1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239
|
# -*- coding: utf-8 -*-
import os, sys; sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
import subprocess
from pattern import de
try:
PATH = os.path.dirname(os.path.realpath(__file__))
except:
PATH = ""
#---------------------------------------------------------------------------------------------------
class TestInflection(unittest.TestCase):
def setUp(self):
pass
def test_gender(self):
# Assert der Hund => MASCULINE
# Assert die Studentin => FEMININE
# Assert das Auto => NEUTRAL
self.assertEqual(de.gender("Hund"), de.MASCULINE)
self.assertEqual(de.gender("Studentin"), de.FEMININE)
self.assertEqual(de.gender("Auto"), de.NEUTRAL)
def test_pluralize(self):
# Assert the accuracy of the pluralization algorithm.
from pattern.db import Datasheet
i, n = 0, 0
for tag, sg, pl in Datasheet.load(os.path.join(PATH, "corpora", "wordforms-de-celex.csv")):
if tag == "n":
if de.pluralize(sg) == pl:
i +=1
n += 1
self.assertTrue(float(i) / n > 0.69)
print("pattern.de.pluralize()")
def test_singularize(self):
# Assert the accuracy of the singularization algorithm.
from pattern.db import Datasheet
i, n = 0, 0
for tag, sg, pl in Datasheet.load(os.path.join(PATH, "corpora", "wordforms-de-celex.csv")):
if tag == "n":
if de.singularize(pl) == sg:
i +=1
n += 1
self.assertTrue(float(i) / n > 0.82)
print("pattern.de.singularize()")
def test_attributive(self):
# Assert "groß" => "großer" (masculine, nominative), and others.
for lemma, inflected, gender, role, article in (
(u"groß", u"großer", de.MALE, de.SUBJECT, None),
(u"groß", u"großen", de.MALE, de.OBJECT, None),
(u"groß", u"großem", de.MALE, de.INDIRECT, None),
(u"groß", u"großen", de.MALE, de.PROPERTY, None),
(u"groß", u"große", de.FEMALE, de.SUBJECT, None),
(u"groß", u"große", de.FEMALE, de.OBJECT, None),
(u"groß", u"großer", de.FEMALE, de.INDIRECT, None),
(u"groß", u"großes", de.NEUTRAL, de.SUBJECT, None),
(u"groß", u"großes", de.NEUTRAL, de.OBJECT, None),
(u"groß", u"großen", de.MALE, de.PROPERTY, "mein"),
(u"groß", u"großen", de.FEMALE, de.PROPERTY, "jeder"),
(u"groß", u"großen", de.FEMALE, de.PROPERTY, "mein"),
(u"groß", u"großen", de.PLURAL, de.INDIRECT, "jede"),
(u"groß", u"großen", de.PLURAL, de.PROPERTY, "jeder")):
v = de.attributive(lemma, gender, role, article)
self.assertEqual(v, inflected)
print("pattern.de.attributive()")
def test_predicative(self):
# Assert the accuracy of the predicative algorithm ("großer" => "groß").
from pattern.db import Datasheet
i, n = 0, 0
for tag, pred, attr in Datasheet.load(os.path.join(PATH, "corpora", "wordforms-de-celex.csv")):
if tag == "a":
if de.predicative(attr) == pred:
i +=1
n += 1
self.assertTrue(float(i) / n > 0.98)
print("pattern.de.predicative()")
def test_find_lemma(self):
# Assert the accuracy of the verb lemmatization algorithm.
# Note: the accuracy is higher (88%) when measured on CELEX word forms
# (presumably because de.inflect.verbs has high percentage irregular verbs).
i, n = 0, 0
for v1, v2 in de.inflect.verbs.inflections.items():
if de.inflect.verbs.find_lemma(v1) == v2:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.86)
print("pattern.de.inflect.verbs.find_lemma()")
def test_find_lexeme(self):
# Assert the accuracy of the verb conjugation algorithm.
i, n = 0, 0
for v, lexeme1 in de.inflect.verbs.infinitives.items():
lexeme2 = de.inflect.verbs.find_lexeme(v)
for j in range(len(lexeme2)):
if lexeme1[j] == "":
continue
if lexeme1[j] == lexeme2[j]:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.86)
print("pattern.de.inflect.verbs.find_lexeme()")
def test_conjugate(self):
