File: test_metrics.py

package info (click to toggle)
python-pattern 2.6%2Bgit20150109-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,672 kB
  • sloc: python: 53,865; xml: 11,965; ansic: 2,318; makefile: 94
file content (446 lines) | stat: -rw-r--r-- 17,844 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
import os, sys; sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
import time
import math

from pattern import metrics

try:
    PATH = os.path.dirname(os.path.realpath(__file__))
except:
    PATH = ""

#---------------------------------------------------------------------------------------------------

class TestProfiling(unittest.TestCase):
    
    def setUp(self):
        # Test set for accuracy, precision and recall:
        self.documents = (
            (None, True),
            (None, True),
            (None, False)
        )
    
    def test_duration(self):
        # Assert 0.1 or slightly higher.
        v = metrics.duration(time.sleep, 0.1)
        self.assertTrue(v > 0.1)
        print("pattern.metrics.duration()")

    def test_confustion_matrix(self):
        # Assert 2 true positives (TP) and 1 false positive (FP).
        v = metrics.confusion_matrix(lambda document: True, self.documents)
        self.assertEqual(v, (2,0,1,0))  
        # Assert 1 true negative (TN) and 2 false negatives (FN).
        v = metrics.confusion_matrix(lambda document: False, self.documents)
        self.assertEqual(v, (0,1,0,2))  
        print("pattern.metrics.confusion_matrix()"      )
    
    def test_accuracy(self):
        # Assert 2.0/3.0 (two out of three correct predictions).
        v = metrics.accuracy(lambda document: True, self.documents)
        self.assertEqual(v, 2.0/3.0)
        print("pattern.metrics.accuracy()")

    def test_precision(self):
        # Assert 2.0/3.0 (2 TP, 1 FP).
        v = metrics.precision(lambda document: True, self.documents)
        self.assertEqual(v, 2.0/3.0)
        # Assert 0.0 (no TP).
        v = metrics.precision(lambda document: False, self.documents)
        self.assertEqual(v, 0.0)
        print("pattern.metrics.precision()")

    def test_recall(self):
        # Assert 1.0 (no FN).
        v = metrics.recall(lambda document: True, self.documents)
        self.assertEqual(v, 1.0)
        # Assert 0.0 (no TP).
        v = metrics.recall(lambda document: False, self.documents)
        self.assertEqual(v, 0.0)
        print("pattern.metrics.recall()")
        
    def test_F1(self):
        # Assert 0.8 (F1 for precision=2/3 and recall=1).
        v = metrics.F1(lambda document: True, self.documents)
        self.assertEqual(v, 0.8)
        self.assertEqual(v, metrics.F(lambda document: True, self.documents, beta=1))
        print("pattern.metrics.F1()")
        
    def test_agreement(self):
        # Assert 0.210 (example from http://en.wikipedia.org/wiki/Fleiss'_kappa).
        m = [[0, 0, 0, 0, 14],
             [0, 2, 6, 4, 2 ],
             [0, 0, 3, 5, 6 ],
             [0, 3, 9, 2, 0 ],
             [2, 2, 8, 1, 1 ],
             [7, 7, 0, 0, 0 ],
             [3, 2, 6, 3, 0 ],
             [2, 5, 3, 2, 2 ],
             [6, 5, 2, 1, 0 ],
             [0, 2, 2, 3, 7 ]]
        v = metrics.agreement(m)
        self.assertAlmostEqual(v, 0.210, places=3)
        print("pattern.metrics.agreement()")

class TestTextMetrics(unittest.TestCase):
    
    def setUp(self):
        pass

    def test_levenshtein(self):
        # Assert 0 (identical strings).
        v = metrics.levenshtein("gallahad", "gallahad")
        self.assertEqual(v, 0)
        # Assert 3 (1 insert, 1 delete, 1 replace).
        v = metrics.levenshtein("gallahad", "_g_llaha")
        self.assertEqual(v, 3)
        print("pattern.metrics.levenshtein()")

