1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
from __future__ import annotations
import hashlib
import logging
import pickle
from functools import lru_cache, singledispatch
from typing import TYPE_CHECKING, Any, Dict, List, Optional
from parsl.dataflow.taskrecord import TaskRecord
if TYPE_CHECKING:
from parsl import DataFlowKernel # import loop at runtime - needed for typechecking - TODO turn into "if typing:"
import types
from concurrent.futures import Future
logger = logging.getLogger(__name__)
@singledispatch
def id_for_memo(obj: object, output_ref: bool = False) -> bytes:
"""This should return a byte sequence which identifies the supplied
value for memoization purposes: for any two calls of id_for_memo,
the byte sequence should be the same when the "same" value is supplied,
and different otherwise.
"same" is in quotes about because sameness is not as straightforward as
serialising out the content.
For example, for two dicts x, y:
x = {"a":3, "b":4}
y = {"b":4, "a":3}
then: x == y, but their serialization is not equal, and some other
functions on x and y are not equal: list(x.keys()) != list(y.keys())
id_for_memo is invoked with output_ref=True when the parameter is an
output reference (a value in the outputs=[] parameter of an app
invocation).
Memo hashing might be different for such parameters: for example, a
user might choose to hash input File content so that changing the
content of an input file invalidates memoization. This does not make
sense to do for output files: there is no meaningful content stored
where an output filename points at memoization time.
"""
logger.error("id_for_memo attempted on unknown type {}".format(type(obj)))
raise ValueError("unknown type for memoization: {}".format(type(obj)))
@id_for_memo.register(str)
@id_for_memo.register(int)
@id_for_memo.register(float)
@id_for_memo.register(type(None))
def id_for_memo_pickle(obj: object, output_ref: bool = False) -> bytes:
return pickle.dumps(obj)
@id_for_memo.register(list)
def id_for_memo_list(denormalized_list: list, output_ref: bool = False) -> bytes:
if type(denormalized_list) is not list:
raise ValueError("id_for_memo_list cannot work on subclasses of list")
normalized_list = []
for e in denormalized_list:
normalized_list.append(id_for_memo(e, output_ref=output_ref))
return pickle.dumps(normalized_list)
@id_for_memo.register(tuple)
def id_for_memo_tuple(denormalized_tuple: tuple, output_ref: bool = False) -> bytes:
if type(denormalized_tuple) is not tuple:
raise ValueError("id_for_memo_tuple cannot work on subclasses of tuple")
normalized_list = []
for e in denormalized_tuple:
normalized_list.append(id_for_memo(e, output_ref=output_ref))
return pickle.dumps(normalized_list)
@id_for_memo.register(dict)
def id_for_memo_dict(denormalized_dict: dict, output_ref: bool = False) -> bytes:
"""This normalises the keys and values of the supplied dictionary.
When output_ref=True, the values are normalised as output refs, but
the keys are not.
"""
if type(denormalized_dict) is not dict:
raise ValueError("id_for_memo_dict cannot work on subclasses of dict")
keys = sorted(denormalized_dict)
normalized_list = []
for k in keys:
normalized_list.append(id_for_memo(k))
normalized_list.append(id_for_memo(denormalized_dict[k], output_ref=output_ref))
return pickle.dumps(normalized_list)
# the LRU cache decorator must be applied closer to the id_for_memo_function call
# that the .register() call, so that the cache-decorated version is registered.
@id_for_memo.register(types.FunctionType)
@lru_cache()
def id_for_memo_function(f: types.FunctionType, output_ref: bool = False) -> bytes:
"""This will checkpoint a function based only on its name and module name.
This means that changing source code (other than the function name) will
not cause a checkpoint invalidation.
"""
return pickle.dumps(["types.FunctionType", f.__name__, f.__module__])
class Memoizer:
"""Memoizer is responsible for ensuring that identical work is not repeated.
When a task is repeated, i.e., the same function is called with the same exact arguments, the
result from a previous execution is reused. `wiki <https://en.wikipedia.org/wiki/Memoization>`_
The memoizer implementation here does not collapse duplicate calls
at call time, but works **only** when the result of a previous
call is available at the time the duplicate call is made.
