1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860
|
import logging
import math
import pickle
import subprocess
import threading
import typing
import warnings
from collections import defaultdict
from concurrent.futures import Future
from dataclasses import dataclass
from typing import Callable, Dict, List, Optional, Sequence, Tuple, Union
import typeguard
from parsl import curvezmq
from parsl.addresses import get_all_addresses
from parsl.app.errors import RemoteExceptionWrapper
from parsl.data_provider.staging import Staging
from parsl.executors.errors import (
BadMessage,
InvalidResourceSpecification,
ScalingFailed,
)
from parsl.executors.high_throughput import zmq_pipes
from parsl.executors.high_throughput.errors import CommandClientTimeoutError
from parsl.executors.high_throughput.manager_selector import (
ManagerSelector,
RandomManagerSelector,
)
from parsl.executors.status_handling import BlockProviderExecutor
from parsl.jobs.states import TERMINAL_STATES, JobState, JobStatus
from parsl.process_loggers import wrap_with_logs
from parsl.providers import LocalProvider
from parsl.providers.base import ExecutionProvider
from parsl.serialize import deserialize, pack_res_spec_apply_message
from parsl.serialize.errors import DeserializationError, SerializationError
from parsl.usage_tracking.api import UsageInformation
from parsl.utils import RepresentationMixin
logger = logging.getLogger(__name__)
DEFAULT_LAUNCH_CMD = ("process_worker_pool.py {debug} {max_workers_per_node} "
"-a {addresses} "
"-p {prefetch_capacity} "
"-c {cores_per_worker} "
"-m {mem_per_worker} "
"--poll {poll_period} "
"--task_port={task_port} "
"--result_port={result_port} "
"--cert_dir {cert_dir} "
"--logdir={logdir} "
"--block_id={{block_id}} "
"--hb_period={heartbeat_period} "
"{address_probe_timeout_string} "
"--hb_threshold={heartbeat_threshold} "
"--drain_period={drain_period} "
"--cpu-affinity {cpu_affinity} "
"{enable_mpi_mode} "
"--mpi-launcher={mpi_launcher} "
"--available-accelerators {accelerators}")
DEFAULT_INTERCHANGE_LAUNCH_CMD = ["interchange.py"]
GENERAL_HTEX_PARAM_DOCS = """provider : :class:`~parsl.providers.base.ExecutionProvider`
Provider to access computation resources. Can be one of :class:`~parsl.providers.aws.aws.EC2Provider`,
:class:`~parsl.providers.condor.condor.Condor`,
:class:`~parsl.providers.googlecloud.googlecloud.GoogleCloud`,
:class:`~parsl.providers.gridEngine.gridEngine.GridEngine`,
:class:`~parsl.providers.local.local.Local`,
:class:`~parsl.providers.sge.sge.GridEngine`,
:class:`~parsl.providers.slurm.slurm.Slurm`, or
:class:`~parsl.providers.torque.torque.Torque`.
label : str
Label for this executor instance.
launch_cmd : str
Command line string to launch the process_worker_pool from the provider. The command line string
will be formatted with appropriate values for the following values (debug, task_url, result_url,
cores_per_worker, nodes_per_block, heartbeat_period ,heartbeat_threshold, logdir). For example:
launch_cmd="process_worker_pool.py {debug} -c {cores_per_worker} --task_url={task_url} --result_url={result_url}"
interchange_launch_cmd : Sequence[str]
Custom sequence of command line tokens to launch the interchange process from the executor. If
undefined, the executor will use the default "interchange.py" command.
address : string
An address to connect to the main Parsl process which is reachable from the network in which
workers will be running. This field expects an IPv4 or IPv6 address.
Most login nodes on clusters have several network interfaces available, only some of which
can be reached from the compute nodes. This field can be used to limit the executor to listen
only on a specific interface, and limiting connections to the internal network.
By default, the executor will attempt to enumerate and connect through all possible addresses.
Setting an address here overrides the default behavior.
default=None
loopback_address: string
Specify address used for internal communication between executor and interchange.
