1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432
|
#### PATTERN | TEXT | PARSER #######################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
import os
import sys
import re
import string
import types
import codecs
from xml.etree import cElementTree
from itertools import chain
from math import log
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
from pattern.text.tree import Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table
from pattern.text.tree import SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
DEFAULT = "default"
#--- STRING FUNCTIONS ------------------------------------------------------------------------------
# Latin-1 (ISO-8859-1) encoding is identical to Windows-1252 except for the code points 128-159:
# Latin-1 assigns control codes in this range, Windows-1252 has characters, punctuation, symbols
# assigned to these code points.
def decode_string(v, encoding="utf-8"):
""" Returns the given value as a Unicode string (if possible).
"""
if isinstance(encoding, basestring):
encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore"))
if isinstance(v, str):
for e in encoding:
try: return v.decode(*e)
except:
pass
return v
return unicode(v)
def encode_string(v, encoding="utf-8"):
""" Returns the given value as a Python byte string (if possible).
"""
if isinstance(encoding, basestring):
encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore"))
if isinstance(v, unicode):
for e in encoding:
try: return v.encode(*e)
except:
pass
return v
return str(v)
decode_utf8 = decode_string
encode_utf8 = encode_string
PUNCTUATION = ".,;:!?()[]{}`'\"@#$^&*+-|=~_"
def ngrams(string, n=3, punctuation=PUNCTUATION, continuous=False):
""" Returns a list of n-grams (tuples of n successive words) from the given string.
Alternatively, you can supply a Text or Sentence object.
With continuous=False, n-grams will not run over sentence markers (i.e., .!?).
Punctuation marks are stripped from words.
"""
def strip_punctuation(s, punctuation=set(punctuation)):
return [w for w in s if (isinstance(w, Word) and w.string or w) not in punctuation]
if n <= 0:
return []
if isinstance(string, list):
s = [strip_punctuation(string)]
if isinstance(string, basestring):
s = [strip_punctuation(s.split(" ")) for s in tokenize(string)]
if isinstance(string, Sentence):
s = [strip_punctuation(string)]
if isinstance(string, Text):
s = [strip_punctuation(s) for s in string]
if continuous:
s = [sum(s, [])]
g = []
for s in s:
#s = [None] + s + [None]
g.extend([tuple(s[i:i+n]) for i in range(len(s)-n+1)])
return g
FLOODING = re.compile(r"((.)\2{2,})", re.I) # ooo, xxx, !!!, ...
def deflood(s, n=3):
""" Returns the string with no more than n repeated characters, e.g.,
deflood("NIIIICE!!", n=1) => "Nice!"
deflood("nice.....", n=3) => "nice..."
"""
if n == 0:
return s[0:0]
return re.sub(r"((.)\2{%s,})" % (n-1), lambda m: m.group(1)[0] * n, s)
def decamel(s, separator="_"):
""" Returns the string with CamelCase converted to underscores, e.g.,
decamel("TomDeSmedt", "-") => "tom-de-smedt"
decamel("getHTTPResponse2) => "get_http_response2"
"""
return re.sub(r"((?<=[a-z0-9])[A-Z]|(?!^)[A-Z](?=[a-z]))", separator + "\\1", s).lower()
def pprint(string, token=[WORD, POS, CHUNK, PNP], column=4):
""" Pretty-prints the output of Parser.parse() as a table with outlined columns.
Alternatively, you can supply a tree.Text or tree.Sentence object.
"""
if isinstance(string, basestring):
print("\n\n".join([table(sentence, fill=column) for sentence in Text(string, token)]))
if isinstance(string, Text):
print("\n\n".join([table(sentence, fill=column) for sentence in string]))
if isinstance(string, Sentence):
print(table(string, fill=column))
#--- LAZY DICTIONARY -------------------------------------------------------------------------------
# A lazy dictionary is empty until one of its methods is called.
# This way many instances (e.g., lexicons) can be created without using memory until used.
class lazydict(dict):
def load(self):
# Must be overridden in a subclass.
# Must load data with dict.__setitem__(self, k, v) instead of lazydict[k] = v.
pass
def _lazy(self, method, *args):
""" If the dictionary is empty, calls lazydict.load().
Replaces lazydict.method() with dict.method() and calls it.
"""
if dict.__len__(self) == 0:
self.load()
setattr(self, method, types.MethodType(getattr(dict, method), self))
return getattr(dict, method)(self, *args)
def __repr__(self):
return self._lazy("__repr__")
def __len__(self):
return self._lazy("__len__")
def __iter__(self):
return self._lazy("__iter__")
def __contains__(self, *args):
return self._lazy("__contains__", *args)
def __getitem__(self, *args):
return self._lazy("__getitem__", *args)
def __setitem__(self, *args):
return self._lazy("__setitem__", *args)
def __delitem__(self, *args):
return self._lazy("__delitem__", *args)
def setdefault(self, *args):
return self._lazy("setdefault", *args)
def get(self, *args, **kwargs):
return self._lazy("get", *args)
def items(self):
return self._lazy("items")
def keys(self):
return self._lazy("keys")
def values(self):
return self._lazy("values")
def update(self, *args):
return self._lazy("update", *args)
def pop(self, *args):
return self._lazy("pop", *args)
def popitem(self, *args):
return self._lazy("popitem", *args)
#--- LAZY LIST -------------------------------------------------------------------------------------
class lazylist(list):
def load(self):
# Must be overridden in a subclass.
# Must load data with list.append(self, v) instead of lazylist.append(v).
pass
def _lazy(self, method, *args):
""" If the list is empty, calls lazylist.load().
Replaces lazylist.method() with list.method() and calls it.
"""
if list.__len__(self) == 0:
self.load()
setattr(self, method, types.MethodType(getattr(list, method), self))
return getattr(list, method)(self, *args)
def __repr__(self):
return self._lazy("__repr__")
def __len__(self):
return self._lazy("__len__")
def __iter__(self):
return self._lazy("__iter__")
def __contains__(self, *args):
return self._lazy("__contains__", *args)
def __getitem__(self, *args):
return self._lazy("__getitem__", *args)
def __setitem__(self, *args):
return self._lazy("__setitem__", *args)
def __delitem__(self, *args):
return self._lazy("__delitem__", *args)
def insert(self, *args):
return self._lazy("insert", *args)
def append(self, *args):
return self._lazy("append", *args)
def extend(self, *args):
return self._lazy("extend", *args)
def remove(self, *args):
return self._lazy("remove", *args)
def pop(self, *args):
return self._lazy("pop", *args)
def index(self, *args):
return self._lazy("index", *args)
def count(self, *args):
return self._lazy("count", *args)
#--- LAZY SET --------------------------------------------------------------------------------------
class lazyset(set):
def load(self):
# Must be overridden in a subclass.
# Must load data with list.append(self, v) instead of lazylist.append(v).
pass
def _lazy(self, method, *args):
""" If the list is empty, calls lazylist.load().
Replaces lazylist.method() with list.method() and calls it.
"""
print "!"
if set.__len__(self) == 0:
self.load()
setattr(self, method, types.MethodType(getattr(set, method), self))
return getattr(set, method)(self, *args)
def __repr__(self):
return self._lazy("__repr__")
def __len__(self):
return self._lazy("__len__")
def __iter__(self):
return self._lazy("__iter__")
def __contains__(self, *args):
return self._lazy("__contains__", *args)
def __sub__(self, *args):
return self._lazy("__sub__", *args)
def __and__(self, *args):
return self._lazy("__and__", *args)
def __or__(self, *args):
return self._lazy("__or__", *args)
def __xor__(self, *args):
return self._lazy("__xor__", *args)
def __isub__(self, *args):
return self._lazy("__isub__", *args)
def __iand__(self, *args):
return self._lazy("__iand__", *args)
def __ior__(self, *args):
return self._lazy("__ior__", *args)
def __ixor__(self, *args):
return self._lazy("__ixor__", *args)
def __gt__(self, *args):
return self._lazy("__gt__", *args)
def __lt__(self, *args):
return self._lazy("__lt__", *args)
def __gte__(self, *args):
return self._lazy("__gte__", *args)
def __lte__(self, *args):
return self._lazy("__lte__", *args)
def add(self, *args):
return self._lazy("add", *args)
def pop(self, *args):
return self._lazy("pop", *args)
def remove(self, *args):
return self._lazy("remove", *args)
def discard(self, *args):
return self._lazy("discard", *args)
def isdisjoint(self, *args):
return self._lazy("isdisjoint", *args)
def issubset(self, *args):
return self._lazy("issubset", *args)
def issuperset(self, *args):
return self._lazy("issuperset", *args)
def union(self, *args):
return self._lazy("union", *args)
def intersection(self, *args):
return self._lazy("intersection", *args)
def difference(self, *args):
return self._lazy("difference", *args)
#### PARSER ########################################################################################
# Pattern's text parsers are based on Brill's algorithm, or optionally on a trained language model.
# Brill's algorithm automatically acquires a lexicon of known words (aka tag dictionary),
# and a set of rules for tagging unknown words from a training corpus.
# Morphological rules are used to tag unknown words based on word suffixes (e.g., -ly = adverb).
# Contextual rules are used to tag unknown words based on a word's role in the sentence.
# Named entity rules are used to annotate proper nouns (NNP's: Google = NNP-ORG).
# When available, the parser will use a faster and more accurate language model (SLP, SVM, NB, ...).
#--- LEXICON ---------------------------------------------------------------------------------------
def _read(path, encoding="utf-8", comment=";;;"):
""" Returns an iterator over the lines in the file at the given path,
strippping comments and decoding each line to Unicode.
"""
if path:
if isinstance(path, basestring) and os.path.exists(path):
# From file path.
f = open(path, "rb")
elif isinstance(path, basestring):
# From string.
f = path.splitlines()
else:
# From file or buffer.
f = path
for i, line in enumerate(f):
line = line.strip(codecs.BOM_UTF8) if i == 0 and isinstance(line, str) else line
line = line.strip()
line = decode_utf8(line, encoding)
if not line or (comment and line.startswith(comment)):
continue
yield line
raise StopIteration
class Lexicon(lazydict):
def __init__(self, path=""):
""" A dictionary of known words and their part-of-speech tags.
"""
self._path = path
@property
def path(self):
return self._path
def load(self):
# Arnold NNP x
dict.update(self, (x.split(" ")[:2] for x in _read(self._path)))
#--- FREQUENCY -------------------------------------------------------------------------------------
class Frequency(lazydict):
def __init__(self, path=""):
""" A dictionary of words and their relative document frequency.
"""
self._path = path
@property
def path(self):
return self._path
def load(self):
# and 0.4805
for x in _read(self.path):
x = x.split()
dict.__setitem__(self, x[0], float(x[1]))
#--- LANGUAGE MODEL --------------------------------------------------------------------------------
# A language model determines the statistically most probable tag for an unknown word.
# A pattern.vector Classifier such as SLP can be used to produce a language model,
# by generalizing patterns from a treebank (i.e., a corpus of hand-tagged texts).
# For example:
# "generalizing/VBG from/IN patterns/NNS" and
# "dancing/VBG with/IN squirrels/NNS"
# both have a pattern -ing/VBG + [?] + NNS => IN.
# Unknown words preceded by -ing and followed by a plural noun will be tagged IN (preposition),
# unless (put simply) a majority of other patterns learned by the classifier disagrees.
class Model(object):
def __init__(self, path="", classifier=None, known=set(), unknown=set()):
""" A language model using a classifier (e.g., SLP, SVM) trained on morphology and context.
"""
try:
from pattern.vector import Classifier
from pattern.vector import Perceptron
except ImportError:
sys.path.insert(0, os.path.join(MODULE, ".."))
from vector import Classifier
from vector import Perceptron
self._path = path
# Use a property instead of a subclass, so users can choose their own classifier.
self._classifier = Classifier.load(path) if path else classifier or Perceptron()
# Parser.lexicon entries can be ambiguous (e.g., about/IN is RB 25% of the time).
# Parser.lexicon entries also in Model.unknown are overruled by the model.
# Parser.lexicon entries also in Model.known are not learned by the model
# (only their suffix and context is learned, see Model._v() below).
self.unknown = unknown | self._classifier._data.get("model_unknown", set())
self.known = known
@property
def path(self):
return self._path
@classmethod
def load(self, lexicon={}, path=""):
return Model(lexicon, path)
def save(self, path, final=True):
self._classifier._data["model_unknown"] = self.unknown
self._classifier.save(path, final) # final = unlink training data (smaller file).
def train(self, token, tag, previous=None, next=None):
""" Trains the model to predict the given tag for the given token,
in context of the given previous and next (token, tag)-tuples.
