 0,
                       'id': task_id,
                       'task_launch_lock': threading.Lock(),
                       'time_invoked': datetime.datetime.now(),
                       'time_returned': None,
                       'try_time_launched': None,
                       'try_time_returned': None,
                       'resource_specification': resource_specification}

        self.update_task_state(task_record, States.unsched)

        for kw in ['stdout', 'stderr']:
            if kw in app_kwargs:
                if app_kwargs[kw] == parsl.AUTO_LOGNAME:
                    if kw not in ignore_for_cache:
                        ignore_for_cache += [kw]
                    if self.config.std_autopath is None:
                        app_kwargs[kw] = self.default_std_autopath(task_record, kw)
                    else:
                        app_kwargs[kw] = self.config.std_autopath(task_record, kw)

        app_fu = AppFuture(task_record)
        task_record['app_fu'] = app_fu

        # Transform remote input files to data futures
        app_args, app_kwargs, func = self._add_input_deps(executor, app_args, app_kwargs, func)

        func = self._add_output_deps(executor, app_args, app_kwargs, app_fu, func)

        logger.debug("Added output dependencies")

        # Replace the function invocation in the TaskRecord with whatever file-staging
        # substitutions have been made.
        task_record.update({
                    'args': app_args,
                    'func': func,
                    'kwargs': app_kwargs})

        assert task_id not in self.tasks

        self.tasks[task_id] = task_record

        logger.debug("Gathering dependencies")
        # Get the list of dependencies for the task
        depends = self._gather_all_deps(app_args, app_kwargs)
        logger.debug("Gathered dependencies")
        task_record['depends'] = depends

        depend_descs = []
        for d in depends:
            if isinstance(d, AppFuture) or isinstance(d, DataFuture):
                depend_descs.append("task {}".format(d.tid))
            else:
                depend_descs.append(repr(d))

        if depend_descs != []:
            waiting_message = "waiting on {}".format(", ".join(depend_descs))
        else:
            waiting_message = "not waiting on any dependency"

        logger.info("Task {} submitted for App {}, {}".format(task_id,
                                                              task_record['func_name'],
                                                              waiting_message))

        app_fu.add_done_callback(partial(self.handle_app_update, task_record))
        self.update_task_state(task_record, States.pending)
        logger.debug("Task {} set to pending state with AppFuture: {}".format(task_id, task_record['app_fu']))

        self._send_task_log_info(task_record)

        # at this point add callbacks to all dependencies to do a launch_if_ready
        # call whenever a dependency completes.

        # we need to be careful about the order of setting the state to pending,
        # adding the callbacks, and caling launch_if_ready explicitly once always below.

        # I think as long as we call launch_if_ready once after setting pending, then
        # we can add the callback dependencies at any point: if the callbacks all fire
        # before then, they won't cause a launch, but the one below will. if they fire
        # after we set it pending, then the last one will cause a launch, and the
        # explicit one won't.

        for d in depends:

            def callback_adapter(dep_fut: Future) -> None:
                self.launch_if_ready(task_record)

            try:
                d.add_done_callback(callback_adapter)
            except Exception as e:
                logger.error("add_done_callback got an exception {} which will be ignored".format(e))

        self.launch_if_ready(task_record)

        return app_fu

    # it might also be interesting to assert that all DFK
    # tasks are in a "final" state (3,4,5) when the DFK
    # is closed down, and report some kind of warning.
    # although really I'd like this to drain properly...
    # and a drain function might look like this.
    # If tasks have their states changed, this won't work properly
    # but we can validate that...
    def log_task_states(self) -> None:
        logger.info("Summary of tasks in DFK:")

        with self.task_state_counts_lock:
            for state in States:
                logger.info("Tasks in state {}: {}".format(str(state), self.task_state_counts[state]))

        logger.info("End of summary")