Supports IPv4 and IPv6 addresses
default=127.0.0.1
worker_ports : (int, int)
Specify the ports to be used by workers to connect to Parsl. If this option is specified,
worker_port_range will not be honored.
worker_port_range : (int, int)
Worker ports will be chosen between the two integers provided.
interchange_port_range : (int, int)
Port range used by Parsl to communicate with the Interchange.
working_dir : str
Working dir to be used by the executor.
worker_debug : Bool
Enables worker debug logging.
prefetch_capacity : int
Number of tasks that could be prefetched over available worker capacity.
When there are a few tasks (<100) or when tasks are long running, this option should
be set to 0 for better load balancing. Default is 0.
address_probe_timeout : int | None
Managers attempt connecting over many different addresses to determine a viable address.
This option sets a time limit in seconds on the connection attempt.
Default of None implies 30s timeout set on worker.
heartbeat_threshold : int
Seconds since the last message from the counterpart in the communication pair:
(interchange, manager) after which the counterpart is assumed to be un-available. Default: 120s
heartbeat_period : int
Number of seconds after which a heartbeat message indicating liveness is sent to the
counterpart (interchange, manager). Default: 30s
poll_period : int
Timeout period to be used by the executor components in milliseconds. Increasing poll_periods
trades performance for cpu efficiency. Default: 10ms
drain_period : int
The number of seconds after start when workers will begin to drain
and then exit. Set this to a time that is slightly less than the
maximum walltime of batch jobs to avoid killing tasks while they
execute. For example, you could set this to the walltime minus a grace
period for the batch job to start the workers, minus the expected
maximum length of an individual task.
worker_logdir_root : string
In case of a remote file system, specify the path to where logs will be kept.
encrypted : bool
Flag to enable/disable encryption (CurveZMQ). Default is False.
manager_selector: ManagerSelector
Determines what strategy the interchange uses to select managers during task distribution.
See API reference under "Manager Selectors" regarding the various manager selectors.
Default: 'RandomManagerSelector'
""" # Documentation for params used by both HTEx and MPIEx
class HighThroughputExecutor(BlockProviderExecutor, RepresentationMixin, UsageInformation):
__doc__ = f"""Executor designed for cluster-scale
The HighThroughputExecutor system has the following components:
1. The HighThroughputExecutor instance which is run as part of the Parsl script.
2. The Interchange which acts as a load-balancing proxy between workers and Parsl
3. The multiprocessing based worker pool which coordinates task execution over several
cores on a node.
4. ZeroMQ pipes connect the HighThroughputExecutor, Interchange and the process_worker_pool
Here is a diagram
.. code:: python
| Data | Executor | Interchange | External Process(es)
| Flow | | |
Task | Kernel | | |
+----->|-------->|------------>|->outgoing_q---|-> process_worker_pool
| | | | batching | | |
Parsl<---Fut-| | | load-balancing| result exception
^ | | | watchdogs | | |
| | | Result | | | |
| | | Queue | | V V
| | | Thread<--|-incoming_q<---|--- +---------+
| | | | | |
| | | | | |
+----update_fut-----+
Each of the workers in each process_worker_pool has access to its local rank through
an environmental variable, ``PARSL_WORKER_RANK``. The local rank is unique for each process
and is an integer in the range from 0 to the number of workers per in the pool minus 1.
The workers also have access to the ID of the worker pool as ``PARSL_WORKER_POOL_ID``
and the size of the worker pool as ``PARSL_WORKER_COUNT``.
Parameters
----------
{GENERAL_HTEX_PARAM_DOCS}
cores_per_worker : float
cores to be assigned to each worker. Oversubscription is possible
by setting cores_per_worker < 1.0. Default=1
mem_per_worker : float
GB of memory required per worker. If this option is specified, the node manager
will check the available memory at startup and limit the number of workers such that
the there's sufficient memory for each worker. Default: None
max_workers_per_node : int
Caps the number of workers launched per node. Default: None
cpu_affinity: string
Whether or how each worker process sets thread affinity. Options include "none" to forgo
any CPU affinity configuration, "block" to assign adjacent cores to workers
(ex: assign 0-1 to worker 0, 2-3 to worker 1), and
"alternating" to assign cores to workers in round-robin
(ex: assign 0,2 to worker 0, 1,3 to worker 1).
The "block-reverse" option assigns adjacent cores to workers, but assigns
the CPUs with large indices to low index workers (ex: assign 2-3 to worker 1, 0,1 to worker 2)
available_accelerators: int | list
Accelerators available for workers to use. Each worker will be pinned to exactly one of the provided
accelerators, and no more workers will be launched than the number of accelerators.