"""
self._classifier.train(self._v(token, previous, next), type=tag)
def classify(self, token, previous=None, next=None, **kwargs):
""" Returns the predicted tag for the given token,
in context of the given previous and next (token, tag)-tuples.
"""
return self._classifier.classify(self._v(token, previous, next), **kwargs)
def apply(self, token, previous=(None, None), next=(None, None)):
""" Returns a (token, tag)-tuple for the given token,
in context of the given previous and next (token, tag)-tuples.
"""
return [token[0], self._classifier.classify(self._v(token[0], previous, next))]
def _v(self, token, previous=None, next=None):
""" Returns a training vector for the given (word, tag)-tuple and its context.
"""
def f(v, s1, s2):
if s2:
v[s1 + " " + s2] = 1
p, n = previous, next
p = ("", "") if not p else (p[0] or "", p[1] or "")
n = ("", "") if not n else (n[0] or "", n[1] or "")
v = {}
f(v, "b", "b") # Bias.
f(v, "h", token[0]) # Capitalization.
f(v, "w", token[-6:] if token not in self.known or token in self.unknown else "")
f(v, "x", token[-3:]) # Word suffix.
f(v, "-x", p[0][-3:]) # Word suffix left.
f(v, "+x", n[0][-3:]) # Word suffix right.
f(v, "-t", p[1]) # Tag left.
f(v, "-+", p[1] + n[1]) # Tag left + right.
f(v, "+t", n[1]) # Tag right.
return v
def _get_description(self):
return self._classifier.description
def _set_description(self, s):
self._classifier.description = s
description = property(_get_description, _set_description)
#--- MORPHOLOGICAL RULES ---------------------------------------------------------------------------
# Brill's algorithm generates lexical (i.e., morphological) rules in the following format:
# NN s fhassuf 1 NNS x => unknown words ending in -s and tagged NN change to NNS.
# ly hassuf 2 RB x => unknown words ending in -ly change to RB.
class Morphology(lazylist):
def __init__(self, path="", known={}):
""" A list of rules based on word morphology (prefix, suffix).
"""
self.known = known
self._path = path
self._cmd = set((
"word", # Word is x.
"char", # Word contains x.
"haspref", # Word starts with x.
"hassuf", # Word end with x.
"addpref", # x + word is in lexicon.
"addsuf", # Word + x is in lexicon.
"deletepref", # Word without x at the start is in lexicon.
"deletesuf", # Word without x at the end is in lexicon.
"goodleft", # Word preceded by word x.
"goodright", # Word followed by word x.
))
self._cmd.update([("f" + x) for x in self._cmd])
@property
def path(self):
return self._path
def load(self):
# ["NN", "s", "fhassuf", "1", "NNS", "x"]
list.extend(self, (x.split() for x in _read(self._path)))
def apply(self, token, previous=(None, None), next=(None, None)):
""" Applies lexical rules to the given token, which is a [word, tag] list.
"""
w = token[0]
for r in self:
if r[1] in self._cmd: # Rule = ly hassuf 2 RB x
f, x, pos, cmd = bool(0), r[0], r[-2], r[1].lower()
if r[2] in self._cmd: # Rule = NN s fhassuf 1 NNS x
f, x, pos, cmd = bool(1), r[1], r[-2], r[2].lower().lstrip("f")
if f and token[1] != r[0]:
continue
if (cmd == "word" and x == w) \
or (cmd == "char" and x in w) \
or (cmd == "haspref" and w.startswith(x)) \
or (cmd == "hassuf" and w.endswith(x)) \
or (cmd == "addpref" and x + w in self.known) \
or (cmd == "addsuf" and w + x in self.known) \
or (cmd == "deletepref" and w.startswith(x) and w[len(x):] in self.known) \
or (cmd == "deletesuf" and w.endswith(x) and w[:-len(x)] in self.known) \
or (cmd == "goodleft" and x == next[0]) \
or (cmd == "goodright" and x == previous[0]):
token[1] = pos
return token
def insert(self, i, tag, affix, cmd="hassuf", tagged=None):
""" Inserts a new rule that assigns the given tag to words with the given affix,
e.g., Morphology.append("RB", "-ly").
"""
if affix.startswith("-") and affix.endswith("-"):
affix, cmd = affix[+1:-1], "char"
if affix.startswith("-"):
affix, cmd = affix[+1:-0], "hassuf"
if affix.endswith("-"):
affix, cmd = affix[+0:-1], "haspref"
if tagged:
r = [tagged, affix, "f"+cmd.lstrip("f"), tag, "x"]
else:
r = [affix, cmd.lstrip("f"), tag, "x"]
lazylist.insert(self, i, r)
def append(self, *args, **kwargs):
self.insert(len(self)-1, *args, **kwargs)
def extend(self, rules=[]):
for r in rules:
self.append(*r)
#--- CONTEXT RULES ---------------------------------------------------------------------------------
# Brill's algorithm generates contextual rules in the following format:
# VBD VB PREVTAG TO => unknown word tagged VBD changes to VB if preceded by a word tagged TO.
class Context(lazylist):
def __init__(self, path=""):
""" A list of rules based on context (preceding and following words).
"""
self._path = path
self._cmd = set((
"prevtag", # Preceding word is tagged x.
"nexttag", # Following word is tagged x.
"prev2tag", # Word 2 before is tagged x.
"next2tag", # Word 2 after is tagged x.
"prev1or2tag", # One of 2 preceding words is tagged x.
"next1or2tag", # One of 2 following words is tagged x.
"prev1or2or3tag", # One of 3 preceding words is tagged x.
"next1or2or3tag", # One of 3 following words is tagged x.
"surroundtag", # Preceding word is tagged x and following word is tagged y.
"curwd", # Current word is x.
"prevwd", # Preceding word is x.
"nextwd", # Following word is x.
"prev1or2wd", # One of 2 preceding words is x.
"next1or2wd", # One of 2 following words is x.
"next1or2or3wd", # One of 3 preceding words is x.
"prev1or2or3wd", # One of 3 following words is x.
"prevwdtag", # Preceding word is x and tagged y.
"nextwdtag", # Following word is x and tagged y.
"wdprevtag", # Current word is y and preceding word is tagged x.
"wdnexttag", # Current word is x and following word is tagged y.
"wdand2aft", # Current word is x and word 2 after is y.
"wdand2tagbfr", # Current word is y and word 2 before is tagged x.
"wdand2tagaft", # Current word is x and word 2 after is tagged y.
"lbigram", # Current word is y and word before is x.
"rbigram", # Current word is x and word after is y.
"prevbigram", # Preceding word is tagged x and word before is tagged y.
"nextbigram", # Following word is tagged x and word after is tagged y.
))
@property
def path(self):
return self._path
def load(self):
# ["VBD", "VB", "PREVTAG", "TO"]
list.extend(self, (x.split() for x in _read(self._path)))
def apply(self, tokens):
""" Applies contextual rules to the given list of tokens,
where each token is a [word, tag] list.
"""
o = [("STAART", "STAART")] * 3 # Empty delimiters for look ahead/back.
t = o + tokens + o
for i, token in enumerate(t):
for r in self:
if token[1] == "STAART":
continue
if token[1] != r[0] and r[0] != "*":
continue
cmd, x, y = r[2], r[3], r[4] if len(r) > 4 else ""
cmd = cmd.lower()
if (cmd == "prevtag" and x == t[i-1][1]) \
or (cmd == "nexttag" and x == t[i+1][1]) \
or (cmd == "prev2tag" and x == t[i-2][1]) \
or (cmd == "next2tag" and x == t[i+2][1]) \
or (cmd == "prev1or2tag" and x in (t[i-1][1], t[i-2][1])) \
or (cmd == "next1or2tag" and x in (t[i+1][1], t[i+2][1])) \
or (cmd == "prev1or2or3tag" and x in (t[i-1][1], t[i-2][1], t[i-3][1])) \
or (cmd == "next1or2or3tag" and x in (t[i+1][1], t[i+2][1], t[i+3][1])) \
or (cmd == "surroundtag" and x == t[i-1][1] and y == t[i+1][1]) \
or (cmd == "curwd" and x == t[i+0][0]) \
or (cmd == "prevwd" and x == t[i-1][0]) \
or (cmd == "nextwd" and x == t[i+1][0]) \
or (cmd == "prev1or2wd" and x in (t[i-1][0], t[i-2][0])) \
or (cmd == "next1or2wd" and x in (t[i+1][0], t[i+2][0])) \
or (cmd == "prevwdtag" and x == t[i-1][0] and y == t[i-1][1]) \
or (cmd == "nextwdtag" and x == t[i+1][0] and y == t[i+1][1]) \
or (cmd == "wdprevtag" and x == t[i-1][1] and y == t[i+0][0]) \
or (cmd == "wdnexttag" and x == t[i+0][0] and y == t[i+1][1]) \
or (cmd == "wdand2aft" and x == t[i+0][0] and y == t[i+2][0]) \
or (cmd == "wdand2tagbfr" and x == t[i-2][1] and y == t[i+0][0]) \
or (cmd == "wdand2tagaft" and x == t[i+0][0] and y == t[i+2][1]) \
or (cmd == "lbigram" and x == t[i-1][0] and y == t[i+0][0]) \
or (cmd == "rbigram" and x == t[i+0][0] and y == t[i+1][0]) \
or (cmd == "prevbigram" and x == t[i-2][1] and y == t[i-1][1]) \
or (cmd == "nextbigram" and x == t[i+1][1] and y == t[i+2][1]):
t[i] = [t[i][0], r[1]]
return t[len(o):-len(o)]
def insert(self, i, tag1, tag2, cmd="prevtag", x=None, y=None):
""" Inserts a new rule that updates words with tag1 to tag2,
given constraints x and y, e.g., Context.append("TO < NN", "VB")
"""
if " < " in tag1 and not x and not y:
tag1, x = tag1.split(" < "); cmd="prevtag"
if " > " in tag1 and not x and not y:
x, tag1 = tag1.split(" > "); cmd="nexttag"
lazylist.insert(self, i, [tag1, tag2, cmd, x or "", y or ""])
def append(self, *args, **kwargs):
self.insert(len(self)-1, *args, **kwargs)
def extend(self, rules=[]):
for r in rules:
self.append(*r)
#--- NAMED ENTITY RECOGNIZER -----------------------------------------------------------------------
RE_ENTITY1 = re.compile(r"^http://") # http://www.domain.com/path
RE_ENTITY2 = re.compile(r"^www\..*?\.[com|org|net|edu|de|uk]$") # www.domain.com
RE_ENTITY3 = re.compile(r"^[\w\-\.\+]+@(\w[\w\-]+\.)+[\w\-]+$") # name@domain.com
class Entities(lazydict):
def __init__(self, path="", tag="NNP"):
""" A dictionary of named entities and their labels.
For domain names and e-mail adresses, regular expressions are used.
"""
self.tag = tag
self._path = path
self._cmd = ((
"pers", # Persons: George/NNP-PERS
"loc", # Locations: Washington/NNP-LOC
"org", # Organizations: Google/NNP-ORG
))
@property
def path(self):
return self._path
def load(self):
# ["Alexander", "the", "Great", "PERS"]
# {"alexander": [["alexander", "the", "great", "pers"], ...]}
for x in _read(self.path):
x = [x.lower() for x in x.split()]
dict.setdefault(self, x[0], []).append(x)
def apply(self, tokens):
""" Applies the named entity recognizer to the given list of tokens,
where each token is a [word, tag] list.