    def test_levenshtein_similarity(self):
        # Assert 1.0 (identical strings).
        v = metrics.levenshtein_similarity("gallahad", "gallahad")
        self.assertEqual(v, 1.0)
        # Assert 0.75 (2 out of 8 characters differ).
        v = metrics.levenshtein_similarity("gallahad", "g_ll_had")
        self.assertEqual(v, 0.75)
        print("pattern.metrics.levenshtein_similarity()")
        
    def test_dice_coefficient(self):
        # Assert 1.0 (identical strings).
        v = metrics.dice_coefficient("gallahad", "gallahad")
        self.assertEqual(v, 1.0)
        # Assert 0.25 (example from http://en.wikipedia.org/wiki/Dice_coefficient).
        v = metrics.dice_coefficient("night", "nacht")
        self.assertEqual(v, 0.25)
        print("pattern.metrics.dice_coefficient()")
        
    def test_similarity(self):
        self.assertEqual(
            metrics.levenshtein_similarity("night", "nacht"), 
            metrics.similarity("night", "nacht", metrics.LEVENSHTEIN))
        self.assertEqual(
            metrics.dice_coefficient("night", "nacht"), 
            metrics.similarity("night", "nacht", metrics.DICE))
        print("pattern.metrics.similarity()")
            
    def test_readability(self):
        # Assert that technical jargon is in the "difficult" range (< 0.30).
        s = "The Australian platypus is seemingly a hybrid of a mammal and reptilian creature."
        v = metrics.readability(s)
        self.assertTrue(v < 0.30)        
        # Assert that Dr. Seuss is in the "easy" range (> 0.70).
        s = "'I know some good games we could play,' said the cat. " + \
            "'I know some new tricks,' said the cat in the hat. " + \
            "'A lot of good tricks. I will show them to you.' " + \
            "'Your mother will not mind at all if I do.'"
        v = metrics.readability(s)
        self.assertTrue(v > 0.70)
        print("pattern.metrics.readability()")
        
    def test_intertextuality(self):
        # Evaluate accuracy for plagiarism detection.
        from pattern.db import Datasheet
        data = Datasheet.load(os.path.join(PATH, "corpora", "plagiarism-clough&stevenson.csv"))
        data = [((txt, src), int(plagiarism) > 0) for txt, src, plagiarism in data]
        def plagiarism(txt, src):
            return metrics.intertextuality([txt, src], n=3)[0,1] > 0.05
        A, P, R, F = metrics.test(lambda x: plagiarism(*x), data)
        self.assertTrue(P > 0.96)
        self.assertTrue(R > 0.94)
        print("pattern.metrics.intertextuality()")
    
    def test_ttr(self):
        # Assert type-token ratio: words = 7, unique words = 6.
        s = "The black cat \n sat on the mat."
        v = metrics.ttr(s)
        self.assertAlmostEqual(v, 0.86, places=2)
        print("pattern.metrics.ttr()")
    
    def test_suffixes(self):
        # Assert base => inflected and reversed inflected => base suffixes.
        s = [("beau", "beaux"), ("jeune", "jeunes"), ("hautain", "hautaines")]
        v = metrics.suffixes(s, n=3)
        self.assertEqual(v, [
            (2, "nes", [("ne", 0.5), ("n", 0.5)]), 
            (1, "aux", [("au", 1.0)])])
        v = metrics.suffixes(s, n=2, reverse=False)
        self.assertEqual(v, [
            (1, "ne", [("nes", 1.0)]), 
            (1, "in", [("ines", 1.0)]), 
            (1, "au", [("aux", 1.0)])])
        print("pattern.metrics.suffixes()")
        
    def test_isplit(self):
        # Assert string.split() iterator.
        v = metrics.isplit("test\nisplit")
        self.assertTrue(hasattr(v, "next"))
        self.assertEqual(list(v), ["test", "isplit"])
        print("pattern.metrics.isplit()")
    