Either provide the list of accelerator names or the number available. If a number is provided,
Parsl will create names as integers starting with 0.
default: empty list
"""
@typeguard.typechecked
def __init__(self,
label: str = 'HighThroughputExecutor',
provider: ExecutionProvider = LocalProvider(),
launch_cmd: Optional[str] = None,
interchange_launch_cmd: Optional[Sequence[str]] = None,
address: Optional[str] = None,
loopback_address: str = "127.0.0.1",
worker_ports: Optional[Tuple[int, int]] = None,
worker_port_range: Optional[Tuple[int, int]] = (54000, 55000),
interchange_port_range: Optional[Tuple[int, int]] = (55000, 56000),
storage_access: Optional[List[Staging]] = None,
working_dir: Optional[str] = None,
worker_debug: bool = False,
cores_per_worker: float = 1.0,
mem_per_worker: Optional[float] = None,
max_workers_per_node: Optional[Union[int, float]] = None,
cpu_affinity: str = 'none',
available_accelerators: Union[int, Sequence[str]] = (),
prefetch_capacity: int = 0,
heartbeat_threshold: int = 120,
heartbeat_period: int = 30,
drain_period: Optional[int] = None,
poll_period: int = 10,
address_probe_timeout: Optional[int] = None,
worker_logdir_root: Optional[str] = None,
manager_selector: ManagerSelector = RandomManagerSelector(),
block_error_handler: Union[bool, Callable[[BlockProviderExecutor, Dict[str, JobStatus]], None]] = True,
encrypted: bool = False):
logger.debug("Initializing HighThroughputExecutor")
BlockProviderExecutor.__init__(self, provider=provider, block_error_handler=block_error_handler)
self.label = label
self.worker_debug = worker_debug
self.storage_access = storage_access
self.working_dir = working_dir
self.cores_per_worker = cores_per_worker
self.mem_per_worker = mem_per_worker
self.prefetch_capacity = prefetch_capacity
self.address = address
self.address_probe_timeout = address_probe_timeout
self.manager_selector = manager_selector
self.loopback_address = loopback_address
if self.address:
self.all_addresses = address
else:
self.all_addresses = ','.join(get_all_addresses())
self.max_workers_per_node = max_workers_per_node or float("inf")
mem_slots = self.max_workers_per_node
cpu_slots = self.max_workers_per_node
if hasattr(self.provider, 'mem_per_node') and \
self.provider.mem_per_node is not None and \
mem_per_worker is not None and \
mem_per_worker > 0:
mem_slots = math.floor(self.provider.mem_per_node / mem_per_worker)
if hasattr(self.provider, 'cores_per_node') and \
self.provider.cores_per_node is not None:
cpu_slots = math.floor(self.provider.cores_per_node / cores_per_worker)
# Set the list of available accelerators
if isinstance(available_accelerators, int):
# If the user provide an integer, create some names for them
available_accelerators = list(map(str, range(available_accelerators)))
self.available_accelerators = list(available_accelerators)
# Determine the number of workers per node
self._workers_per_node = min(self.max_workers_per_node, mem_slots, cpu_slots)
if len(self.available_accelerators) > 0:
self._workers_per_node = min(self._workers_per_node, len(available_accelerators))
if self._workers_per_node == float('inf'):
self._workers_per_node = 1 # our best guess-- we do not have any provider hints
self._task_counter = 0
self.worker_ports = worker_ports
self.worker_port_range = worker_port_range
self.interchange_proc: Optional[subprocess.Popen] = None
self.interchange_port_range = interchange_port_range
self.heartbeat_threshold = heartbeat_threshold
self.heartbeat_period = heartbeat_period
self.drain_period = drain_period
self.poll_period = poll_period
self.run_dir = '.'