"""
# Note: we could also scan for patterns, e.g.,
# "my|his|her name is|was *" => NNP-PERS.
i = 0
while i < len(tokens):
w = tokens[i][0].lower()
if RE_ENTITY1.match(w) \
or RE_ENTITY2.match(w) \
or RE_ENTITY3.match(w):
tokens[i][1] = self.tag
if w in self:
for e in self[w]:
# Look ahead to see if successive words match the named entity.
e, tag = (e[:-1], "-"+e[-1].upper()) if e[-1] in self._cmd else (e, "")
b = True
for j, e in enumerate(e):
if i + j >= len(tokens) or tokens[i+j][0].lower() != e:
b = False; break
if b:
for token in tokens[i:i+j+1]:
token[1] = token[1] if token[1].startswith(self.tag) else self.tag
token[1] += tag
i += j
break
i += 1
return tokens
def append(self, entity, name="pers"):
""" Appends a named entity to the lexicon,
e.g., Entities.append("Hooloovoo", "PERS")
"""
e = map(lambda s: s.lower(), entity.split(" ") + [name])
self.setdefault(e[0], []).append(e)
def extend(self, entities):
for entity, name in entities:
self.append(entity, name)
#### PARSER ########################################################################################
#--- PARSER ----------------------------------------------------------------------------------------
# A shallow parser can be used to retrieve syntactic-semantic information from text
# in an efficient way (usually at the expense of deeper configurational syntactic information).
# The shallow parser in Pattern is meant to handle the following tasks:
# 1) Tokenization: split punctuation marks from words and find sentence periods.
# 2) Tagging: find the part-of-speech tag of each word (noun, verb, ...) in a sentence.
# 3) Chunking: find words that belong together in a phrase.
# 4) Role labeling: find the subject and object of the sentence.
# 5) Lemmatization: find the base form of each word ("was" => "is").
# WORD TAG CHUNK PNP ROLE LEMMA
#------------------------------------------------------------------
# The DT B-NP O NP-SBJ-1 the
# black JJ I-NP O NP-SBJ-1 black
# cat NN I-NP O NP-SBJ-1 cat
# sat VB B-VP O VP-1 sit
# on IN B-PP B-PNP PP-LOC on
# the DT B-NP I-PNP NP-OBJ-1 the
# mat NN I-NP I-PNP NP-OBJ-1 mat
# . . O O O .
# The example demonstrates what information can be retrieved:
#
# - the period is split from "mat." = the end of the sentence,
# - the words are annotated: NN (noun), VB (verb), JJ (adjective), DT (determiner), ...
# - the phrases are annotated: NP (noun phrase), VP (verb phrase), PNP (preposition), ...
# - the phrases are labeled: SBJ (subject), OBJ (object), LOC (location), ...
# - the phrase start is marked: B (begin), I (inside), O (outside),
# - the past tense "sat" is lemmatized => "sit".
# By default, the English parser uses the Penn Treebank II tagset:
# http://www.clips.ua.ac.be/pages/penn-treebank-tagset
PTB = PENN = "penn"
class Parser(object):
def __init__(self, lexicon={}, frequency={}, model=None, morphology=None, context=None, entities=None, default=("NN", "NNP", "CD"), language=None):
""" A simple shallow parser using a Brill-based part-of-speech tagger.
The given lexicon is a dictionary of known words and their part-of-speech tag.
The given default tags are used for unknown words.
Unknown words that start with a capital letter are tagged NNP (except for German).
Unknown words that contain only digits and punctuation are tagged CD.
Optionally, morphological and contextual rules (or a language model) can be used
to improve the tags of unknown words.
The given language can be used to discern between
Germanic and Romance languages for phrase chunking.
"""
self.lexicon = lexicon or {}
self.frequency = frequency or {}
self.model = model
self.morphology = morphology
self.context = context
self.entities = entities
self.default = default
self.language = language
# Load data.
f = lambda s: isinstance(s, basestring) or hasattr(s, "read")
if f(lexicon):
# Known words.
self.lexicon = Lexicon(path=lexicon)
if f(frequency):
# Word frequency.
self.frequency= Frequency(path=frequency)
if f(morphology):
# Unknown word rules based on word suffix.
self.morphology = Morphology(path=morphology, known=self.lexicon)
if f(context):
# Unknown word rules based on word context.
self.context = Context(path=context)
if f(entities):
# Named entities.
self.entities = Entities(path=entities, tag=default[1])
if f(model):
# Word part-of-speech classifier.
try:
self.model = Model(path=model)
except ImportError: # pattern.vector
pass
def find_keywords(self, string, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return find_keywords(string,
parser = self,
top = kwargs.pop("top", 10),
frequency = kwargs.pop("frequency", {}), **kwargs
)
def find_tokens(self, string, **kwargs):
""" Returns a list of sentences from the given string.
Punctuation marks are separated from each word by a space.
"""
# "The cat purs." => ["The cat purs ."]
return find_tokens(string,
punctuation = kwargs.get( "punctuation", PUNCTUATION),
abbreviations = kwargs.get("abbreviations", ABBREVIATIONS),
replace = kwargs.get( "replace", replacements),
linebreak = r"\n{2,}")
def find_tags(self, tokens, **kwargs):
""" Annotates the given list of tokens with part-of-speech tags.
Returns a list of tokens, where each token is now a [word, tag]-list.
"""
# ["The", "cat", "purs"] => [["The", "DT"], ["cat", "NN"], ["purs", "VB"]]
return find_tags(tokens,
lexicon = kwargs.get( "lexicon", self.lexicon or {}),
model = kwargs.get( "model", self.model),
morphology = kwargs.get("morphology", self.morphology),
context = kwargs.get( "context", self.context),
entities = kwargs.get( "entities", self.entities),
language = kwargs.get( "language", self.language),
default = kwargs.get( "default", self.default),
map = kwargs.get( "map", None))
def find_chunks(self, tokens, **kwargs):
""" Annotates the given list of tokens with chunk tags.
Several tags can be added, for example chunk + preposition tags.
"""
# [["The", "DT"], ["cat", "NN"], ["purs", "VB"]] =>
# [["The", "DT", "B-NP"], ["cat", "NN", "I-NP"], ["purs", "VB", "B-VP"]]
return find_prepositions(
find_chunks(tokens,
language = kwargs.get("language", self.language)))
def find_prepositions(self, tokens, **kwargs):
""" Annotates the given list of tokens with prepositional noun phrase tags.
"""
return find_prepositions(tokens) # See also Parser.find_chunks().
def find_labels(self, tokens, **kwargs):
""" Annotates the given list of tokens with verb/predicate tags.
"""
return find_relations(tokens)
def find_lemmata(self, tokens, **kwargs):
""" Annotates the given list of tokens with word lemmata.
"""
return [token + [token[0].lower()] for token in tokens]
def parse(self, s, tokenize=True, tags=True, chunks=True, relations=False, lemmata=False, encoding="utf-8", **kwargs):
""" Takes a string (sentences) and returns a tagged Unicode string (TaggedString).
Sentences in the output are separated by newlines.
With tokenize=True, punctuation is split from words and sentences are separated by \n.
With tags=True, part-of-speech tags are parsed (NN, VB, IN, ...).
With chunks=True, phrase chunk tags are parsed (NP, VP, PP, PNP, ...).
With relations=True, semantic role labels are parsed (SBJ, OBJ).
With lemmata=True, word lemmata are parsed.
Optional parameters are passed to
the tokenizer, tagger, chunker, labeler and lemmatizer.
"""
# Tokenizer.
if tokenize is True:
s = self.find_tokens(s, **kwargs)
if isinstance(s, (list, tuple)):
s = [isinstance(s, basestring) and s.split(" ") or s for s in s]
if isinstance(s, basestring):
s = [s.split(" ") for s in s.split("\n")]
# Unicode.
for i in range(len(s)):
for j in range(len(s[i])):
if isinstance(s[i][j], str):
s[i][j] = decode_string(s[i][j], encoding)
# Tagger (required by chunker, labeler & lemmatizer).
if tags or chunks or relations or lemmata:
s[i] = self.find_tags(s[i], **kwargs)
else:
s[i] = [[w] for w in s[i]]
# Chunker.
if chunks or relations:
s[i] = self.find_chunks(s[i], **kwargs)
# Labeler.
if relations:
s[i] = self.find_labels(s[i], **kwargs)
# Lemmatizer.
if lemmata:
s[i] = self.find_lemmata(s[i], **kwargs)
# Slash-formatted tagged string.
# With collapse=False (or split=True), returns raw list
# (this output is not usable by tree.Text).
if not kwargs.get("collapse", True) \
or kwargs.get("split", False):
return s
# Construct TaggedString.format.
# (this output is usable by tree.Text).
format = ["word"]
if tags:
format.append("part-of-speech")
if chunks:
format.extend(("chunk", "preposition"))
if relations:
format.append("relation")
if lemmata:
format.append("lemma")
# Collapse raw list.
# Sentences are separated by newlines, tokens by spaces, tags by slashes.
# Slashes in words are encoded with &slash;
for i in range(len(s)):
for j in range(len(s[i])):
s[i][j][0] = s[i][j][0].replace("/", "&slash;")
s[i][j] = "/".join(s[i][j])
s[i] = " ".join(s[i])
s = "\n".join(s)
s = TaggedString(s, format, language=kwargs.get("language", self.language))
return s
#--- TAGGED STRING ---------------------------------------------------------------------------------
# Pattern.parse() returns a TaggedString: a Unicode string with "tags" and "language" attributes.
# The pattern.text.tree.Text class uses this attribute to determine the token format and
# transform the tagged string to a parse tree of nested Sentence, Chunk and Word objects.
TOKENS = "tokens"
class TaggedString(unicode):
def __new__(self, string, tags=["word"], language=None):
""" Unicode string with tags and language attributes.
For example: TaggedString("cat/NN/NP", tags=["word", "pos", "chunk"]).
"""
# From a TaggedString:
if isinstance(string, unicode) and hasattr(string, "tags"):
tags, language = string.tags, string.language
# From a TaggedString.split(TOKENS) list:
if isinstance(string, list):
string = [[[x.replace("/", "&slash;") for x in token] for token in s] for s in string]
string = "\n".join(" ".join("/".join(token) for token in s) for s in string)
s = unicode.__new__(self, string)
s.tags = list(tags)
s.language = language
return s
def split(self, sep=TOKENS):
""" Returns a list of sentences, where each sentence is a list of tokens,
where each token is a list of word + tags.
"""
if sep != TOKENS:
return unicode.split(self, sep)
if len(self) == 0:
return []
return [[[x.replace("&slash;", "/") for x in token.split("/")]
for token in sentence.split(" ")]
for sentence in unicode.split(self, "\n")]
#--- UNIVERSAL TAGSET ------------------------------------------------------------------------------
# The default part-of-speech tagset used in Pattern is Penn Treebank II.
# However, not all languages are well-suited to Penn Treebank (which was developed for English).
# As more languages are implemented, this is becoming more problematic.
#
# A universal tagset is proposed by Slav Petrov (2012):
# http://www.petrovi.de/data/lrec.pdf
#
# Subclasses of Parser should start implementing
# Parser.parse(tagset=UNIVERSAL) with a simplified tagset.
# The names of the constants correspond to Petrov's naming scheme, while
# the value of the constants correspond to Penn Treebank.
UNIVERSAL = "universal"
NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X = \
"NN", "VB", "JJ", "RB", "PR", "DT", "PP", "PP", "NO", "CJ", "UH", "PT", ".", "X"
def penntreebank2universal(token, tag):
""" Returns a (token, tag)-tuple with a simplified universal part-of-speech tag.
"""
if tag.startswith(("NNP-", "NNPS-")):
return (token, "%s-%s" % (NOUN, tag.split("-")[-1]))
if tag in ("NN", "NNS", "NNP", "NNPS", "NP"):
return (token, NOUN)
if tag in ("MD", "VB", "VBD", "VBG", "VBN", "VBP", "VBZ"):
return (token, VERB)
if tag in ("JJ", "JJR", "JJS"):
return (token, ADJ)
if tag in ("RB", "RBR", "RBS", "WRB"):
return (token, ADV)
if tag in ("PRP", "PRP$", "WP", "WP$"):
return (token, PRON)
if tag in ("DT", "PDT", "WDT", "EX"):
return (token, DET)
if tag in ("IN",):
return (token, PREP)
if tag in ("CD",):
return (token, NUM)
if tag in ("CC",):
return (token, CONJ)
if tag in ("UH",):
return (token, INTJ)
if tag in ("POS", "RP", "TO"):
return (token, PRT)
if tag in ("SYM", "LS", ".", "!", "?", ",", ":", "(", ")", "\"", "#", "$"):
return (token, PUNC)
return (token, X)
#--- TOKENIZER -------------------------------------------------------------------------------------
TOKEN = re.compile(r"(\S+)\s")
# Common accent letters.
DIACRITICS = \
diacritics = u"àáâãäåąāæçćčςďèéêëēěęģìíîïīłįķļľņñňńйðòóôõöøþřšťùúûüůųýÿўžż"
# Common punctuation marks.
PUNCTUATION = \
punctuation = ".,;:!?()[]{}`''\"@#$^&*+-|=~_"
# Common abbreviations.
ABBREVIATIONS = \
abbreviations = set((
"a.", "adj.", "adv.", "al.", "a.m.", "art.", "c.", "capt.", "cert.", "cf.", "col.", "Col.",
"comp.", "conf.", "def.", "Dep.", "Dept.", "Dr.", "dr.", "ed.", "e.g.", "esp.", "etc.", "ex.",
"f.", "fig.", "gen.", "id.", "i.e.", "int.", "l.", "m.", "Med.", "Mil.", "Mr.", "n.", "n.q.",
"orig.", "pl.", "pred.", "pres.", "p.m.", "ref.", "v.", "vs.", "w/"
))
RE_ABBR1 = re.compile(r"^[A-Za-z]\.$") # single letter, "T. De Smedt"
RE_ABBR2 = re.compile(r"^([A-Za-z]\.)+$") # alternating letters, "U.S."