    def test_cooccurrence(self):
        s = "The black cat sat on the mat."
        v = metrics.cooccurrence(s, window=(-1, 1), 
                term1 = lambda w: w in ("cat",),
            normalize = lambda w: w.lower().strip(".:;,!?()[]'\""))
        self.assertEqual(sorted(v.keys()), ["cat"])
        self.assertEqual(sorted(v["cat"].keys()), ["black", "cat", "sat"])
        self.assertEqual(sorted(v["cat"].values()), [1, 1, 1])
        s = [("The","DT"), ("black","JJ"), ("cat","NN"), ("sat","VB"), ("on","IN"), ("the","DT"), ("mat","NN")]
        v = metrics.co_occurrence(s, window=(-2, -1), 
             term1 = lambda token: token[1].startswith("NN"),
             term2 = lambda token: token[1].startswith("JJ"))
        self.assertEqual(v, {("cat", "NN"): {("black", "JJ"): 1}})
        print("pattern.metrics.cooccurrence()")

class TestInterpolation(unittest.TestCase):
    
    def setUp(self):
        pass

    def test_lerp(self):
        # Assert linear interpolation.
        v = metrics.lerp(100, 200, 0.5)
        self.assertEqual(v, 150.0)
        print("pattern.metrics.lerp()")
        
    def test_smoothstep(self):
        # Assert cubic interpolation.
        v1 = metrics.smoothstep(0.0, 1.0, 0.5)
        v2 = metrics.smoothstep(0.0, 1.0, 0.9)
        v3 = metrics.smoothstep(0.0, 1.0, 0.1)
        self.assertEqual(v1, 0.5)
        self.assertTrue(v2 > 0.9)
        self.assertTrue(v3 < 0.1)
        print("pattern.metrics.smoothstep()")
        
    def test_smoothrange(self):
        # Assert nice ranges for line charts.
        v = list(metrics.smoothrange(0.0, 1.0))
        [self.assertAlmostEqual(x, y, places=1) for x, y in zip(v, 
            [0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])]
        v = list(metrics.smoothrange(-2, 2))
        [self.assertAlmostEqual(x, y, places=1) for x, y in zip(v, 
            [-2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0])]
        v = list(metrics.smoothrange(1, 13))
        [self.assertAlmostEqual(x, y, places=1) for x, y in zip(v, 
            [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0])]
        print("pattern.metrics.smoothrange()")

class TestStatistics(unittest.TestCase):
    
    def setUp(self):
        pass

    def test_mean(self):
        # Assert (1+2+3+4) / 4 = 2.5.
        v = metrics.mean([1,2,3,4])
        self.assertEqual(v, 2.5)
        print("pattern.metrics.mean()")
        
    def test_median(self):
        # Assert 2.5 (between 2 and 3).
        v = metrics.median([1,2,3,4])
        self.assertEqual(v, 2.5)
        # Assert 3 (middle of list).
        v = metrics.median([1,2,3,4,5])
        self.assertEqual(v, 3)
        # Assert that empty list raises ValueError.
        self.assertRaises(ValueError, metrics.median, [])
        print("pattern.metrics.median()")
        
    def test_variance(self):
        # Assert 2.5.
        v = metrics.variance([1,2,3,4,5], sample=True)
        self.assertEqual(v, 2.5)
        # Assert 2.0 (population variance).
        v = metrics.variance([1,2,3,4,5], sample=False)
        self.assertEqual(v, 2.0)
        print("pattern.metrics.variance()")
        
    def test_standard_deviation(self):
        # Assert 2.429 (sample).
        v = metrics.standard_deviation([1,5,6,7,6,8], sample=True)
        self.assertAlmostEqual(v, 2.429, places=3)
        # Assert 2.217 (population).
        v = metrics.standard_deviation([1,5,6,7,6,8], sample=False)
        self.assertAlmostEqual(v, 2.217, places=3)
        print("pattern.metrics.standard_deviation()")
    