self.worker_logdir_root = worker_logdir_root
self.cpu_affinity = cpu_affinity
self.encrypted = encrypted
self.cert_dir = None
if not launch_cmd:
launch_cmd = DEFAULT_LAUNCH_CMD
self.launch_cmd = launch_cmd
if not interchange_launch_cmd:
interchange_launch_cmd = DEFAULT_INTERCHANGE_LAUNCH_CMD
self.interchange_launch_cmd = interchange_launch_cmd
self._result_queue_thread_exit = threading.Event()
self._result_queue_thread: Optional[threading.Thread] = None
radio_mode = "htex"
enable_mpi_mode: bool = False
mpi_launcher: str = "mpiexec"
def _warn_deprecated(self, old: str, new: str):
warnings.warn(
f"{old} is deprecated and will be removed in a future release. "
f"Please use {new} instead.",
DeprecationWarning,
stacklevel=2
)
@property
def logdir(self):
return "{}/{}".format(self.run_dir, self.label)
@property
def worker_logdir(self):
if self.worker_logdir_root is not None:
return "{}/{}".format(self.worker_logdir_root, self.label)
return self.logdir
def validate_resource_spec(self, resource_specification: dict):
"""HTEX supports the following *Optional* resource specifications:
priority: lower value is higher priority"""
if resource_specification:
acceptable_fields = {'priority'}
keys = set(resource_specification.keys())
invalid_keys = keys - acceptable_fields
if invalid_keys:
message = "Task resource specification only accepts these types of resources: {}".format(
', '.join(acceptable_fields))
logger.error(message)
raise InvalidResourceSpecification(set(invalid_keys), message)
return
def initialize_scaling(self):
"""Compose the launch command and scale out the initial blocks.
"""
debug_opts = "--debug" if self.worker_debug else ""
max_workers_per_node = "" if self.max_workers_per_node == float('inf') else "--max_workers_per_node={}".format(self.max_workers_per_node)
enable_mpi_opts = "--enable_mpi_mode " if self.enable_mpi_mode else ""
address_probe_timeout_string = ""
if self.address_probe_timeout:
address_probe_timeout_string = "--address_probe_timeout={}".format(self.address_probe_timeout)
l_cmd = self.launch_cmd.format(debug=debug_opts,
prefetch_capacity=self.prefetch_capacity,
address_probe_timeout_string=address_probe_timeout_string,
addresses=self.all_addresses,
task_port=self.worker_task_port,
result_port=self.worker_result_port,
cores_per_worker=self.cores_per_worker,
mem_per_worker=self.mem_per_worker,
max_workers_per_node=max_workers_per_node,
nodes_per_block=self.provider.nodes_per_block,
heartbeat_period=self.heartbeat_period,
heartbeat_threshold=self.heartbeat_threshold,
drain_period=self.drain_period,
poll_period=self.poll_period,
cert_dir=self.cert_dir,
logdir=self.worker_logdir,
cpu_affinity=self.cpu_affinity,
enable_mpi_mode=enable_mpi_opts,
mpi_launcher=self.mpi_launcher,
accelerators=" ".join(self.available_accelerators))
self.launch_cmd = l_cmd
logger.debug("Launch command: {}".format(self.launch_cmd))
logger.debug("Starting HighThroughputExecutor with provider:\n%s", self.provider)
def start(self):
"""Create the Interchange process and connect to it.
"""
if self.encrypted and self.cert_dir is None:
logger.debug("Creating CurveZMQ certificates")
self.cert_dir = curvezmq.create_certificates(self.logdir)
elif not self.encrypted and self.cert_dir:
raise AttributeError(
"The certificates directory path attribute (cert_dir) is defined, but the "
"encrypted attribute is set to False. You must either change cert_dir to "
"None or encrypted to True."
)
self.outgoing_q = zmq_pipes.TasksOutgoing(
self.loopback_address, self.interchange_port_range, self.cert_dir
)
self.incoming_q = zmq_pipes.ResultsIncoming(
self.loopback_address, self.interchange_port_range, self.cert_dir
)
self.command_client = zmq_pipes.CommandClient(
self.loopback_address, self.interchange_port_range, self.cert_dir
)
self._result_queue_thread = None
self._start_result_queue_thread()
self._start_local_interchange_process()
logger.debug("Created result queue thread: %s", self._result_queue_thread)
self.initialize_scaling()
@wrap_with_logs
def _result_queue_worker(self):
"""Listen to the queue for task result messages and handle them.
Depending on the message, tasks will be updated with results or exceptions.