RE_ABBR3 = re.compile(r"^[A-Z][%s]+.$" % ( # capital followed by consonants, "Mr."
"|".join("bcdfghjklmnpqrstvwxz")))
# Common contractions.
replacements = {
"'d": " 'd",
"'m": " 'm",
"'s": " 's",
"'ll": " 'll",
"'re": " 're",
"'ve": " 've",
"n't": " n't"
}
# Common emoticons.
EMOTICONS = \
emoticons = { # (facial expression, sentiment)-keys
("love" , +1.00): set(("<3", u"♥", u"❤")),
("grin" , +1.00): set((">:D", ":-D", ":D", "=-D", "=D", "X-D", "x-D", "XD", "xD", "8-D")),
("taunt", +0.75): set((">:P", ":-P", ":P", ":-p", ":p", ":-b", ":b", ":c)", ":o)", ":^)")),
("smile", +0.50): set((">:)", ":-)", ":)", "=)", "=]", ":]", ":}", ":>", ":3", "8)", "8-)")),
("wink" , +0.25): set((">;]", ";-)", ";)", ";-]", ";]", ";D", ";^)", "*-)", "*)")),
("blank", +0.00): set((":-|", ":|")),
("gasp" , -0.05): set((">:o", ":-O", ":O", ":o", ":-o", "o_O", "o.O", u"°O°", u"°o°")),
("worry", -0.25): set((">:/", ":-/", ":/", ":\\", ">:\\", ":-.", ":-s", ":s", ":S", ":-S", ">.>")),
("frown", -0.75): set((">:[", ":-(", ":(", "=(", ":-[", ":[", ":{", ":-<", ":c", ":-c", "=/")),
("cry" , -1.00): set((":'(", ":'''(", ";'("))
}
RE_EMOTICONS = [r" ?".join(map(re.escape, e)) for v in EMOTICONS.values() for e in v]
RE_EMOTICONS = re.compile(r"(%s)($|\s)" % "|".join(RE_EMOTICONS))
# Common emoji.
EMOJI = \
emoji = { # (facial expression, sentiment)-keys
("love" , +1.00): set((u"❤️", u"💜", u"💚", u"💙", u"💛", u"💕")),
("grin" , +1.00): set((u"😀", u"😄", u"😃", u"😆", u"😅", u"😂", u"😁", u"😻", u"😍", u"😈", u"👌")),
("taunt", +0.75): set((u"😛", u"😝", u"😜", u"😋", u"😇")),
("smile", +0.50): set((u"😊", u"😌", u"😏", u"😎", u"☺", u"👍")),
("wink" , +0.25): set((u"😉")),
("blank", +0.00): set((u"😐", u"😶")),
("gasp" , -0.05): set((u"😳", u"😮", u"😯", u"😧", u"😦", u"🙀")),
("worry", -0.25): set((u"😕", u"😬")),
("frown", -0.75): set((u"😟", u"😒", u"😔", u"😞", u"😠", u"😩", u"😫", u"😡", u"👿")),
("cry" , -1.00): set((u"😢", u"😥", u"😓", u"😪", u"😭", u"😿")),
}
RE_EMOJI = [e for v in EMOJI.values() for e in v]
RE_EMOJI = re.compile(r"(\s?)(%s)(\s?)" % "|".join(RE_EMOJI))
# Mention marker: "@tomdesmedt".
RE_MENTION = re.compile(r"\@([0-9a-zA-z_]+)(\s|\,|\:|\.|\!|\?|$)")
# Sarcasm marker: "(!)".
RE_SARCASM = re.compile(r"\( ?\! ?\)")
# Paragraph line breaks
# (\n\n marks end of sentence).
EOS = "END-OF-SENTENCE"
def find_tokens(string, punctuation=PUNCTUATION, abbreviations=ABBREVIATIONS, replace=replacements, linebreak=r"\n{2,}"):
""" Returns a list of sentences. Each sentence is a space-separated string of tokens (words).
Handles common cases of abbreviations (e.g., etc., ...).
Punctuation marks are split from other words. Periods (or ?!) mark the end of a sentence.
Headings without an ending period are inferred by line breaks.
"""
# Handle punctuation.
punctuation = tuple(punctuation)
# Handle replacements (contractions).
for a, b in replace.items():
string = re.sub(a, b, string)
# Handle Unicode quotes.
if isinstance(string, unicode):
string = string.replace(u"“", u" “ ")
string = string.replace(u"”", u" ” ")
string = string.replace(u"‘", u" ‘ ")
string = string.replace(u"’", u" ’ ")
# Collapse whitespace.
string = re.sub("\r\n", "\n", string)
string = re.sub(linebreak, " %s " % EOS, string)
string = re.sub(r"\s+", " ", string)
tokens = []
# Handle punctuation marks.
for t in TOKEN.findall(string+" "):
if len(t) > 0:
tail = []
if not RE_MENTION.match(t):
while t.startswith(punctuation) and \
not t in replace:
# Split leading punctuation.
if t.startswith(punctuation):
tokens.append(t[0]); t=t[1:]
if not False:
while t.endswith(punctuation) and \
not t in replace:
# Split trailing punctuation.
if t.endswith(punctuation) and not t.endswith("."):
tail.append(t[-1]); t=t[:-1]
# Split ellipsis (...) before splitting period.
if t.endswith("..."):
tail.append("..."); t=t[:-3].rstrip(".")
# Split period (if not an abbreviation).
if t.endswith("."):
if t in abbreviations or \
RE_ABBR1.match(t) is not None or \
RE_ABBR2.match(t) is not None or \
RE_ABBR3.match(t) is not None:
break
else:
tail.append(t[-1]); t=t[:-1]
if t != "":
tokens.append(t)
tokens.extend(reversed(tail))
# Handle citations (periods + quotes).
if isinstance(string, unicode):
quotes = ("'", "\"", u"”", u"’")
else:
quotes = ("'", "\"")
# Handle sentence breaks (periods, quotes, parenthesis).
sentences, i, j = [[]], 0, 0
while j < len(tokens):
if tokens[j] in ("...", ".", "!", "?", EOS):
while j < len(tokens) \
and (tokens[j] in ("...", ".", "!", "?", EOS) or tokens[j] in quotes):
if tokens[j] in quotes and sentences[-1].count(tokens[j]) % 2 == 0:
break # Balanced quotes.
j += 1
sentences[-1].extend(t for t in tokens[i:j] if t != EOS)
sentences.append([])
i = j
j += 1
# Handle emoticons.
sentences[-1].extend(tokens[i:j])
sentences = (" ".join(s) for s in sentences if len(s) > 0)
sentences = (RE_SARCASM.sub("(!)", s) for s in sentences)
sentences = [RE_EMOTICONS.sub(
lambda m: m.group(1).replace(" ", "") + m.group(2), s) for s in sentences]
sentences = [RE_EMOJI.sub(
lambda m: (m.group(1) or " ") + m.group(2) + (m.group(3) or " "), s) for s in sentences]
sentences = [s.replace(" ", " ").strip() for s in sentences]
return sentences
#--- PART-OF-SPEECH TAGGER -------------------------------------------------------------------------
# Unknown words are recognized as numbers if they contain only digits and -,.:/%$
CD = re.compile(r"^[0-9\-\,\.\:\/\%\$]+$")
def _suffix_rules(token, tag="NN"):
""" Default morphological tagging rules for English, based on word suffixes.
"""
if isinstance(token, (list, tuple)):
token, tag = token
if token.endswith("ing"):
tag = "VBG"
if token.endswith("ly"):
tag = "RB"
if token.endswith("s") and not token.endswith(("is", "ous", "ss")):
tag = "NNS"
if token.endswith(("able", "al", "ful", "ible", "ient", "ish", "ive", "less", "tic", "ous")) or "-" in token:
tag = "JJ"
if token.endswith("ed"):
tag = "VBN"
if token.endswith(("ate", "ify", "ise", "ize")):
tag = "VBP"
return [token, tag]
def find_tags(tokens, lexicon={}, model=None, morphology=None, context=None, entities=None, default=("NN", "NNP", "CD"), language="en", map=None, **kwargs):
""" Returns a list of [token, tag]-items for the given list of tokens:
["The", "cat", "purs"] => [["The", "DT"], ["cat", "NN"], ["purs", "VB"]]
Words are tagged using the given lexicon of (word, tag)-items.
Unknown words are tagged NN by default.
Unknown words that start with a capital letter are tagged NNP (unless language="de").
Unknown words that consist only of digits and punctuation marks are tagged CD.
Unknown words are then improved with morphological rules.
All words are improved with contextual rules.
If a model is given, uses model for unknown words instead of morphology and context.
If map is a function, it is applied to each (token, tag) after applying all rules.
"""
tagged = []
# Tag known words.
for i, token in enumerate(tokens):
tagged.append([token, lexicon.get(token, i == 0 and lexicon.get(token.lower()) or None)])
# Tag unknown words.
for i, (token, tag) in enumerate(tagged):
prev, next = (None, None), (None, None)
if i > 0:
prev = tagged[i-1]
if i < len(tagged) - 1:
next = tagged[i+1]
if tag is None or token in (model is not None and model.unknown or ()):
# Use language model (i.e., SLP).
if model is not None:
tagged[i] = model.apply([token, None], prev, next)
# Use NNP for capitalized words (except in German).
elif token.istitle() and language != "de":
tagged[i] = [token, default[1]]
# Use CD for digits and numbers.
elif CD.match(token) is not None:
tagged[i] = [token, default[2]]
# Use suffix rules (e.g., -ly = RB).
elif morphology is not None:
tagged[i] = morphology.apply([token, default[0]], prev, next)
# Use suffix rules (English default).
elif language == "en":
tagged[i] = _suffix_rules([token, default[0]])
# Use most frequent tag (NN).
else:
tagged[i] = [token, default[0]]
# Tag words by context.
if context is not None and model is None:
tagged = context.apply(tagged)
# Tag named entities.
if entities is not None:
tagged = entities.apply(tagged)
# Map tags with a custom function.
if map is not None:
tagged = [list(map(token, tag)) or [token, default[0]] for token, tag in tagged]
return tagged
#--- PHRASE CHUNKER --------------------------------------------------------------------------------
SEPARATOR = "/"
NN = r"NN|NNS|NNP|NNPS|NNPS?\-[A-Z]{3,4}|PR|PRP|PRP\$"
VB = r"VB|VBD|VBG|VBN|VBP|VBZ"
JJ = r"JJ|JJR|JJS"
RB = r"(?<!W)RB|RBR|RBS"
CC = r"CC|CJ"
# Chunking rules.
# CHUNKS[0] = Germanic: RB + JJ precedes NN ("the round table").
# CHUNKS[1] = Romance: RB + JJ precedes or follows NN ("la table ronde", "une jolie fille").
CHUNKS = [[
# Germanic languages: en, de, nl, ...
( "NP", r"((NN)/)* ((DT|CD|CC)/)* ((RB|JJ)/)* (((JJ)/(CC|,)/)*(JJ)/)* ((NN)/)+"),
( "VP", r"(((MD|TO|RB)/)* ((VB)/)+ ((RP)/)*)+"),
( "VP", r"((MD)/)"),
( "PP", r"((IN|PP)/)+"),
("ADJP", r"((RB|JJ)/)* ((JJ)/,/)* ((JJ)/(CC)/)* ((JJ)/)+"),
("ADVP", r"((RB)/)+"),
], [
# Romance languages: es, fr, it, ...
( "NP", r"((NN)/)* ((DT|CD|CC)/)* ((RB|JJ|,)/)* (((JJ)/(CC|,)/)*(JJ)/)* ((NN)/)+ ((RB|JJ)/)*"),
( "VP", r"(((MD|TO|RB)/)* ((VB)/)+ ((RP)/)* ((RB)/)*)+"),
( "VP", r"((MD)/)"),
( "PP", r"((IN|PP)/)+"),
("ADJP", r"((RB|JJ)/)* ((JJ)/,/)* ((JJ)/(CC)/)* ((JJ)/)+"),
("ADVP", r"((RB)/)+"),
]]
for i in (0, 1):
for j, (tag, s) in enumerate(CHUNKS[i]):
s = s.replace("NN", NN)
s = s.replace("VB", VB)
s = s.replace("JJ", JJ)
s = s.replace("RB", RB)
s = s.replace(" ", "")
s = re.compile(s)
CHUNKS[i][j] = (tag, s)
# Handle ADJP before VP,
# so that RB prefers next ADJP over previous VP.
CHUNKS[0].insert(1, CHUNKS[0].pop(3))
CHUNKS[1].insert(1, CHUNKS[1].pop(3))
def find_chunks(tagged, language="en"):
""" The input is a list of [token, tag]-items.