For instance::
No advantage from Memoization helps
memoization here: here:
TaskA TaskB
| TaskA |
| | TaskA done (TaskB)
| | | (TaskB)
done | |
done |
done
The memoizer creates a lookup table by hashing the function name
and its inputs, and storing the results of the function.
When a task is ready for launch, i.e., all of its arguments
have resolved, we add its hash to the task datastructure.
"""
def __init__(self, dfk: DataFlowKernel, memoize: bool = True, checkpoint: Dict[str, Future[Any]] = {}):
"""Initialize the memoizer.
Args:
- dfk (DFK obj): The DFK object
KWargs:
- memoize (Bool): enable memoization or not.
- checkpoint (Dict): A checkpoint loaded as a dict.
"""
self.dfk = dfk
self.memoize = memoize
if self.memoize:
logger.info("App caching initialized")
self.memo_lookup_table = checkpoint
else:
logger.info("App caching disabled for all apps")
self.memo_lookup_table = {}
def make_hash(self, task: TaskRecord) -> str:
"""Create a hash of the task inputs.
Args:
- task (dict) : Task dictionary from dfk.tasks
Returns:
- hash (str) : A unique hash string
"""
t: List[bytes] = []
# if kwargs contains an outputs parameter, that parameter is removed
# and normalised differently - with output_ref set to True.
# kwargs listed in ignore_for_cache will also be removed
filtered_kw = task['kwargs'].copy()
ignore_list = task['ignore_for_cache']
logger.debug("Ignoring these kwargs for checkpointing: %s", ignore_list)
for k in ignore_list:
logger.debug("Ignoring kwarg %s", k)
del filtered_kw[k]
if 'outputs' in task['kwargs']:
outputs = task['kwargs']['outputs']
del filtered_kw['outputs']
t.append(id_for_memo(outputs, output_ref=True))
t.extend(map(id_for_memo, (filtered_kw, task['func'], task['args'])))
x = b''.join(t)
return hashlib.md5(x).hexdigest()
def check_memo(self, task: TaskRecord) -> Optional[Future[Any]]:
"""Create a hash of the task and its inputs and check the lookup table for this hash.
If present, the results are returned.
Args:
- task(task) : task from the dfk.tasks table
Returns:
- Result of the function if present in table, wrapped in a Future
This call will also set task['hashsum'] to the unique hashsum for the func+inputs.
"""
task_id = task['id']
if not self.memoize or not task['memoize']:
task['hashsum'] = None
logger.debug("Task {} will not be memoized".format(task_id))
return None
hashsum = self.make_hash(task)
logger.debug("Task {} has memoization hash {}".format(task_id, hashsum))
result = None
if hashsum in self.memo_lookup_table:
result = self.memo_lookup_table[hashsum]
logger.info("Task %s using result from cache", task_id)
else:
logger.info("Task %s had no result in cache", task_id)
task['hashsum'] = hashsum
assert isinstance(result, Future) or result is None
return result
def hash_lookup(self, hashsum: str) -> Future[Any]:
"""Lookup a hash in the memoization table.
Args:
- hashsum (str): The same hashes used to uniquely identify apps+inputs
Returns:
- Lookup result
Raises:
- KeyError: if hash not in table
"""
return self.memo_lookup_table[hashsum]
def update_memo(self, task: TaskRecord, r: Future[Any]) -> None:
"""Updates the memoization lookup table with the result from a task.
Args:
- task (dict) : A task dict from dfk.tasks
- r (Result future): Result future
"""
# TODO: could use typeguard
assert isinstance(r, Future)
task_id = task['id']
if not self.memoize or not task['memoize'] or 'hashsum' not in task:
return
if not isinstance(task['hashsum'], str):
logger.error("Attempting to update app cache entry but hashsum is not a string key")
return
if task['hashsum'] in self.memo_lookup_table:
logger.info(f"Replacing app cache entry {task['hashsum']} with result from task {task_id}")
else:
logger.debug(f"Storing app cache entry {task['hashsum']} with result from task {task_id}")
self.memo_lookup_table[task['hashsum']] = r
|