.. code:: python
{
"task_id" : <task_id>
"result" : serialized result object, if task succeeded
... more tags could be added later
}
{
"task_id" : <task_id>
"exception" : serialized exception object, on failure
}
"""
logger.debug("Result queue worker starting")
while not self.bad_state_is_set and not self._result_queue_thread_exit.is_set():
try:
msgs = self.incoming_q.get(timeout_ms=self.poll_period)
if msgs is None: # timeout
continue
except IOError as e:
logger.exception("Caught broken queue with exception code {}: {}".format(e.errno, e))
return
except Exception as e:
logger.exception("Caught unknown exception: {}".format(e))
return
else:
for serialized_msg in msgs:
try:
msg = pickle.loads(serialized_msg)
except pickle.UnpicklingError:
raise BadMessage("Message received could not be unpickled")
if msg['type'] == 'result':
try:
tid = msg['task_id']
except Exception:
raise BadMessage("Message received does not contain 'task_id' field")
if tid == -1 and 'exception' in msg:
logger.warning("Executor shutting down due to exception from interchange")
exception = deserialize(msg['exception'])
self.set_bad_state_and_fail_all(exception)
break
task_fut = self.tasks.pop(tid)
if 'result' in msg:
result = deserialize(msg['result'])
task_fut.set_result(result)
elif 'exception' in msg:
try:
s = deserialize(msg['exception'])
# s should be a RemoteExceptionWrapper... so we can reraise it
if isinstance(s, RemoteExceptionWrapper):
try:
s.reraise()
except Exception as e:
task_fut.set_exception(e)
elif isinstance(s, Exception):
task_fut.set_exception(s)
else:
raise ValueError("Unknown exception-like type received: {}".format(type(s)))
except Exception as e:
# TODO could be a proper wrapped exception?
task_fut.set_exception(
DeserializationError("Received exception, but handling also threw an exception: {}".format(e)))
else:
raise BadMessage("Message received is neither result or exception")
else:
raise BadMessage("Message received with unknown type {}".format(msg['type']))
logger.info("Closing result ZMQ pipe")
self.incoming_q.close()
logger.info("Result queue worker finished")
def _start_local_interchange_process(self) -> None:
""" Starts the interchange process locally
Starts the interchange process locally and uses the command queue to
get the worker task and result ports that the interchange has bound to.
"""
interchange_config = {"client_address": self.loopback_address,
"client_ports": (self.outgoing_q.port,
self.incoming_q.port,
self.command_client.port),
"interchange_address": self.address,
"worker_ports": self.worker_ports,
"worker_port_range": self.worker_port_range,
"hub_address": self.hub_address,
"hub_zmq_port": self.hub_zmq_port,
"logdir": self.logdir,
"heartbeat_threshold": self.heartbeat_threshold,
"poll_period": self.poll_period,
"logging_level": logging.DEBUG if self.worker_debug else logging.INFO,
"cert_dir": self.cert_dir,
"manager_selector": self.manager_selector,
"run_id": self.run_id,
}
config_pickle = pickle.dumps(interchange_config)
self.interchange_proc = subprocess.Popen(self.interchange_launch_cmd, stdin=subprocess.PIPE)
stdin = self.interchange_proc.stdin
assert stdin is not None, "Popen should have created an IO object (vs default None) because of PIPE mode"
logger.debug("Popened interchange process. Writing config object")
stdin.write(config_pickle)
stdin.flush()
stdin.close()
logger.debug("Sent config object. Requesting worker ports")
try:
(self.worker_task_port, self.worker_result_port) = self.command_client.run("WORKER_PORTS", timeout_s=120)
except CommandClientTimeoutError:
logger.error("Interchange has not completed initialization. Aborting")
raise Exception("Interchange failed to start")
logger.debug("Got worker ports")
def _start_result_queue_thread(self):
"""Method to start the result queue thread as a daemon.
Checks if a thread already exists, then starts it.
Could be used later as a restart if the result queue thread dies.
"""
if self._result_queue_thread is None:
logger.debug("Starting result queue thread")
self._result_queue_thread = threading.Thread(target=self._result_queue_worker, name="HTEX-Result-Queue-Thread")
self._result_queue_thread.daemon = True
self._result_queue_thread.start()
logger.debug("Started result queue thread")
else:
logger.error("Result queue thread already exists, returning")
def hold_worker(self, worker_id: str) -> None:
"""Puts a worker on hold, preventing scheduling of additional tasks to it.