The output is a list of [token, tag, chunk]-items:
The/DT nice/JJ fish/NN is/VBZ dead/JJ ./. =>
The/DT/B-NP nice/JJ/I-NP fish/NN/I-NP is/VBZ/B-VP dead/JJ/B-ADJP ././O
"""
chunked = [x for x in tagged]
tags = "".join("%s%s" % (tag, SEPARATOR) for token, tag in tagged)
# Use Germanic or Romance chunking rules according to given language.
for tag, rule in CHUNKS[int(language in ("ca", "es", "pt", "fr", "it", "pt", "ro"))]:
for m in rule.finditer(tags):
# Find the start of chunks inside the tags-string.
# Number of preceding separators = number of preceding tokens.
i = m.start()
j = tags[:i].count(SEPARATOR)
n = m.group(0).count(SEPARATOR)
for k in range(j, j+n):
if len(chunked[k]) == 3:
continue
if len(chunked[k]) < 3:
# A conjunction or comma cannot be start of a chunk.
if k == j and chunked[k][1] in ("CC", "CJ", ","):
j += 1
# Mark first token in chunk with B-.
elif k == j:
chunked[k].append("B-" + tag)
# Mark other tokens in chunk with I-.
else:
chunked[k].append("I-" + tag)
# Mark chinks (tokens outside of a chunk) with O-.
for chink in filter(lambda x: len(x) < 3, chunked):
chink.append("O")
# Post-processing corrections.
for i, (word, tag, chunk) in enumerate(chunked):
if tag.startswith("RB") and chunk == "B-NP":
# "Perhaps you" => ADVP + NP
# "Really nice work" => NP
# "Really, nice work" => ADVP + O + NP
if i < len(chunked)-1 and not chunked[i+1][1].startswith("JJ"):
chunked[i+0][2] = "B-ADVP"
chunked[i+1][2] = "B-NP"
if i < len(chunked)-1 and chunked[i+1][1] in ("CC", "CJ", ","):
chunked[i+1][2] = "O"
if i < len(chunked)-2 and chunked[i+1][2] == "O":
chunked[i+2][2] = "B-NP"
return chunked
def find_prepositions(chunked):
""" The input is a list of [token, tag, chunk]-items.
The output is a list of [token, tag, chunk, preposition]-items.
PP-chunks followed by NP-chunks make up a PNP-chunk.
"""
# Tokens that are not part of a preposition just get the O-tag.
for ch in chunked:
ch.append("O")
for i, chunk in enumerate(chunked):
if chunk[2].endswith("PP") and chunk[-1] == "O":
# Find PP followed by other PP, NP with nouns and pronouns, VP with a gerund.
if i < len(chunked)-1 and \
(chunked[i+1][2].endswith(("NP", "PP")) or \
chunked[i+1][1] in ("VBG", "VBN")):
chunk[-1] = "B-PNP"
pp = True
for ch in chunked[i+1:]:
if not (ch[2].endswith(("NP", "PP")) or ch[1] in ("VBG", "VBN")):
break
if ch[2].endswith("PP") and pp:
ch[-1] = "I-PNP"
if not ch[2].endswith("PP"):
ch[-1] = "I-PNP"
pp = False
return chunked
#--- SEMANTIC ROLE LABELER -------------------------------------------------------------------------
# Naive approach.
BE = dict.fromkeys(("be", "am", "are", "is", "being", "was", "were", "been"), True)
GO = dict.fromkeys(("go", "goes", "going", "went"), True)
def find_relations(chunked):
""" The input is a list of [token, tag, chunk]-items.
The output is a list of [token, tag, chunk, relation]-items.
A noun phrase preceding a verb phrase is perceived as sentence subject.
A noun phrase following a verb phrase is perceived as sentence object.
"""
tag = lambda token: token[2].split("-")[-1] # B-NP => NP
# Group successive tokens with the same chunk-tag.
chunks = []
for token in chunked:
if len(chunks) == 0 \
or token[2].startswith("B-") \
or tag(token) != tag(chunks[-1][-1]):
chunks.append([])
chunks[-1].append(token+["O"])
# If a VP is preceded by a NP, the NP is tagged as NP-SBJ-(id).
# If a VP is followed by a NP, the NP is tagged as NP-OBJ-(id).
# Chunks that are not part of a relation get an O-tag.
id = 0
for i, chunk in enumerate(chunks):
if tag(chunk[-1]) == "VP" and i > 0 and tag(chunks[i-1][-1]) == "NP":
if chunk[-1][-1] == "O":
id += 1
for token in chunk:
token[-1] = "VP-" + str(id)
for token in chunks[i-1]:
token[-1] += "*NP-SBJ-" + str(id)
token[-1] = token[-1].lstrip("O-*")
if tag(chunk[-1]) == "VP" and i < len(chunks)-1 and tag(chunks[i+1][-1]) == "NP":
if chunk[-1][-1] == "O":
id += 1
for token in chunk:
token[-1] = "VP-" + str(id)
for token in chunks[i+1]:
token[-1] = "*NP-OBJ-" + str(id)
token[-1] = token[-1].lstrip("O-*")
# This is more a proof-of-concept than useful in practice:
# PP-LOC = be + in|at + the|my
# PP-DIR = go + to|towards + the|my
for i, chunk in enumerate(chunks):
if 0 < i < len(chunks)-1 and len(chunk) == 1 and chunk[-1][-1] == "O":
t0, t1, t2 = chunks[i-1][-1], chunks[i][0], chunks[i+1][0] # previous / current / next
if tag(t1) == "PP" and t2[1] in ("DT", "PR", "PRP$"):
if t0[0] in BE and t1[0] in ("in", "at") : t1[-1] = "PP-LOC"
if t0[0] in GO and t1[0] in ("to", "towards") : t1[-1] = "PP-DIR"
related = []; [related.extend(chunk) for chunk in chunks]
return related
#--- KEYWORDS EXTRACTION ---------------------------------------------------------------------------
def find_keywords(string, parser, top=10, frequency={}, ignore=("rt",), pos=("NN",), **kwargs):
""" Returns a sorted list of keywords in the given string.
The given parser (e.g., pattern.en.parser) is used to identify noun phrases.
The given frequency dictionary can be a reference corpus,
with relative document frequency (df, 0.0-1.0) for each lemma,
e.g., {"the": 0.8, "cat": 0.1, ...}
"""
lemmata = kwargs.pop("lemmata", kwargs.pop("stem", True))
t = []
p = None
n = 0
# Remove hashtags.
s = string.replace("#", ". ")
# Parse + chunk string.
for sentence in parser.parse(s, chunks=True, lemmata=lemmata).split():
for w in sentence: # [token, tag, chunk, preposition, lemma]
if w[2].startswith(("B", "O")):
t.append([]); p=None
if w[1].startswith(("NNP", "DT")) and p and \
p[1].startswith("NNP") and \
p[0][0] != "@" and \
w[0][0] != "A":
p[+0] += " " + w[+0] # Merge NNP's: "Ms Kitty".
p[-1] += " " + w[-1]
else:
t[-1].append(w)
p = t[-1][-1] # word before
n = n + 1 # word count
# Parse context: {word: chunks}.
ctx = {}
for i, chunk in enumerate(t):
ch = " ".join(w[0] for w in chunk)
ch = ch.lower()
for w in chunk:
ctx.setdefault(w[0], set()).add(ch)
# Parse keywords.
m = {}
for i, chunk in enumerate(t):
# Head of "cat hair" => "hair".
# Head of "poils de chat" => "poils".
head = chunk[-int(parser.language not in ("ca", "es", "pt", "fr", "it", "pt", "ro"))]
for w in chunk:
# Lemmatize known words.
k = lemmata and w[-1] in parser.lexicon and w[-1] or w[0]
k = re.sub(r"\"\(\)", "", k)
k = k.strip(":.?!")
k = k.lower()
if not w[1].startswith(pos):
continue
if len(k) == 1:
continue
if k.startswith(("http", "www.")):
continue
if k in ignore or lemmata and w[0] in ignore:
continue
if k not in m:
m[k] = [0, 0, 0, 0, 0, 0]
# Scoring:
# 0) words that appear more frequently.
# 1) words that appear in more contexts (semantic centrality).
# 2) words that appear at the start (25%) of the text.
# 3) words that are nouns.
# 4) words that are not in a prepositional phrase.
# 5) words that are the head of a chunk.
noun = w[1].startswith("NN")
m[k][0] += 1 / float(n)
m[k][1] |= 1 if len(ctx[w[0]]) > 1 else 0
m[k][2] |= 1 if i / float(len(t)) <= 0.25 else 0
m[k][3] |= 1 if noun else 0
m[k][4] |= 1 if noun and w[3].startswith("O") else 0
m[k][5] |= 1 if noun and w == head else 0
# Rate tf-idf.
if frequency:
for k in m:
if not k.isalpha(): # @username, odd!ti's
df = 1.0
else:
df = 1.0 / max(frequency.get(w[0].lower(), frequency.get(k, 0)), 0.0001)
df = log(df)
m[k][0] *= df
#print k, m[k]
# Sort candidates alphabetically by total score.
# The harmonic mean will emphasize tf-idf score.
hmean = lambda a: len(a) / sum(1.0 / (x or 0.0001) for x in a)
m = [(hmean(m[k]), k) for k in m]
m = sorted(m, key=lambda x: x[1])
m = sorted(m, key=lambda x: x[0], reverse=True)
m = [k for score, k in m]
m = m[:top]
return m
#### COMMAND LINE ##################################################################################
# The commandline() function enables command line support for a Parser.
# The following code can be added to pattern.en, for example:
#
# from pattern.text import Parser, commandline
# parse = Parser(lexicon=LEXICON).parse
# if __name__ == "main":
# commandline(parse)
#
# The parser is then accessible from the command line:
# python -m pattern.en.parser xml -s "Hello, my name is Dr. Sbaitso. Nice to meet you." -OTCLI
def commandline(parse=Parser().parse):
import optparse
import codecs
p = optparse.OptionParser()
p.add_option("-f", "--file", dest="file", action="store", help="text file to parse", metavar="FILE")
p.add_option("-s", "--string", dest="string", action="store", help="text string to parse", metavar="STRING")
p.add_option("-O", "--tokenize", dest="tokenize", action="store_true", help="tokenize the input")
p.add_option("-T", "--tags", dest="tags", action="store_true", help="parse part-of-speech tags")
p.add_option("-C", "--chunks", dest="chunks", action="store_true", help="parse chunk tags")
p.add_option("-R", "--relations", dest="relations", action="store_true", help="find verb/predicate relations")
p.add_option("-L", "--lemmata", dest="lemmata", action="store_true", help="find word lemmata")
p.add_option("-e", "--encoding", dest="encoding", action="store_true", help="character encoding", default="utf-8")
p.add_option("-v", "--version", dest="version", action="store_true", help="version info")
o, arguments = p.parse_args()
# Version info.
if o.version:
sys.path.insert(0, os.path.join(MODULE, "..", ".."))
