1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
|
import math
import networkx as nx
import numpy as np
import pandas as pd
import plotly.figure_factory as ff
import plotly.graph_objs as go
from plotly.offline import plot
from parsl.monitoring.visualization.utils import (
DB_DATE_FORMAT,
num_to_timestamp,
timestamp_to_int,
)
# gantt_colors must assign a color value for every state name defined
# in parsl/dataflow/states.py
gantt_colors = {'unsched': 'rgb(240, 240, 240)',
'pending': 'rgb(168, 168, 168)',
'launched': 'rgb(100, 255, 255)',
'running': 'rgb(0, 0, 255)',
'running_ended': 'rgb(64, 64, 255)',
'joining': 'rgb(128, 128, 255)',
'dep_fail': 'rgb(255, 128, 255)',
'failed': 'rgb(200, 0, 0)',
'exec_done': 'rgb(0, 200, 0)',
'memo_done': 'rgb(64, 200, 64)',
'fail_retryable': 'rgb(200, 128,128)'
}
def task_gantt_plot(df_task, df_status, time_completed=None):
if df_task.empty:
return None
# if the workflow is not recorded as completed, then assume
# that tasks should continue in their last state until now,
# rather than the workflow end time.
if not time_completed:
time_completed = df_status['timestamp'].max()
df_task = df_task.sort_values(by=['task_id'], ascending=False)
parsl_tasks = []
for i, task in df_task.iterrows():
task_id = task['task_id']
description = "Task ID: {}, app: {}".format(task['task_id'], task['task_func_name'])
statuses = df_status.loc[df_status['task_id'] == task_id].sort_values(by=['timestamp'])
last_status = None
for j, status in statuses.iterrows():
if last_status is not None:
last_status_bar = {'Task': description,
'Start': last_status['timestamp'],
'Finish': status['timestamp'],
'Resource': last_status['task_status_name']
}
parsl_tasks.extend([last_status_bar])
last_status = status
# TODO: factor with above?
if last_status is not None:
last_status_bar = {'Task': description,
'Start': last_status['timestamp'],
'Finish': time_completed,
'Resource': last_status['task_status_name']
}
parsl_tasks.extend([last_status_bar])
fig = ff.create_gantt(parsl_tasks,
title="",
colors=gantt_colors,
group_tasks=True,
show_colorbar=True,
index_col='Resource',
)
fig['layout']['yaxis']['title'] = 'Task'
fig['layout']['yaxis']['showticklabels'] = False
fig['layout']['xaxis']['title'] = 'Time'
return plot(fig, show_link=False, output_type="div", include_plotlyjs=False)
def task_per_app_plot(task, status, time_completed):
try:
task['epoch_time_running'] = (pd.to_datetime(
task['task_try_time_running']) - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')
task['epoch_time_returned'] = (pd.to_datetime(
task['task_time_returned']) - pd.Timestamp("1970-01-01")) // pd.Timedelta('1s')
start = int(task['epoch_time_running'].min())
end = int(task['epoch_time_returned'].max())
tasks_per_app = {}
all_tasks = [0] * (end - start + 1)
for i, row in task.iterrows():
if math.isnan(row['epoch_time_running']):
# Skip rows with no running start time.
continue
if math.isnan(row['epoch_time_returned']):
time_returned = end
else:
time_returned = int(row['epoch_time_returned'])
if row['task_func_name'] not in tasks_per_app:
tasks_per_app[row['task_func_name']] = [0] * (end - start + 1)
for j in range(int(row['epoch_time_running']) + 1, time_returned + 1):
tasks_per_app[row['task_func_name']][j - start] += 1
all_tasks[j - start] += 1
fig = go.Figure(
data=[go.Scatter(x=list(range(0, end - start + 1)),
y=all_tasks,
name='All',
)] +
[go.Scatter(x=list(range(0, end - start + 1)),
y=tasks_per_app[app],
name=app,
) for app in tasks_per_app],
layout=go.Layout(xaxis=dict(autorange=True,
title='Time (seconds)'),
yaxis=dict(title='Number of tasks'),
title="Execution tries per app"))
return plot(fig, show_link=False, output_type="div", include_plotlyjs=False)
except Exception as e:
return "The tasks per app plot cannot be generated because of exception {}.".format(e)
def total_tasks_plot(df_task, df_status, columns=20):
min_time = timestamp_to_int(min(df_status['timestamp']))
max_time = timestamp_to_int(max(df_status['timestamp']))
time_step = (max_time - min_time) / columns
x_axis = []