# Assert different tenses with different conjugations.
for (v1, v2, tense) in (
("sein", "sein", de.INFINITIVE),
("sein", "bin", (de.PRESENT, 1, de.SINGULAR)),
("sein", "bist", (de.PRESENT, 2, de.SINGULAR)),
("sein", "ist", (de.PRESENT, 3, de.SINGULAR)),
("sein", "sind", (de.PRESENT, 1, de.PLURAL)),
("sein", "seid", (de.PRESENT, 2, de.PLURAL)),
("sein", "sind", (de.PRESENT, 3, de.PLURAL)),
("sein", "seiend", (de.PRESENT + de.PARTICIPLE)),
("sein", "war", (de.PAST, 1, de.SINGULAR)),
("sein", "warst", (de.PAST, 2, de.SINGULAR)),
("sein", "war", (de.PAST, 3, de.SINGULAR)),
("sein", "waren", (de.PAST, 1, de.PLURAL)),
("sein", "wart", (de.PAST, 2, de.PLURAL)),
("sein", "waren", (de.PAST, 3, de.PLURAL)),
("sein", "gewesen", (de.PAST + de.PARTICIPLE)),
("sein", "sei", (de.PRESENT, 2, de.SINGULAR, de.IMPERATIVE)),
("sein", "seien", (de.PRESENT, 1, de.PLURAL, de.IMPERATIVE)),
("sein", "seid", (de.PRESENT, 2, de.PLURAL, de.IMPERATIVE)),
("sein", u"sei", (de.PRESENT, 1, de.SINGULAR, de.SUBJUNCTIVE)),
("sein", u"seiest", (de.PRESENT, 2, de.SINGULAR, de.SUBJUNCTIVE)),
("sein", u"sei", (de.PRESENT, 3, de.SINGULAR, de.SUBJUNCTIVE)),
("sein", u"seien", (de.PRESENT, 1, de.PLURAL, de.SUBJUNCTIVE)),
("sein", u"seiet", (de.PRESENT, 2, de.PLURAL, de.SUBJUNCTIVE)),
("sein", u"seien", (de.PRESENT, 3, de.PLURAL, de.SUBJUNCTIVE)),
("sein", u"wäre", (de.PAST, 1, de.SINGULAR, de.SUBJUNCTIVE)),
("sein", u"wärest", (de.PAST, 2, de.SINGULAR, de.SUBJUNCTIVE)),
("sein", u"wäre", (de.PAST, 3, de.SINGULAR, de.SUBJUNCTIVE)),
("sein", u"wären", (de.PAST, 1, de.PLURAL, de.SUBJUNCTIVE)),
("sein", u"wäret", (de.PAST, 2, de.PLURAL, de.SUBJUNCTIVE)),
("sein", u"wären", (de.PAST, 3, de.PLURAL, de.SUBJUNCTIVE))):
self.assertEqual(de.conjugate(v1, tense), v2)
print("pattern.de.conjugate()")
def test_lexeme(self):
# Assert all inflections of "sein".
v = de.lexeme("sein")
self.assertEqual(v, [
"sein", "bin", "bist", "ist", "sind", "seid", "seiend",
"war", "warst", "waren", "wart", "gewesen",
"sei", "seien", "seiest", "seiet",
u"wäre", u"wärest", u"wären", u"wäret"
])
print("pattern.de.inflect.lexeme()")
def test_tenses(self):
# Assert tense recognition.
self.assertTrue((de.PRESENT, 3, de.SG) in de.tenses("ist"))
self.assertTrue("2sg" in de.tenses("bist"))
print("pattern.de.tenses()")
#---------------------------------------------------------------------------------------------------
class TestParser(unittest.TestCase):
def setUp(self):
pass
def test_find_lemmata(self):
# Assert lemmata for nouns, adjectives and verbs.
v = de.parser.find_lemmata([["Ich", "PRP"], ["sage", "VB"], [u"schöne", "JJ"], [u"Dinge", "NNS"]])
self.assertEqual(v, [
["Ich", "PRP", "ich"],
["sage", "VB", "sagen"],
[u"schöne", "JJ", u"schön"],
["Dinge", "NNS", "ding"]])
print("pattern.de.parser.find_lemmata()")
def test_parse(self):
# Assert parsed output with Penn Treebank II tags (slash-formatted).
# 1) "der große Hund" is a noun phrase, "auf der Matte" is a prepositional noun phrase.
v = de.parser.parse(u"Der große Hund sitzt auf der Matte.")
self.assertEqual(v,
u"Der/DT/B-NP/O große/JJ/I-NP/O Hund/NN/I-NP/O " + \
u"sitzt/VB/B-VP/O " + \
u"auf/IN/B-PP/B-PNP der/DT/B-NP/I-PNP Matte/NN/I-NP/I-PNP ././O/O"
)
# 2) "große" and "sitzt" lemmata are "groß" and "sitzen".
# Note how articles are problematic ("der" can be male subject but also plural possessive).
v = de.parser.parse(u"Der große Hund sitzt auf der Matte.", lemmata=True)
self.assertEqual(v,
u"Der/DT/B-NP/O/der große/JJ/I-NP/O/groß Hund/NN/I-NP/O/hund " + \
u"sitzt/VB/B-VP/O/sitzen " + \
u"auf/IN/B-PP/B-PNP/auf der/DT/B-NP/I-PNP/der Matte/NN/I-NP/I-PNP/matte ././O/O/."
)
# 3) Assert the accuracy of the German tagger.
i, n = 0, 0
for sentence in open(os.path.join(PATH, "corpora", "tagged-de-tiger.txt")).readlines():
sentence = sentence.decode("utf-8").strip()
s1 = [w.split("/") for w in sentence.split(" ")]
s1 = [de.stts2penntreebank(w, pos) for w, pos in s1]
s2 = [[w for w, pos in s1]]
s2 = de.parse(s2, tokenize=False)
s2 = [w.split("/") for w in s2.split(" ")]
for j in range(len(s1)):
if s1[j][1] == s2[j][1]:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.844)
print("pattern.de.parse()")
def test_tag(self):
# Assert [("der", "DT"), ("grosse", "JJ"), ("Hund", "NN")].
v = de.tag("der grosse Hund")
self.assertEqual(v, [("der", "DT"), ("grosse", "JJ"), ("Hund", "NN")])
print("pattern.de.tag()")
def test_command_line(self):
# Assert parsed output from the command-line (example from the documentation).
p = ["python", "-m", "pattern.de", "-s", "Der grosse Hund.", "-OTCRL"]
p = subprocess.Popen(p, stdout=subprocess.PIPE)
p.wait()
v = p.stdout.read()
v = v.strip()
self.assertEqual(v, "Der/DT/B-NP/O/O/der grosse/JJ/I-NP/O/O/gross Hund/NN/I-NP/O/O/hund ././O/O/O/.")
print("python -m pattern.de")
#---------------------------------------------------------------------------------------------------
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestInflection))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestParser))
return suite
if __name__ == "__main__":
unittest.TextTestRunner(verbosity=1).run(suite())
|