    def add_executors(self, executors: Sequence[ParslExecutor]) -> None:
        for executor in executors:
            executor.run_id = self.run_id
            executor.run_dir = self.run_dir
            if self.monitoring:
                executor.hub_address = self.monitoring.hub_address
                executor.hub_zmq_port = self.monitoring.hub_zmq_port
                executor.submit_monitoring_radio = self.monitoring.radio
            if hasattr(executor, 'provider'):
                if hasattr(executor.provider, 'script_dir'):
                    executor.provider.script_dir = os.path.join(self.run_dir, 'submit_scripts')
                    os.makedirs(executor.provider.script_dir, exist_ok=True)

            self.executors[executor.label] = executor
            executor.start()
        block_executors = [e for e in executors if isinstance(e, BlockProviderExecutor)]
        self.job_status_poller.add_executors(block_executors)

    def atexit_cleanup(self) -> None:
        logger.warning("Python is exiting with a DFK still running. "
                       "You should call parsl.dfk().cleanup() before "
                       "exiting to release any resources")

    def wait_for_current_tasks(self) -> None:
        """Waits for all tasks in the task list to be completed, by waiting for their
        AppFuture to be completed. This method will not necessarily wait for any tasks
        added after cleanup has started (such as data stageout?)
        """

        logger.info("Waiting for all remaining tasks to complete")

        # .values is made into a list immediately to reduce (although not
        # eliminate) a race condition where self.tasks can be modified
        # elsewhere by a completing task being removed from the dictionary.
        task_records = list(self.tasks.values())
        for task_record in task_records:
            # .exception() is a less exception throwing way of
            # waiting for completion than .result()
            fut = task_record['app_fu']
            if not fut.done():
                fut.exception()
            # now app future is done, poll until DFK state is final: a
            # DFK state being final and the app future being done do not imply each other.
            while task_record['status'] not in FINAL_STATES:
                time.sleep(0.1)

        logger.info("All remaining tasks completed")

    @wrap_with_logs
    def cleanup(self) -> None:
        """DataFlowKernel cleanup.

        This involves releasing all resources explicitly.

        We call scale_in on each of the executors and call executor.shutdown.
        """
        logger.info("DFK cleanup initiated")

        # this check won't detect two DFK cleanups happening from
        # different threads extremely close in time because of
        # non-atomic read/modify of self.cleanup_called
        if self.cleanup_called:
            raise Exception("attempt to clean up DFK when it has already been cleaned-up")
        self.cleanup_called = True

        self.log_task_states()

        # Checkpointing takes priority over the rest of the tasks
        # checkpoint if any valid checkpoint method is specified
        if self.checkpoint_mode is not None:
            self.checkpoint()

            if self._checkpoint_timer:
                logger.info("Stopping checkpoint timer")
                self._checkpoint_timer.close()

        # Send final stats
        logger.info("Sending end message for usage tracking")
        self.usage_tracker.send_end_message()
        self.usage_tracker.close()
        logger.info("Closed usage tracking")

        logger.info("Closing job status poller")
        self.job_status_poller.close()
        logger.info("Terminated job status poller")

        logger.info("Shutting down executors")

        for executor in self.executors.values():
            logger.info(f"Shutting down executor {executor.label}")
            executor.shutdown()
            logger.info(f"Shut down executor {executor.label}")

        logger.info("Terminated executors")
        self.time_completed = datetime.datetime.now()

        if self.monitoring:
            logger.info("Sending final monitoring message")
            self.monitoring.send((MessageType.WORKFLOW_INFO,
                                 {'tasks_failed_count': self.task_state_counts[States.failed],
                                  'tasks_completed_count': self.task_state_counts[States.exec_done],
                                  "time_began": self.time_began,
                                  'time_completed': self.time_completed,
                                  'run_id': self.run_id, 'rundir': self.run_dir}))

            logger.info("Terminating monitoring")
            self.monitoring.close()
            logger.info("Terminated monitoring")

        logger.info("Terminating dependency launch pool")
        self.dependency_launch_pool.shutdown()
        logger.info("Terminated dependency launch pool")

        logger.info("Unregistering atexit hook")
        atexit.unregister(self.atexit_cleanup)
        logger.info("Unregistered atexit hook")

        if DataFlowKernelLoader._dfk is self:
            logger.info("Unregistering default DFK")
            parsl.clear()
            logger.info("Unregistered default DFK")
        else:
            logger.debug("Cleaning up non-default DFK - not unregistering")

        logger.info("DFK cleanup complete")

    def checkpoint(self, tasks: Optional[Sequence[TaskRecord]] = None) -> str:
        """Checkpoint the dfk incrementally to a checkpoint file.