from pattern import __version__
print(__version__)
sys.path.pop(0)
# Either a text file (-f) or a text string (-s) must be supplied.
s = o.file and codecs.open(o.file, "r", o.encoding).read() or o.string
# The given text can be parsed in two modes:
# - implicit: parse everything (tokenize, tag/chunk, find relations, lemmatize).
# - explicit: define what to parse manually.
if s:
explicit = False
for option in [o.tokenize, o.tags, o.chunks, o.relations, o.lemmata]:
if option is not None: explicit=True; break
if not explicit:
a = {"encoding": o.encoding }
else:
a = {"tokenize": o.tokenize or False,
"tags": o.tags or False,
"chunks": o.chunks or False,
"relations": o.relations or False,
"lemmata": o.lemmata or False,
"encoding": o.encoding }
s = parse(s, **a)
# The output can be either slash-formatted string or XML.
if "xml" in arguments:
s = Tree(s, s.tags).xml
print(encode_utf8(s))
#### VERBS #########################################################################################
#--- VERB TENSES -----------------------------------------------------------------------------------
# Conjugation is the inflection of verbs by tense, person, number, mood and aspect.
# VERB TENSE:
INFINITIVE, PRESENT, PAST, FUTURE = \
INF, PRES, PST, FUT = \
"infinitive", "present", "past", "future"
# VERB PERSON:
# 1st person = I or we (plural).
# 2nd person = you.
# 3rd person = he, she, it or they (plural).
FIRST, SECOND, THIRD = \
1, 2, 3
# VERB NUMBER:
# singular number = I, you, he, she, it.
# plural number = we, you, they.
SINGULAR, PLURAL = \
SG, PL = \
"singular", "plural"
# VERB MOOD:
# indicative mood = a fact: "the cat meowed".
# imperative mood = a command: "meow!".
# conditional mood = a hypothesis: "a cat *will* meow *if* it is hungry".
# subjunctive mood = a wish, possibility or necessity: "I *wish* the cat *would* stop meowing".
INDICATIVE, IMPERATIVE, CONDITIONAL, SUBJUNCTIVE = \
IND, IMP, COND, SJV = \
"indicative", "imperative", "conditional", "subjunctive"
# VERB ASPECT:
# imperfective aspect = a habitual or ongoing action: "it was midnight; the cat meowed".
# perfective aspect = a momentary or completed action: "I flung my pillow at the cat".
# progressive aspect = a incomplete action in progress: "the cat was meowing".
# Note: the progressive aspect is a subtype of the imperfective aspect.
IMPERFECTIVE, PERFECTIVE, PROGRESSIVE = \
IPFV, PFV, PROG = \
"imperfective", "perfective", "progressive"
# Imperfect = past tense + imperfective aspect.
# Preterite = past tense + perfective aspect.
IMPERFECT = "imperfect"
PRETERITE = "preterite"
# Participle = present tense + progressive aspect.
PARTICIPLE, GERUND = "participle", "gerund"
# Continuous aspect ≈ progressive aspect.
CONTINUOUS = CONT = "continuous"
_ = None # prettify the table =>
# Unique index per tense (= tense + person + number + mood + aspect + negated? + aliases).
# The index is used to describe the format of the verb lexicon file.
# The aliases can be passed to Verbs.conjugate() and Tenses.__contains__().
TENSES = {
None: (None, _, _, _, _, False, (None ,)), # ENGLISH SPANISH GERMAN DUTCH FRENCH
0 : ( INF, _, _, _, _, False, ("inf" ,)), # to be ser sein zijn être
1 : (PRES, 1, SG, IND, IPFV, False, ("1sg" ,)), # I am soy bin ben suis
2 : (PRES, 2, SG, IND, IPFV, False, ("2sg" ,)), # you are eres bist bent es
3 : (PRES, 3, SG, IND, IPFV, False, ("3sg" ,)), # (s)he is es ist is est
4 : (PRES, 1, PL, IND, IPFV, False, ("1pl" ,)), # we are somos sind zijn sommes
5 : (PRES, 2, PL, IND, IPFV, False, ("2pl" ,)), # you are sois seid zijn êtes
6 : (PRES, 3, PL, IND, IPFV, False, ("3pl" ,)), # they are son sind zijn sont
7 : (PRES, _, PL, IND, IPFV, False, ( "pl" ,)), # are
8 : (PRES, _, _, IND, PROG, False, ("part" ,)), # being siendo zijnd étant
9 : (PRES, 1, SG, IND, IPFV, True, ("1sg-" ,)), # I am not
10 : (PRES, 2, SG, IND, IPFV, True, ("2sg-" ,)), # you aren't
11 : (PRES, 3, SG, IND, IPFV, True, ("3sg-" ,)), # (s)he isn't
12 : (PRES, 1, PL, IND, IPFV, True, ("1pl-" ,)), # we aren't
13 : (PRES, 2, PL, IND, IPFV, True, ("2pl-" ,)), # you aren't
14 : (PRES, 3, PL, IND, IPFV, True, ("3pl-" ,)), # they aren't
15 : (PRES, _, PL, IND, IPFV, True, ( "pl-" ,)), # aren't
16 : (PRES, _, _, IND, IPFV, True, ( "-" ,)), # isn't
17 : ( PST, 1, SG, IND, IPFV, False, ("1sgp" ,)), # I was era war was étais
18 : ( PST, 2, SG, IND, IPFV, False, ("2sgp" ,)), # you were eras warst was étais
19 : ( PST, 3, SG, IND, IPFV, False, ("3sgp" ,)), # (s)he was era war was était
20 : ( PST, 1, PL, IND, IPFV, False, ("1ppl" ,)), # we were éramos waren waren étions
21 : ( PST, 2, PL, IND, IPFV, False, ("2ppl" ,)), # you were erais wart waren étiez
22 : ( PST, 3, PL, IND, IPFV, False, ("3ppl" ,)), # they were eran waren waren étaient
23 : ( PST, _, PL, IND, IPFV, False, ( "ppl" ,)), # were
24 : ( PST, _, _, IND, PROG, False, ("ppart",)), # been sido gewesen geweest été
25 : ( PST, _, _, IND, IPFV, False, ( "p" ,)), # was
26 : ( PST, 1, SG, IND, IPFV, True, ("1sgp-",)), # I wasn't
27 : ( PST, 2, SG, IND, IPFV, True, ("2sgp-",)), # you weren't
28 : ( PST, 3, SG, IND, IPFV, True, ("3sgp-",)), # (s)he wasn't
29 : ( PST, 1, PL, IND, IPFV, True, ("1ppl-",)), # we weren't
30 : ( PST, 2, PL, IND, IPFV, True, ("2ppl-",)), # you weren't
31 : ( PST, 3, PL, IND, IPFV, True, ("3ppl-",)), # they weren't
32 : ( PST, _, PL, IND, IPFV, True, ( "ppl-",)), # weren't
33 : ( PST, _, _, IND, IPFV, True, ( "p-" ,)), # wasn't
34 : ( PST, 1, SG, IND, PFV, False, ("1sg+" ,)), # I fui fus
35 : ( PST, 2, SG, IND, PFV, False, ("2sg+" ,)), # you fuiste fus
36 : ( PST, 3, SG, IND, PFV, False, ("3sg+" ,)), # (s)he fue fut
37 : ( PST, 1, PL, IND, PFV, False, ("1pl+" ,)), # we fuimos fûmes
38 : ( PST, 2, PL, IND, PFV, False, ("2pl+" ,)), # you fuisteis fûtes
39 : ( PST, 3, PL, IND, PFV, False, ("3pl+" ,)), # they fueron furent
40 : ( FUT, 1, SG, IND, IPFV, False, ("1sgf" ,)), # I seré serai
41 : ( FUT, 2, SG, IND, IPFV, False, ("2sgf" ,)), # you serás seras
42 : ( FUT, 3, SG, IND, IPFV, False, ("3sgf" ,)), # (s)he será sera
43 : ( FUT, 1, PL, IND, IPFV, False, ("1plf" ,)), # we seremos serons
44 : ( FUT, 2, PL, IND, IPFV, False, ("2plf" ,)), # you seréis serez
45 : ( FUT, 3, PL, IND, IPFV, False, ("3plf" ,)), # they serán seron
46 : (PRES, 1, SG, COND, IPFV, False, ("1sg->",)), # I sería serais
47 : (PRES, 2, SG, COND, IPFV, False, ("2sg->",)), # you serías serais
48 : (PRES, 3, SG, COND, IPFV, False, ("3sg->",)), # (s)he sería serait
49 : (PRES, 1, PL, COND, IPFV, False, ("1pl->",)), # we seríamos serions
50 : (PRES, 2, PL, COND, IPFV, False, ("2pl->",)), # you seríais seriez
51 : (PRES, 3, PL, COND, IPFV, False, ("3pl->",)), # they serían seraient
52 : (PRES, 2, SG, IMP, IPFV, False, ("2sg!" ,)), # you sé sei sois
521: (PRES, 3, SG, IMP, IPFV, False, ("3sg!" ,)), # (s)he
53 : (PRES, 1, PL, IMP, IPFV, False, ("1pl!" ,)), # we seien soyons
54 : (PRES, 2, PL, IMP, IPFV, False, ("2pl!" ,)), # you sed seid soyez
541: (PRES, 3, PL, IMP, IPFV, False, ("3pl!" ,)), # you
55 : (PRES, 1, SG, SJV, IPFV, False, ("1sg?" ,)), # I sea sei sois
56 : (PRES, 2, SG, SJV, IPFV, False, ("2sg?" ,)), # you seas seist sois
57 : (PRES, 3, SG, SJV, IPFV, False, ("3sg?" ,)), # (s)he sea sei soit
58 : (PRES, 1, PL, SJV, IPFV, False, ("1pl?" ,)), # we seamos seien soyons
59 : (PRES, 2, PL, SJV, IPFV, False, ("2pl?" ,)), # you seáis seiet soyez
60 : (PRES, 3, PL, SJV, IPFV, False, ("3pl?" ,)), # they sean seien soient
61 : (PRES, 1, SG, SJV, PFV, False, ("1sg?+",)), # I
62 : (PRES, 2, SG, SJV, PFV, False, ("2sg?+",)), # you
63 : (PRES, 3, SG, SJV, PFV, False, ("3sg?+",)), # (s)he
64 : (PRES, 1, PL, SJV, PFV, False, ("1pl?+",)), # we
65 : (PRES, 2, PL, SJV, PFV, False, ("2pl?+",)), # you
66 : (PRES, 3, PL, SJV, PFV, False, ("3pl?+",)), # they
67 : ( PST, 1, SG, SJV, IPFV, False, ("1sgp?",)), # I fuera wäre fusse
68 : ( PST, 2, SG, SJV, IPFV, False, ("2sgp?",)), # you fueras wärest fusses
69 : ( PST, 3, SG, SJV, IPFV, False, ("3sgp?",)), # (s)he fuera wäre fût
70 : ( PST, 1, PL, SJV, IPFV, False, ("1ppl?",)), # we fuéramos wären fussions
71 : ( PST, 2, PL, SJV, IPFV, False, ("2ppl?",)), # you fuerais wäret fussiez
72 : ( PST, 3, PL, SJV, IPFV, False, ("3ppl?",)), # they fueran wären fussent
}
# Map tenses and aliases to unique index.
# Aliases include:
# - a short number: "s", "sg", "singular" => SINGULAR,
# - a short string: "1sg" => 1st person singular present,
# - a unique index: 1 => 1st person singular present,
# - Penn treebank: "VBP" => 1st person singular present.
TENSES_ID = {}
TENSES_ID[INFINITIVE] = 0
for i, (tense, person, number, mood, aspect, negated, aliases) in TENSES.items():
for a in aliases + (i,):
TENSES_ID[i] = \
TENSES_ID[a] = \
TENSES_ID[(tense, person, number, mood, aspect, negated)] = i
if number == SG:
for sg in ("s", "sg", "singular"):
TENSES_ID[(tense, person, sg, mood, aspect, negated)] = i
if number == PL:
for pl in ("p", "pl", "plural"):
TENSES_ID[(tense, person, pl, mood, aspect, negated)] = i
# Map Penn Treebank tags to unique index.
for tag, tense in (
("VB", 0 ), # infinitive
("VBP", 1 ), # present 1 singular
("VBZ", 3 ), # present 3 singular
("VBG", 8 ), # present participle
("VBN", 24), # past participle
("VBD", 25)): # past
TENSES_ID[tag.lower()] = tense
# tense(tense=INFINITIVE)
# tense(tense=(PRESENT, 3, SINGULAR))
# tense(tense=PRESENT, person=3, number=SINGULAR, mood=INDICATIVE, aspect=IMPERFECTIVE, negated=False)
def tense_id(*args, **kwargs):
""" Returns the tense id for a given (tense, person, number, mood, aspect, negated).
Aliases and compound forms (e.g., IMPERFECT) are disambiguated.