This is called "hold" mostly because this only stops scheduling of tasks,
and does not actually kill the worker.
Parameters
----------
worker_id : str
Worker id to be put on hold
"""
self.command_client.run("HOLD_WORKER;{}".format(worker_id))
logger.debug("Sent hold request to manager: {}".format(worker_id))
@property
def outstanding(self) -> int:
"""Returns the count of tasks outstanding across the interchange
and managers"""
return len(self.tasks)
@property
def connected_workers(self) -> int:
"""Returns the count of workers across all connected managers"""
return self.command_client.run("WORKERS")
def connected_managers(self) -> List[Dict[str, typing.Any]]:
"""Returns a list of dicts one for each connected managers.
The dict contains info on manager(str:manager_id), block_id,
worker_count, tasks(int), idle_durations(float), active(bool)
"""
return self.command_client.run("MANAGERS")
def connected_blocks(self) -> List[str]:
"""List of connected block ids"""
return self.command_client.run("CONNECTED_BLOCKS")
def _hold_block(self, block_id):
""" Sends hold command to all managers which are in a specific block
Parameters
----------
block_id : str
Block identifier of the block to be put on hold
"""
managers = self.connected_managers()
for manager in managers:
if manager['block_id'] == block_id:
logger.debug("Sending hold to manager: {}".format(manager['manager']))
self.hold_worker(manager['manager'])
def submit(self, func, resource_specification, *args, **kwargs):
"""Submits work to the outgoing_q.
The outgoing_q is an external process listens on this
queue for new work. This method behaves like a submit call as described here `Python docs: <https://docs.python.org/3/
library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor>`_
Args:
- func (callable) : Callable function
- resource_specification (dict): Dictionary containing relevant info about task that is needed by underlying executors.
- args (list) : List of arbitrary positional arguments.
Kwargs:
- kwargs (dict) : A dictionary of arbitrary keyword args for func.
Returns:
Future
"""
self.validate_resource_spec(resource_specification)
if self.bad_state_is_set:
raise self.executor_exception
self._task_counter += 1
task_id = self._task_counter
# handle people sending blobs gracefully
if logger.getEffectiveLevel() <= logging.DEBUG:
args_to_print = tuple([ar if len(ar := repr(arg)) < 100 else (ar[:100] + '...') for arg in args])
logger.debug("Pushing function {} to queue with args {}".format(func, args_to_print))
fut = Future()
fut.parsl_executor_task_id = task_id
self.tasks[task_id] = fut
try:
fn_buf = pack_res_spec_apply_message(func, args, kwargs,
resource_specification=resource_specification,
buffer_threshold=1024 * 1024)
except TypeError:
raise SerializationError(func.__name__)
msg = {"task_id": task_id, "resource_spec": resource_specification, "buffer": fn_buf}
# Post task to the outgoing queue
self.outgoing_q.put(msg)
# Return the future
return fut
@property
def workers_per_node(self) -> Union[int, float]:
return self._workers_per_node
def scale_in(self, blocks: int, max_idletime: Optional[float] = None) -> List[str]:
"""Scale in the number of active blocks by specified amount.
The scale in method here is very rude. It doesn't give the workers
the opportunity to finish current tasks or cleanup. This is tracked
in issue #530
Parameters
----------
blocks : int
Number of blocks to terminate and scale_in by
max_idletime: float
A time to indicate how long a block should be idle to be a
candidate for scaling in.
If None then blocks will be force scaled in even if they are busy.
If a float, then only idle blocks will be terminated, which may be less than
the requested number.
Returns
-------
List of block IDs scaled in
"""
logger.debug(f"Scale in called, blocks={blocks}")
@dataclass
class BlockInfo:
tasks: int # sum of tasks in this block
idle: float # shortest idle time of any manager in this block
# block_info will be populated from two sources:
# the Job Status Poller mutable block list, and the list of blocks
# which have connected to the interchange.
def new_block_info():
return BlockInfo(tasks=0, idle=float('inf'))
block_info: Dict[str, BlockInfo] = defaultdict(new_block_info)
for block_id, job_status in self._status.items():
if job_status.state not in TERMINAL_STATES:
block_info[block_id] = new_block_info()
managers = self.connected_managers()
for manager in managers:
if not manager['active']:
continue
b_id = manager['block_id']
block_info[b_id].tasks += manager['tasks']
block_info[b_id].idle = min(block_info[b_id].idle, manager['idle_duration'])