for i in np.arange(min_time, max_time + time_step, time_step):
x_axis.append(num_to_timestamp(i).strftime(DB_DATE_FORMAT))
# Fill up dict "apps" like: {app1: [#task1, #task2], app2: [#task4], app3: [#task3]}
apps_dict = dict()
for i in range(len(df_task)):
row = df_task.iloc[i]
if row['task_func_name'] in apps_dict:
apps_dict[row['task_func_name']].append(row['task_id'])
else:
apps_dict[row['task_func_name']] = [row['task_id']]
def y_axis_setup(value):
items = []
for app, tasks in apps_dict.items():
tmp = []
task = df_status[df_status['task_id'].isin(tasks)]
for i in range(len(x_axis) - 1):
x = task['timestamp'] >= x_axis[i]
y = task['timestamp'] < x_axis[i + 1]
tmp.append(sum(task.loc[x & y]['task_status_name'] == value))
items = np.sum([items, tmp], axis=0)
return items
y_axis_done = y_axis_setup('done')
y_axis_failed = y_axis_setup('failed')
fig = go.Figure(data=[go.Bar(x=x_axis[:-1],
y=y_axis_done,
name='done'),
go.Bar(x=x_axis[:-1],
y=y_axis_failed,
name='failed')],
layout=go.Layout(xaxis=dict(tickformat='%m-%d\n%H:%M:%S',
autorange=True,
title='Time'),
yaxis=dict(tickformat=',d',
title='Running tasks.' ' Bin width: ' + num_to_timestamp(time_step).strftime('%Mm%Ss')),
annotations=[
dict(
x=0,
y=1.07,
showarrow=False,
text='Total Done: ' +
str(sum(y_axis_done)),
xref='paper',
yref='paper'
),
dict(
x=0,
y=1.05,
showarrow=False,
text='Total Failed: ' +
str(sum(y_axis_failed)),
xref='paper',
yref='paper'
),
],
barmode='stack',
title="Total tasks"))
return plot(fig, show_link=False, output_type="div", include_plotlyjs=False)
dag_state_colors = {"unsched": (0, 'rgb(240, 240, 240)'),
"pending": (1, 'rgb(168, 168, 168)'),
"launched": (2, 'rgb(100, 255, 255)'),
"running": (3, 'rgb(0, 0, 255)'),
"dep_fail": (4, 'rgb(255, 128, 255)'),
"failed": (5, 'rgb(200, 0, 0)'),
"exec_done": (6, 'rgb(0, 200, 0)'),
"memo_done": (7, 'rgb(64, 200, 64)'),
"fail_retryable": (8, 'rgb(200, 128,128)'),
"joining": (9, 'rgb(128, 128, 255)'),
"running_ended": (10, 'rgb(64, 64, 255)')
}
def workflow_dag_plot(df_tasks, group_by_apps=True):
G = nx.DiGraph(directed=True)
nodes = df_tasks['task_id'].unique()
dic = df_tasks.set_index('task_id').to_dict()
G.add_nodes_from(nodes)
# Add edges or links between the nodes:
edges = []
for k, v in dic['task_depends'].items():
if v:
adj = v.split(",")
for e in adj:
edges.append((int(e), k))
G.add_edges_from(edges)
node_positions = nx.nx_pydot.pydot_layout(G, prog='dot')
if group_by_apps:
groups_list = {app: (i, None) for i, app in enumerate(
df_tasks['task_func_name'].unique())}
else:
groups_list = dag_state_colors
node_traces = [...] * len(groups_list)
for k, (index, color) in groups_list.items():
node_trace = go.Scatter(
x=[],
y=[],
text=[],
mode='markers',
textposition='top center',
textfont=dict(
family='arial',
size=18,
color='rgb(0,0,0)'
),
hoverinfo='text',
name=k, # legend app_name here
marker=dict(
showscale=False,
color=color,
size=11,
line=dict(width=1, color='rgb(0,0,0)')))
node_traces[index] = node_trace
for node in node_positions:
x, y = node_positions[node]
if group_by_apps:
name = dic['task_func_name'][node]
else:
name = dic['task_status_name'][node]
index, _ = groups_list[name]
node_traces[index]['x'] += tuple([x])
node_traces[index]['y'] += tuple([y])
node_traces[index]['text'] += tuple(
["{}:{}".format(dic['task_func_name'][node], node)])
# The edges will be drawn as lines:
edge_trace = go.Scatter(
x=[],
y=[],
line=dict(width=1, color='rgb(160,160,160)'),
hoverinfo='none',
# showlegend=False,
name='Dependency',
mode='lines')
for edge in G.edges:
x0, y0 = node_positions[edge[0]]
x1, y1 = node_positions[edge[1]]
edge_trace['x'] += tuple([x0, x1, None])
edge_trace['y'] += tuple([y0, y1, None])
# Create figure:
fig = go.Figure(data=[edge_trace] + node_traces,
layout=go.Layout(
title='Workflow DAG',
titlefont=dict(size=16),
showlegend=True,
hovermode='closest',
margin=dict(b=20, l=5, r=5, t=40), # noqa: E741
xaxis=dict(showgrid=False, zeroline=False,
showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False)))
return plot(fig, show_link=False, output_type="div", include_plotlyjs=False)
|