    def test_histogram(self):
        # Assert 1 bin.
        v = metrics.histogram([1,2,3,4], k=0)
        self.assertTrue(len(v) == 1)
        # Assert 4 bins, each with one value, each with midpoint == value.
        v = metrics.histogram([1,2,3,4], k=4, range=(0.5,4.5))
        for i, ((start, stop), v) in enumerate(sorted(v.items())):
            self.assertTrue(i+1 == v[0])
            self.assertAlmostEqual(start + (stop-start)/2, i+1, places=3)
        # Assert 2 bins, one with all the low numbers, one with the high number.
        v = metrics.histogram([1,2,3,4,100], k=2)
        v = sorted(v.values(), key=lambda item: len(item))
        self.assertTrue(v[0] == [100])
        self.assertTrue(v[1] == [1,2,3,4])
        print("pattern.metrics.histogram()")
    
    def test_moment(self):
        # Assert 0.0 (1st central moment = 0.0).
        v = metrics.moment([1,2,3,4,5], n=1)
        self.assertEqual(v, 0.0)
        # Assert 2.0 (2nd central moment = population variance).
        v = metrics.moment([1,2,3,4,5], n=2)
        self.assertEqual(v, 2.0)
        print("pattern.metrics.moment()")
    
    def test_skewness(self):
        # Assert < 0.0 (few low values).
        v = metrics.skewness([1,100,101,102,103])
        self.assertTrue(v < 0.0)
        # Assert > 0.0 (few high values).
        v = metrics.skewness([1,2,3,4,100])
        self.assertTrue(v > 0.0)
        # Assert 0.0 (evenly distributed).
        v = metrics.skewness([1,2,3,4])
        self.assertTrue(v == 0.0)
        print("pattern.metrics.skewness()")
        
    def test_kurtosis(self):
        # Assert -1.2 for the uniform distribution.
        a = 1
        b = 1000
        v = metrics.kurtosis([float(i-a)/(b-a) for i in range(a,b)])
        self.assertAlmostEqual(v, -1.2, places=3)
        print("pattern.metrics.kurtosis()")
        
    def test_quantile(self):
        # Assert 2.5 (quantile with p=0.5 == median).
        v = metrics.quantile([1,2,3,4], p=0.5, a=1, b=-1, c=0, d=1)
        self.assertEqual(v, 2.5)
        # Assert 3.0 (discontinuous sample).
        v = metrics.quantile([1,2,3,4], p=0.5, a=0.5, b=0, c=1, d=0)
        self.assertEqual(v, 3.0)
        return "pattern.metrics.quantile()"
    
    def test_boxplot(self):
        # Different a,b,c,d quantile parameters produce different results.
        # By approximation, assert (53, 79.5, 84.5, 92, 98).
        a = [79,53,82,91,87,98,80,93]
        v = metrics.boxplot(a)
        self.assertEqual(v[0], min(a))
        self.assertTrue(abs(v[1] - 79.5) <= 0.5)
        self.assertTrue(abs(v[2] - metrics.median(a)) <= 0.5)
        self.assertTrue(abs(v[3] - 92.0) <= 0.5)
        self.assertEqual(v[4], max(a))
        print("pattern.metrics.boxplot()")

class TestStatisticalTests(unittest.TestCase):
    
    def setUp(self):
        pass

    def test_fisher_test(self):
        # Assert Fisher exact test significance.
        v = metrics.fisher_exact_test(a=1, b=9, c=11, d=3)
        self.assertAlmostEqual(v, 0.0028, places=4)
        v = metrics.fisher_exact_test(a=45, b=15, c=75, d=45)
        self.assertAlmostEqual(v, 0.1307, places=4)
        print("pattern.metrics.fisher_test()")
    