"""
# Unpack tense given as a tuple, e.g., tense((PRESENT, 1, SG)):
if len(args) == 1 and isinstance(args[0], (list, tuple)):
if args[0] not in ((PRESENT, PARTICIPLE), (PAST, PARTICIPLE)):
args = args[0]
# No parameters defaults to tense=INFINITIVE, tense=PRESENT otherwise.
if len(args) == 0 and len(kwargs) == 0:
t = INFINITIVE
else:
t = PRESENT
# Set default values.
tense = kwargs.get("tense" , args[0] if len(args) > 0 else t)
person = kwargs.get("person" , args[1] if len(args) > 1 else 3) or None
number = kwargs.get("number" , args[2] if len(args) > 2 else SINGULAR)
mood = kwargs.get("mood" , args[3] if len(args) > 3 else INDICATIVE)
aspect = kwargs.get("aspect" , args[4] if len(args) > 4 else IMPERFECTIVE)
negated = kwargs.get("negated", args[5] if len(args) > 5 else False)
# Disambiguate wrong order of parameters.
if mood in (PERFECTIVE, IMPERFECTIVE):
mood, aspect = INDICATIVE, mood
# Disambiguate INFINITIVE.
# Disambiguate PARTICIPLE, IMPERFECT, PRETERITE.
# These are often considered to be tenses but are in fact tense + aspect.
if tense == INFINITIVE:
person = number = mood = aspect = None; negated=False
if tense in ((PRESENT, PARTICIPLE), PRESENT+PARTICIPLE, PARTICIPLE, GERUND):
tense, aspect = PRESENT, PROGRESSIVE
if tense in ((PAST, PARTICIPLE), PAST+PARTICIPLE):
tense, aspect = PAST, PROGRESSIVE
if tense == IMPERFECT:
tense, aspect = PAST, IMPERFECTIVE
if tense == PRETERITE:
tense, aspect = PAST, PERFECTIVE
if aspect in (CONTINUOUS, PARTICIPLE, GERUND):
aspect = PROGRESSIVE
if aspect == PROGRESSIVE:
person = number = None
# Disambiguate CONDITIONAL.
# In Spanish, the conditional is regarded as an indicative tense.
if tense == CONDITIONAL and mood == INDICATIVE:
tense, mood = PRESENT, CONDITIONAL
# Disambiguate aliases: "pl" =>
# (PRESENT, None, PLURAL, INDICATIVE, IMPERFECTIVE, False).
return TENSES_ID.get(tense.lower(),
TENSES_ID.get((tense, person, number, mood, aspect, negated)))
tense = tense_id
#--- VERB CONJUGATIONS -----------------------------------------------------------------------------
# Verb conjugations based on a table of known verbs and rules for unknown verbs.
# Verb conjugations are useful to find the verb infinitive in the parser's lemmatizer.
# For unknown verbs, Verbs.find_lemma() and Verbs.find_lexeme() are called.
# These must be implemented in a subclass with rules for unknown verbs.
class Verbs(lazydict):
def __init__(self, path="", format=[], default={}, language=None):
""" A dictionary of verb infinitives, each linked to a list of conjugated forms.
Each line in the file at the given path is one verb, with the tenses separated by a comma.
The format defines the order of tenses (see TENSES).
The default dictionary defines default tenses for omitted tenses.
"""
self._path = path
self._language = language
self._format = dict((TENSES_ID[id], i) for i, id in enumerate(format))
self._default = default
self._inverse = {}
def load(self):
# have,,,has,,having,,,,,had,had,haven't,,,hasn't,,,,,,,hadn't,hadn't
id = self._format[TENSES_ID[INFINITIVE]]
for v in _read(self._path):
v = v.split(",")
dict.__setitem__(self, v[id], v)
for x in (x for x in v if x):
self._inverse[x] = v[id]
@property
def path(self):
return self._path
@property
def language(self):
return self._language
@property
def infinitives(self):
""" Yields a dictionary of (infinitive, [inflections])-items.
"""
if dict.__len__(self) == 0:
self.load()
return self
@property
def inflections(self):
""" Yields a dictionary of (inflected, infinitive)-items.
"""
if dict.__len__(self) == 0:
self.load()
return self._inverse
@property
def TENSES(self):
""" Yields a list of tenses for this language, excluding negations.
Each tense is a (tense, person, number, mood, aspect)-tuple.
"""
a = set(TENSES[id] for id in self._format)
a = a.union(set(TENSES[id] for id in self._default.keys()))
a = a.union(set(TENSES[id] for id in self._default.values()))
a = sorted(x[:-2] for x in a if x[-2] is False) # Exclude negation.
return a
def lemma(self, verb, parse=True):
""" Returns the infinitive form of the given verb, or None.
"""
if dict.__len__(self) == 0:
self.load()
if verb.lower() in self._inverse:
return self._inverse[verb.lower()]
if verb in self._inverse:
return self._inverse[verb]
if parse is True: # rule-based
return self.find_lemma(verb)
def lexeme(self, verb, parse=True):
""" Returns a list of all possible inflections of the given verb.
"""
a = []
b = self.lemma(verb, parse=parse)
if b in self:
a = [x for x in self[b] if x != ""]
elif parse is True: # rule-based
a = self.find_lexeme(b)
u = []; [u.append(x) for x in a if x not in u]
return u
def conjugate(self, verb, *args, **kwargs):
""" Inflects the verb and returns the given tense (or None).
For example: be
- Verbs.conjugate("is", INFINITVE) => be
- Verbs.conjugate("be", PRESENT, 1, SINGULAR) => I am
- Verbs.conjugate("be", PRESENT, 1, PLURAL) => we are
- Verbs.conjugate("be", PAST, 3, SINGULAR) => he was
- Verbs.conjugate("be", PAST, aspect=PROGRESSIVE) => been
- Verbs.conjugate("be", PAST, person=1, negated=True) => I wasn't
"""
id = tense_id(*args, **kwargs)
# Get the tense index from the format description (or a default).
i1 = self._format.get(id)
i2 = self._format.get(self._default.get(id))
i3 = self._format.get(self._default.get(self._default.get(id)))
b = self.lemma(verb, parse=kwargs.get("parse", True))
v = []
# Get the verb lexeme and return the requested index.
if b in self:
v = self[b]
for i in (i1, i2, i3):
if i is not None and 0 <= i < len(v) and v[i]:
return v[i]
if kwargs.get("parse", True) is True: # rule-based
v = self.find_lexeme(b)
for i in (i1, i2, i3):
if i is not None and 0 <= i < len(v) and v[i]:
return v[i]
def tenses(self, verb, parse=True):
""" Returns a list of possible tenses for the given inflected verb.
"""
verb = verb.lower()
a = set()
b = self.lemma(verb, parse=parse)
v = []
if b in self:
v = self[b]
elif parse is True: # rule-based
v = self.find_lexeme(b)
# For each tense in the verb lexeme that matches the given tense,
# 1) retrieve the tense tuple,
# 2) retrieve the tense tuples for which that tense is a default.
for i, tense in enumerate(v):
if tense == verb:
for id, index in self._format.items():
if i == index:
a.add(id)
for id1, id2 in self._default.items():
if id2 in a:
a.add(id1)
for id1, id2 in self._default.items():
if id2 in a:
a.add(id1)
a = (TENSES[id][:-2] for id in a)
a = Tenses(sorted(a))
return a
def find_lemma(self, verb):
# Must be overridden in a subclass.
# Must return the infinitive for the given conjugated (unknown) verb.
return verb
def find_lexeme(self, verb):
# Must be overridden in a subclass.
# Must return the list of conjugations for the given (unknown) verb.
return []
class Tenses(list):
def __contains__(self, tense):
# t in tenses(verb) also works when t is an alias (e.g. "1sg").
return list.__contains__(self, TENSES[tense_id(tense)][:-2])
### SENTIMENT POLARITY LEXICON #####################################################################
# A sentiment lexicon can be used to discern objective facts from subjective opinions in text.
# Each word in the lexicon has scores for:
# 1) polarity: negative vs. positive (-1.0 => +1.0)
# 2) subjectivity: objective vs. subjective (+0.0 => +1.0)
# 3) intensity: modifies next word? (x0.5 => x2.0)
# For English, adverbs are used as modifiers (e.g., "very good").
# For Dutch, adverbial adjectives are used as modifiers
# ("hopeloos voorspelbaar", "ontzettend spannend", "verschrikkelijk goed").
# Negation words (e.g., "not") reverse the polarity of the following word.
# Sentiment()(txt) returns an averaged (polarity, subjectivity)-tuple.
# Sentiment().assessments(txt) returns a list of (chunk, polarity, subjectivity, label)-tuples.
# Semantic labels are useful for fine-grained analysis, e.g.,
# negative words + positive emoticons could indicate cynicism.
# Semantic labels:
MOOD = "mood" # emoticons, emojis
IRONY = "irony" # sarcasm mark (!)
NOUN, VERB, ADJECTIVE, ADVERB = \
"NN", "VB", "JJ", "RB"
RE_SYNSET = re.compile(r"^[acdnrv][-_][0-9]+$")
def avg(list):
return sum(list) / float(len(list) or 1)
class Score(tuple):
def __new__(self, polarity, subjectivity, assessments=[]):
""" A (polarity, subjectivity)-tuple with an assessments property.
"""
return tuple.__new__(self, [polarity, subjectivity])
def __init__(self, polarity, subjectivity, assessments=[]):
self.assessments = assessments
class Sentiment(lazydict):
def __init__(self, path="", language=None, synset=None, confidence=None, **kwargs):
""" A dictionary of words (adjectives) and polarity scores (positive/negative).
The value for each word is a dictionary of part-of-speech tags.
The value for each word POS-tag is a tuple with values for
polarity (-1.0-1.0), subjectivity (0.0-1.0) and intensity (0.5-2.0).
"""
self._path = path # XML file path.
self._language = None # XML language attribute ("en", "fr", ...)
self._confidence = None # XML confidence attribute threshold (>=).
self._synset = synset # XML synset attribute ("wordnet_id", "cornetto_id", ...)
self._synsets = {} # {"a-01123879": (1.0, 1.0, 1.0)}
self.labeler = {} # {"dammit": "profanity"}
self.tokenizer = kwargs.get("tokenizer", find_tokens)
self.negations = kwargs.get("negations", ("no", "not", "n't", "never"))
self.modifiers = kwargs.get("modifiers", ("RB",))
self.modifier = kwargs.get("modifier" , lambda w: w.endswith("ly"))
self.ngrams = kwargs.get("ngrams" , 3)
@property
def path(self):
return self._path
@property
def language(self):
return self._language
@property
def confidence(self):
return self._confidence
def load(self, path=None):
""" Loads the XML-file (with sentiment annotations) from the given path.
By default, Sentiment.path is lazily loaded.
"""
# <word form="great" wordnet_id="a-01123879" pos="JJ" polarity="1.0" subjectivity="1.0" intensity="1.0" />
# <word form="damnmit" polarity="-0.75" subjectivity="1.0" label="profanity" />
if not path:
path = self._path
if not os.path.exists(path):
return
words, synsets, labels = {}, {}, {}
xml = cElementTree.parse(path)
xml = xml.getroot()
for w in xml.findall("word"):
if self._confidence is None \
or self._confidence <= float(w.attrib.get("confidence", 0.0)):
w, pos, p, s, i, label, synset = (
w.attrib.get("form"),
w.attrib.get("pos"),
w.attrib.get("polarity", 0.0),
w.attrib.get("subjectivity", 0.0),
w.attrib.get("intensity", 1.0),
w.attrib.get("label"),
w.attrib.get(self._synset) # wordnet_id, cornetto_id, ...
)
psi = (float(p), float(s), float(i))
if w:
words.setdefault(w, {}).setdefault(pos, []).append(psi)
if w and label:
labels[w] = label
if synset:
synsets.setdefault(synset, []).append(psi)
self._language = xml.attrib.get("language", self._language)
# Average scores of all word senses per part-of-speech tag.
for w in words:
words[w] = dict((pos, map(avg, zip(*psi))) for pos, psi in words[w].items())
# Average scores of all part-of-speech tags.
for w, pos in words.items():
words[w][None] = map(avg, zip(*pos.values()))
# Average scores of all synonyms per synset.
for id, psi in synsets.items():
synsets[id] = map(avg, zip(*psi))
dict.update(self, words)
dict.update(self.labeler, labels)
dict.update(self._synsets, synsets)
def synset(self, id, pos=ADJECTIVE):
""" Returns a (polarity, subjectivity)-tuple for the given synset id.
For example, the adjective "horrible" has id 193480 in WordNet:
Sentiment.synset(193480, pos="JJ") => (-0.6, 1.0, 1.0).
"""
id = str(id).zfill(8)
if not id.startswith(("n-", "v-", "a-", "r-")):
if pos == NOUN:
id = "n-" + id
if pos == VERB:
id = "v-" + id
if pos == ADJECTIVE:
id = "a-" + id
if pos == ADVERB:
id = "r-" + id
if dict.__len__(self) == 0:
self.load()
try:
return tuple(self._synsets[id])[:2]
except KeyError: # Some WordNet id's are not zero padded.
return tuple(self._synsets.get(re.sub(r"-0+", "-", id), (0.0, 0.0))[:2])
def __call__(self, s, negation=True, ngrams=DEFAULT, **kwargs):
""" Returns a (polarity, subjectivity)-tuple for the given sentence,
with polarity between -1.0 and 1.0 and subjectivity between 0.0 and 1.0.
The sentence can be a string, Synset, Text, Sentence, Chunk, Word, Document, Vector.
An optional weight parameter can be given,
as a function that takes a list of words and returns a weight.