# The scaling policy is that longest idle blocks should be scaled down
# in preference to least idle (most recently used) blocks.
# Other policies could be implemented here.
sorted_blocks = sorted(block_info.items(), key=lambda item: (-item[1].idle, item[1].tasks))
logger.debug(f"Scale in selecting from {len(sorted_blocks)} blocks")
if max_idletime is None:
block_ids_to_kill = [x[0] for x in sorted_blocks[:blocks]]
else:
block_ids_to_kill = []
for x in sorted_blocks:
if x[1].idle > max_idletime and x[1].tasks == 0:
block_ids_to_kill.append(x[0])
if len(block_ids_to_kill) == blocks:
break
logger.debug("Selected idle block ids to kill: {}".format(
block_ids_to_kill))
if len(block_ids_to_kill) < blocks:
logger.warning(f"Could not find enough blocks to kill: wanted {blocks} but only selected {len(block_ids_to_kill)}")
# Hold the block
for block_id in block_ids_to_kill:
self._hold_block(block_id)
# Now kill via provider
# Potential issue with multiple threads trying to remove the same blocks
to_kill = [self.blocks_to_job_id[bid] for bid in block_ids_to_kill if bid in self.blocks_to_job_id]
r = self.provider.cancel(to_kill)
job_ids = self._filter_scale_in_ids(to_kill, r)
# to_kill block_ids are fetched from self.blocks_to_job_id
# If a block_id is in self.blocks_to_job_id, it must exist in self.job_ids_to_block
block_ids_killed = [self.job_ids_to_block[jid] for jid in job_ids]
return block_ids_killed
def _get_launch_command(self, block_id: str) -> str:
if self.launch_cmd is None:
raise ScalingFailed(self, "No launch command")
launch_cmd = self.launch_cmd.format(block_id=block_id)
return launch_cmd
def status(self) -> Dict[str, JobStatus]:
job_status = super().status()
connected_blocks = self.connected_blocks()
for job_id in job_status:
job_info = job_status[job_id]
if job_info.terminal and job_id not in connected_blocks and job_info.state != JobState.SCALED_IN:
logger.debug("Rewriting job %s from status %s to MISSING", job_id, job_info)
job_status[job_id].state = JobState.MISSING
if job_status[job_id].message is None:
job_status[job_id].message = (
"Job is marked as MISSING since the workers failed to register "
"to the executor. Check the stdout/stderr logs in the submit_scripts "
"directory for more debug information"
)
return job_status
def shutdown(self, timeout: float = 10.0):
"""Shutdown the executor, including the interchange. This does not
shut down any workers directly - workers should be terminated by the
scaling mechanism or by heartbeat timeout.
Parameters
----------
timeout : float
Amount of time to wait for the Interchange process to terminate before
we forcefully kill it.
"""
if self.interchange_proc is None:
logger.info("HighThroughputExecutor has not started; skipping shutdown")
return
logger.info("Attempting HighThroughputExecutor shutdown")
logger.info("Terminating interchange and result queue thread")
self._result_queue_thread_exit.set()
self.interchange_proc.terminate()
try:
self.interchange_proc.wait(timeout=timeout)
except subprocess.TimeoutExpired:
logger.warning("Unable to terminate Interchange process; sending SIGKILL")
self.interchange_proc.kill()
logger.info("Closing ZMQ pipes")
# These pipes are used in a thread unsafe manner. If you have traced a
# problem to this block of code, you might consider what is happening
# with other threads that access these.
# incoming_q is not closed here because it is used by the results queue
# worker which is not shut down at this point.
if hasattr(self, 'outgoing_q'):
logger.info("Closing outgoing_q")
self.outgoing_q.close()
if hasattr(self, 'command_client'):
logger.info("Closing command client")
self.command_client.close()
logger.info("Waiting for result queue thread exit")
if self._result_queue_thread:
self._result_queue_thread.join()
logger.info("Finished HighThroughputExecutor shutdown attempt")
def get_usage_information(self):
return {"mpi": self.enable_mpi_mode}
|