    def test_chi_squared(self):
        # Assert chi-squared test (upper tail).
        o1, e1 = [[44, 56]], [[50, 50]]
        o2, e2 = [[22, 21, 22, 27, 22, 36]], []
        o3, e3 = [[48, 35, 15, 3]], [[58, 34.5, 7, 0.5]]
        o4, e4 = [[36, 14], [30, 25]], []
        o5, e5 = [[46, 71], [37, 83]], [[40.97, 76.02], [42.03, 77.97]]
        v1 = metrics.chi2(o1, e1)
        v2 = metrics.chi2(o2, e2)
        v3 = metrics.chi2(o3, e3)
        v4 = metrics.chi2(o4, e4)
        v5 = metrics.chi2(o5, e5)
        self.assertAlmostEqual(v1[0],  1.4400, places=4)
        self.assertAlmostEqual(v1[1],  0.2301, places=4)
        self.assertAlmostEqual(v2[0],  6.7200, places=4)
        self.assertAlmostEqual(v2[1],  0.2423, places=4)
        self.assertAlmostEqual(v3[0], 23.3742, places=4)
        self.assertAlmostEqual(v4[0],  3.4177, places=4)
        self.assertAlmostEqual(v5[0],  1.8755, places=4)
        print("pattern.metrics.chi2()")
    
    def test_chi_squared_p(self):
        # Assert chi-squared P-value (upper tail).
        for df, X2 in [
          (1, ( 3.85,  5.05,  6.65,  7.90)), 
          (2, ( 6.00,  7.40,  9.25, 10.65)),
          (3, ( 7.85,  9.40, 11.35, 12.85)),
          (4, ( 9.50, 11.15, 13.30, 14.90)),
          (5, (11.10, 12.85, 15.10, 16.80))]:
            for i, x2 in enumerate(X2):
                v = metrics.chi2p(x2, df, tail=metrics.UPPER)
                self.assertTrue(v < (0.05, 0.025, 0.01, 0.005)[i])
        print("pattern.metrics.chi2p()")
        
    def test_kolmogorov_smirnov(self):
        v = metrics.ks2([1, 2, 3], [1, 2, 4])
        self.assertAlmostEqual(v[0],  0.3333, places=4)
        self.assertAlmostEqual(v[1],  0.9762, places=4)
        print("pattern.metrics.ks2()")

class TestSpecialFunctions(unittest.TestCase):
    
    def setUp(self):
        pass
    
    def test_gamma(self):
        # Assert complete gamma function.
        v = metrics.gamma(0.5)
        self.assertAlmostEqual(v, math.sqrt(math.pi), places=4)
        print("pattern.metrics.gamma()")
    
    def test_gammai(self):
        # Assert incomplete gamma function.
        v = metrics.gammai(a=1, x=2)
        self.assertAlmostEqual(v, 0.1353, places=4)
        print("pattern.metrics.gammai()")
    
    def test_erfc(self):
        # Assert complementary error function.
        for x, y in [
          (-3.00, 2.000),
          (-2.00, 1.995),
          (-1.00, 1.843),
          (-0.50, 1.520),
          (-0.25, 1.276),
          ( 0.00, 1.000),
          ( 0.25, 0.724),
          ( 0.50, 0.480),
          ( 1.00, 0.157),
          ( 2.00, 0.005),
          ( 3.00, 0.000)]:
            self.assertAlmostEqual(metrics.erfc(x), y, places=3)
        print("pattern.metrics.erfc()")
        
    def test_kolmogorov(self):
        # Assert Kolmogorov limit distribution.
        self.assertAlmostEqual(metrics.kolmogorov(0.0), 1.0000, places=4)
        self.assertAlmostEqual(metrics.kolmogorov(0.5), 0.9639, places=4)
        self.assertAlmostEqual(metrics.kolmogorov(1.0), 0.2700, places=4)
        self.assertAlmostEqual(metrics.kolmogorov(2.0), 0.0007, places=4)
        self.assertAlmostEqual(metrics.kolmogorov(4.0), 0.0000, places=4)
        print("pattern.metrics.kolmogorov()")

#---------------------------------------------------------------------------------------------------

def suite():
    suite = unittest.TestSuite()
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestProfiling))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestTextMetrics))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestInterpolation))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestStatistics))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestStatisticalTests))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestSpecialFunctions))
    return suite

if __name__ == "__main__":
    unittest.TextTestRunner(verbosity=1).run(suite())