"""
def avg(assessments, weighted=lambda w: 1):
s, n = 0, 0
for words, score in assessments:
w = weighted(words)
s += w * score
n += w
return s / float(n or 1)
ngrams = ngrams if ngrams != DEFAULT else self.ngrams
# A pattern.en.wordnet.Synset.
# Sentiment(synsets("horrible", "JJ")[0]) => (-0.6, 1.0)
if hasattr(s, "gloss"):
a = [(s.synonyms[0],) + self.synset(s.id, pos=s.pos) + (None,)]
# A synset id.
# Sentiment("a-00193480") => horrible => (-0.6, 1.0) (English WordNet)
# Sentiment("c_267") => verschrikkelijk => (-0.9, 1.0) (Dutch Cornetto)
elif isinstance(s, basestring) and RE_SYNSET.match(s):
a = [(s.synonyms[0],) + self.synset(s.id, pos=s.pos) + (None,)]
# A string of words.
# Sentiment("a horrible movie") => (-0.6, 1.0)
elif isinstance(s, basestring):
a = self.assessments(((w.lower(), None) for w in " ".join(self.tokenizer(s)).split()), negation, ngrams)
# A pattern.en.Text.
elif hasattr(s, "sentences"):
a = self.assessments(((w.lemma or w.string.lower(), w.pos[:2]) for w in chain(*s)), negation, ngrams)
# A pattern.en.Sentence or pattern.en.Chunk.
elif hasattr(s, "lemmata"):
a = self.assessments(((w.lemma or w.string.lower(), w.pos[:2]) for w in s.words), negation, ngrams)
# A pattern.en.Word.
elif hasattr(s, "lemma"):
a = self.assessments(((s.lemma or s.string.lower(), s.pos[:2]),), negation, ngrams)
# A pattern.vector.Document.
# Average score = weighted average using feature weights.
# Bag-of words is unordered: inject None between each two words
# to stop assessments() from scanning for preceding negation & modifiers.
elif hasattr(s, "terms"):
a = self.assessments(chain(*(((w, None), (None, None)) for w in s)), negation, ngrams)
kwargs.setdefault("weight", lambda w: s.terms[w[0]])
# A dict of (word, weight)-items.
elif isinstance(s, dict):
a = self.assessments(chain(*(((w, None), (None, None)) for w in s)), negation, ngrams)
kwargs.setdefault("weight", lambda w: s[w[0]])
# A list of words.
elif isinstance(s, list):
a = self.assessments(((w, None) for w in s), negation, ngrams)
else:
a = []
weight = kwargs.get("weight", lambda w: 1)
# Each "w" in "a" is a (words, polarity, subjectivity, label)-tuple.
return Score(polarity = avg(map(lambda w: (w[0], w[1]), a), weight),
subjectivity = avg(map(lambda w: (w[0], w[2]), a), weight),
assessments = a)
def assessments(self, words=[], negation=True, ngrams=DEFAULT):
""" Returns a list of (chunk, polarity, subjectivity, label)-tuples for the given list of words:
where chunk is a list of successive words: a known word optionally
preceded by a modifier ("very good") or a negation ("not good").
"""
ngrams = ngrams if ngrams != DEFAULT else self.ngrams
words = list(words)
index = 0
a = []
m = None # Preceding modifier (i.e., adverb or adjective).
n = None # Preceding negation (e.g., "not beautiful").
while index < len(words):
w, pos = words[index]
# Only assess known words, preferably by part-of-speech tag.
# Including unknown words (polarity 0.0 and subjectivity 0.0) lowers the average.
if w is None:
index += 1
continue
for i in reversed(range(1, max(1, ngrams))):
# Known idioms ("hit the spot").
if index < len(words) - i:
idiom = words[index:index+i+1]
idiom = " ".join(w_pos[0] or "END-OF-NGRAM" for w_pos in idiom)
if idiom in self:
w, pos = idiom, None
index += i
break
if w in self and pos in self[w]:
p, s, i = self[w][pos]
# Known word not preceded by a modifier ("good").
if m is None:
a.append(dict(w=[w], p=p, s=s, i=i, n=1, x=self.labeler.get(w)))
# Known word preceded by a modifier ("really good").
if m is not None:
a[-1]["w"].append(w)
a[-1]["p"] = max(-1.0, min(p * a[-1]["i"], +1.0))
a[-1]["s"] = max(-1.0, min(s * a[-1]["i"], +1.0))
a[-1]["i"] = i
a[-1]["x"] = self.labeler.get(w)
# Known word preceded by a negation ("not really good").
if n is not None:
a[-1]["w"].insert(0, n)
a[-1]["i"] = 1.0 / a[-1]["i"]
a[-1]["n"] = -1
# Known word may be a negation.
# Known word may be modifying the next word (i.e., it is a known adverb).
m = None
n = None
if pos and pos in self.modifiers or any(map(self[w].__contains__, self.modifiers)):
m = (w, pos)
if negation and w in self.negations:
n = w
else:
# Unknown word may be a negation ("not good").
if negation and w in self.negations:
n = w
# Unknown word. Retain negation across small words ("not a good").
elif n and len(w.strip("'")) > 1:
n = None
# Unknown word may be a negation preceded by a modifier ("really not good").
if n is not None and m is not None and (pos in self.modifiers or self.modifier(m[0])):
a[-1]["w"].append(n)
a[-1]["n"] = -1
n = None
# Unknown word. Retain modifier across small words ("really is a good").
elif m and len(w) > 2:
m = None
# Exclamation marks boost previous word.
if w == "!" and len(a) > 0:
a[-1]["w"].append("!")
a[-1]["p"] = max(-1.0, min(a[-1]["p"] * 1.25, +1.0))
# Exclamation marks in parentheses indicate sarcasm.
if w == "(!)":
a.append(dict(w=[w], p=0.0, s=1.0, i=1.0, n=1, x=IRONY))
# EMOTICONS: {("grin", +1.0): set((":-D", ":D"))}
if w.isalpha() is False and len(w) <= 5 and w not in PUNCTUATION: # speedup
for E in (EMOTICONS, EMOJI):
for (type, p), e in E.items():
if w in map(lambda e: e.lower(), e):
a.append(dict(w=[w], p=p, s=1.0, i=1.0, n=1, x=MOOD))
break
index += 1
for i in range(len(a)):
w = a[i]["w"]
p = a[i]["p"]
s = a[i]["s"]
n = a[i]["n"]
x = a[i]["x"]
# "not good" = slightly bad, "not bad" = slightly good.
a[i] = (w, p * -0.5 if n < 0 else p, s, x)
return a
def annotate(self, word, pos=None, polarity=0.0, subjectivity=0.0, intensity=1.0, label=None):
""" Annotates the given word with polarity, subjectivity and intensity scores,
and optionally a semantic label (e.g., MOOD for emoticons, IRONY for "(!)").
"""
w = self.setdefault(word, {})
w[pos] = w[None] = (polarity, subjectivity, intensity)
if label:
self.labeler[word] = label
def save(self, path):
""" Saves the lexicon as an XML-file.
"""
# WordNet id's, word sense descriptions and confidence scores
# from a bundled XML (e.g., en/lexicon-en.xml) are not saved.
a = []
a.append("<?xml version=\"1.0\" encoding=\"utf-8\"?>")
a.append("<sentiment>")
for w in sorted(self):
for pos, (p, s, i) in self[w].items():
pos = pos or ""
if pos or len(self[w]) == 1:
a.append("\t<word %s %s %s %s %s %s />" % (
"form=\"%s\"" % w,
"pos=\"%s\"" % pos,
"polarity=\"%.2f\"" % p,
"subjectivity=\"%.2f\"" % s,
"intensity=\"%.2f\"" % i,
"label=\"%s\"" % self.labeler.get(w, "")
))
a.append("</sentiment>")
f = open(path, "w")
f.write(codecs.BOM_UTF8 + encode_utf8("\n".join(a)))
f.close()
#### SPELLING CORRECTION ###########################################################################
# Based on: Peter Norvig, "How to Write a Spelling Corrector", http://norvig.com/spell-correct.html
class Spelling(lazydict):
ALPHA = "abcdefghijklmnopqrstuvwxyz"
def __init__(self, path=""):
self._path = path
def load(self):
for x in _read(self._path):
x = x.split()
dict.__setitem__(self, x[0], int(x[1]))
@property
def path(self):
return self._path
@property
def language(self):
return self._language
@classmethod
def train(self, s, path="spelling.txt"):
""" Counts the words in the given string and saves the probabilities at the given path.
This can be used to generate a new model for the Spelling() constructor.
"""
model = {}
for w in re.findall("[a-z]+", s.lower()):
model[w] = w in model and model[w] + 1 or 1
model = ("%s %s" % (k, v) for k, v in sorted(model.items()))
model = "\n".join(model)
f = open(path, "w")
f.write(model)
f.close()
def _edit1(self, w):
""" Returns a set of words with edit distance 1 from the given word.
"""
# Of all spelling errors, 80% is covered by edit distance 1.
# Edit distance 1 = one character deleted, swapped, replaced or inserted.
split = [(w[:i], w[i:]) for i in range(len(w) + 1)]
delete, transpose, replace, insert = (
[a + b[1:] for a, b in split if b],
[a + b[1] + b[0] + b[2:] for a, b in split if len(b) > 1],
[a + c + b[1:] for a, b in split for c in Spelling.ALPHA if b],
[a + c + b[0:] for a, b in split for c in Spelling.ALPHA]
)
return set(delete + transpose + replace + insert)
def _edit2(self, w):
""" Returns a set of words with edit distance 2 from the given word
"""
# Of all spelling errors, 99% is covered by edit distance 2.
# Only keep candidates that are actually known words (20% speedup).
return set(e2 for e1 in self._edit1(w) for e2 in self._edit1(e1) if e2 in self)
def _known(self, words=[]):
""" Returns the given list of words filtered by known words.
"""
return set(w for w in words if w in self)
def suggest(self, w):
""" Return a list of (word, confidence) spelling corrections for the given word,
based on the probability of known words with edit distance 1-2 from the given word.
"""
if len(self) == 0:
self.load()
if len(w) == 1:
return [(w, 1.0)] # I
if w in PUNCTUATION:
return [(w, 1.0)] # .?!
if w.replace(".", "").isdigit():
return [(w, 1.0)] # 1.5
candidates = self._known([w]) \
or self._known(self._edit1(w)) \
or self._known(self._edit2(w)) \
or [w]
candidates = [(self.get(c, 0.0), c) for c in candidates]
s = float(sum(p for p, w in candidates) or 1)
candidates = sorted(((p / s, w) for p, w in candidates), reverse=True)
candidates = [(w.istitle() and x.title() or x, p) for p, x in candidates] # case-sensitive
return candidates
#### MULTILINGUAL ##################################################################################
# The default functions in each language submodule, with an optional language parameter:
# from pattern.text import parse
# print(parse("The cat sat on the mat.", language="en"))
# print(parse("De kat zat op de mat.", language="nl"))
LANGUAGES = ["en", "es", "de", "fr", "it", "nl"]
_modules = {}
def _module(language):
""" Returns the given language module (e.g., "en" => pattern.en).
"""
return _modules.setdefault(language, __import__(language, globals(), {}, [], -1))
def _multilingual(function, *args, **kwargs):
""" Returns the value from the function with the given name in the given language module.
By default, language="en".
"""
return getattr(_module(kwargs.pop("language", "en")), function)(*args, **kwargs)
def language(s):
""" Returns a (language, confidence)-tuple for the given string.
"""
s = decode_utf8(s)
s = set(w.strip(PUNCTUATION) for w in s.replace("'", "' ").split())
n = float(len(s) or 1)
p = {}
for xx in LANGUAGES:
lexicon = _module(xx).__dict__["lexicon"]
p[xx] = sum(1 for w in s if w in lexicon) / n
return max(p.items(), key=lambda kv: (kv[1], int(kv[0] == "en")))
lang = language
def tokenize(*args, **kwargs):
return _multilingual("tokenize", *args, **kwargs)
def parse(*args, **kwargs):
return _multilingual("parse", *args, **kwargs)
def parsetree(*args, **kwargs):
return _multilingual("parsetree", *args, **kwargs)
def split(*args, **kwargs):
return _multilingual("split", *args, **kwargs)
def tag(*args, **kwargs):
return _multilingual("tag", *args, **kwargs)
def keywords(*args, **kwargs):
return _multilingual("keywords", *args, **kwargs)
def suggest(*args, **kwargs):
return _multilingual("suggest", *args, **kwargs)
def sentiment(*args, **kwargs):
return _multilingual("sentiment", *args, **kwargs)
def singularize(*args, **kwargs):
return _multilingual("singularize", *args, **kwargs)
def pluralize(*args, **kwargs):
return _multilingual("pluralize", *args, **kwargs)
def conjugate(*args, **kwargs):
return _multilingual("conjugate", *args, **kwargs)
def predicative(*args, **kwargs):
return _multilingual("predicative", *args, **kwargs)
def suggest(*args, **kwargs):
return _multilingual("suggest", *args, **kwargs)
|