        When called, every task that has been completed yet not
        checkpointed is checkpointed to a file.

        Kwargs:
            - tasks (List of task records) : List of task ids to checkpoint. Default=None
                                         if set to None, we iterate over all tasks held by the DFK.

        .. note::
            Checkpointing only works if memoization is enabled

        Returns:
            Checkpoint dir if checkpoints were written successfully.
            By default the checkpoints are written to the RUNDIR of the current
            run under RUNDIR/checkpoints/{tasks.pkl, dfk.pkl}
        """
        with self.checkpoint_lock:
            if tasks:
                checkpoint_queue = tasks
            else:
                checkpoint_queue = self.checkpointable_tasks
                self.checkpointable_tasks = []

            checkpoint_dir = '{0}/checkpoint'.format(self.run_dir)
            checkpoint_dfk = checkpoint_dir + '/dfk.pkl'
            checkpoint_tasks = checkpoint_dir + '/tasks.pkl'

            if not os.path.exists(checkpoint_dir):
                os.makedirs(checkpoint_dir, exist_ok=True)

            with open(checkpoint_dfk, 'wb') as f:
                state = {'rundir': self.run_dir,
                         'task_count': self.task_count
                         }
                pickle.dump(state, f)

            count = 0

            with open(checkpoint_tasks, 'ab') as f:
                for task_record in checkpoint_queue:
                    task_id = task_record['id']

                    app_fu = task_record['app_fu']

                    if app_fu.done() and app_fu.exception() is None:
                        hashsum = task_record['hashsum']
                        if not hashsum:
                            continue
                        t = {'hash': hashsum, 'exception': None, 'result': app_fu.result()}

                        # We are using pickle here since pickle dumps to a file in 'ab'
                        # mode behave like a incremental log.
                        pickle.dump(t, f)
                        count += 1
                        logger.debug("Task {} checkpointed".format(task_id))

            self.checkpointed_tasks += count

            if count == 0:
                if self.checkpointed_tasks == 0:
                    logger.warning("No tasks checkpointed so far in this run. Please ensure caching is enabled")
                else:
                    logger.debug("No tasks checkpointed in this pass.")
            else:
                logger.info("Done checkpointing {} tasks".format(count))

            return checkpoint_dir

    def _load_checkpoints(self, checkpointDirs: Sequence[str]) -> Dict[str, Future[Any]]:
        """Load a checkpoint file into a lookup table.

        The data being loaded from the pickle file mostly contains input
        attributes of the task: func, args, kwargs, env...
        To simplify the check of whether the exact task has been completed
        in the checkpoint, we hash these input params and use it as the key
        for the memoized lookup table.

        Args:
            - checkpointDirs (list) : List of filepaths to checkpoints
              Eg. ['runinfo/001', 'runinfo/002']

        Returns:
            - memoized_lookup_table (dict)
        """
        memo_lookup_table = {}

        for checkpoint_dir in checkpointDirs:
            logger.info("Loading checkpoints from {}".format(checkpoint_dir))
            checkpoint_file = os.path.join(checkpoint_dir, 'tasks.pkl')
            try:
                with open(checkpoint_file, 'rb') as f:
                    while True:
                        try:
                            data = pickle.load(f)
                            # Copy and hash only the input attributes
                            memo_fu: Future = Future()
                            assert data['exception'] is None
                            memo_fu.set_result(data['result'])
                            memo_lookup_table[data['hash']] = memo_fu

                        except EOFError:
                            # Done with the checkpoint file
                            break
            except FileNotFoundError:
                reason = "Checkpoint file was not found: {}".format(
                    checkpoint_file)
                logger.error(reason)
                raise BadCheckpoint(reason)
            except Exception:
                reason = "Failed to load checkpoint: {}".format(
                    checkpoint_file)
                logger.error(reason)
                raise BadCheckpoint(reason)

            logger.info("Completed loading checkpoint: {0} with {1} tasks".format(checkpoint_file,
                                                                                  len(memo_lookup_table.keys())))
        return memo_lookup_table

    @typeguard.typechecked
    def load_checkpoints(self, checkpointDirs: Optional[Sequence[str]]) -> Dict[str, Future]:
        """Load checkpoints from the checkpoint files into a dictionary.

        The results are used to pre-populate the memoizer's lookup_table

        Kwargs:
             - checkpointDirs (list) : List of run folder to use as checkpoints
               Eg. ['runinfo/001', 'runinfo/002']

        Returns:
             - dict containing, hashed -> future mappings
        """
        if checkpointDirs:
            return self._load_checkpoints(checkpointDirs)
        else:
            return {}

    @staticmethod
    def _log_std_streams(task_record: TaskRecord) -> None:
        tid = task_record['id']

        def log_std_stream(name: str, target) -> None:
            if target is None:
                logger.info(f"{name} for task {tid} will not be redirected.")
            elif isinstance(target, str):
                logger.info(f"{name} for task {tid} will be redirected to {target}")
            elif isinstance(target, os.PathLike):
                logger.info(f"{name} for task {tid} will be redirected to {os.fspath(target)}")
            elif isinstance(target, tuple) and len(target) == 2 and isinstance(target[0], str):
                logger.info(f"{name} for task {tid} will be redirected to {target[0]} with mode {target[1]}")
            elif isinstance(target, tuple) and len(target) == 2 and isinstance(target[0], os.PathLike):
                logger.info(f"{name} for task {tid} will be redirected to {os.fspath(target[0])} with mode {target[1]}")
            elif isinstance(target, DataFuture):
                logger.info(f"{name} for task {tid} will staged to {target.file_obj.url}")
            else:
                logger.error(f"{name} for task {tid} has unknown specification: {target!r}")

        log_std_stream("Standard out", task_record['app_fu'].stdout)
        log_std_stream("Standard error", task_record['app_fu'].stderr)

    def default_std_autopath(self, taskrecord, kw):
        label = taskrecord['kwargs'].get('label')
        task_id = taskrecord['id']
        return os.path.join(
            self.run_dir,
            'task_logs',
            str(int(task_id / 10000)).zfill(4),  # limit logs to 10k entries per directory
            'task_{}_{}{}.{}'.format(
                str(task_id).zfill(4),
                taskrecord['func_name'],
                '' if label is None else '_{}'.format(label),
                kw))


class DataFlowKernelLoader:
    """Manage which DataFlowKernel is active.

    This is a singleton class containing only class methods. You should not
    need to instantiate this class.
    """

    _dfk: Optional[DataFlowKernel] = None

    @classmethod
    def clear(cls) -> None:
        """Clear the active DataFlowKernel so that a new one can be loaded."""
        cls._dfk = None

    @classmethod
    @typeguard.typechecked
    def load(cls, config: Optional[Config] = None) -> DataFlowKernel:
        """Load a DataFlowKernel.

        Args:
            - config (Config) : Configuration to load. This config will be passed to a
              new DataFlowKernel instantiation which will be set as the active DataFlowKernel.
        Returns:
            - DataFlowKernel : The loaded DataFlowKernel object.
        """
        if cls._dfk is not None:
            raise ConfigurationError('Config has already been loaded')

        if config is None:
            cls._dfk = DataFlowKernel(Config())
        else:
            cls._dfk = DataFlowKernel(config)

        return cls._dfk

    @classmethod
    def wait_for_current_tasks(cls) -> None:
        """Waits for all tasks in the task list to be completed, by waiting for their
        AppFuture to be completed. This method will not necessarily wait for any tasks
        added after cleanup has started such as data stageout.
        """
        cls.dfk().wait_for_current_tasks()

    @classmethod
    def dfk(cls) -> DataFlowKernel:
        """Return the currently-loaded DataFlowKernel."""
        if cls._dfk is None:
            raise NoDataFlowKernelError('Must first load config')
        return cls._dfk