1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446
|
import os, sys; sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
import time
import math
from pattern import metrics
try:
PATH = os.path.dirname(os.path.realpath(__file__))
except:
PATH = ""
#---------------------------------------------------------------------------------------------------
class TestProfiling(unittest.TestCase):
def setUp(self):
# Test set for accuracy, precision and recall:
self.documents = (
(None, True),
(None, True),
(None, False)
)
def test_duration(self):
# Assert 0.1 or slightly higher.
v = metrics.duration(time.sleep, 0.1)
self.assertTrue(v > 0.1)
print("pattern.metrics.duration()")
def test_confustion_matrix(self):
# Assert 2 true positives (TP) and 1 false positive (FP).
v = metrics.confusion_matrix(lambda document: True, self.documents)
self.assertEqual(v, (2,0,1,0))
# Assert 1 true negative (TN) and 2 false negatives (FN).
v = metrics.confusion_matrix(lambda document: False, self.documents)
self.assertEqual(v, (0,1,0,2))
print("pattern.metrics.confusion_matrix()" )
def test_accuracy(self):
# Assert 2.0/3.0 (two out of three correct predictions).
v = metrics.accuracy(lambda document: True, self.documents)
self.assertEqual(v, 2.0/3.0)
print("pattern.metrics.accuracy()")
def test_precision(self):
# Assert 2.0/3.0 (2 TP, 1 FP).
v = metrics.precision(lambda document: True, self.documents)
self.assertEqual(v, 2.0/3.0)
# Assert 0.0 (no TP).
v = metrics.precision(lambda document: False, self.documents)
self.assertEqual(v, 0.0)
print("pattern.metrics.precision()")
def test_recall(self):
# Assert 1.0 (no FN).
v = metrics.recall(lambda document: True, self.documents)
self.assertEqual(v, 1.0)
# Assert 0.0 (no TP).
v = metrics.recall(lambda document: False, self.documents)
self.assertEqual(v, 0.0)
print("pattern.metrics.recall()")
def test_F1(self):
# Assert 0.8 (F1 for precision=2/3 and recall=1).
v = metrics.F1(lambda document: True, self.documents)
self.assertEqual(v, 0.8)
self.assertEqual(v, metrics.F(lambda document: True, self.documents, beta=1))
print("pattern.metrics.F1()")
def test_agreement(self):
# Assert 0.210 (example from http://en.wikipedia.org/wiki/Fleiss'_kappa).
m = [[0, 0, 0, 0, 14],
[0, 2, 6, 4, 2 ],
[0, 0, 3, 5, 6 ],
[0, 3, 9, 2, 0 ],
[2, 2, 8, 1, 1 ],
[7, 7, 0, 0, 0 ],
[3, 2, 6, 3, 0 ],
[2, 5, 3, 2, 2 ],
[6, 5, 2, 1, 0 ],
[0, 2, 2, 3, 7 ]]
v = metrics.agreement(m)
self.assertAlmostEqual(v, 0.210, places=3)
print("pattern.metrics.agreement()")
class TestTextMetrics(unittest.TestCase):
def setUp(self):
pass
def test_levenshtein(self):
# Assert 0 (identical strings).
v = metrics.levenshtein("gallahad", "gallahad")
self.assertEqual(v, 0)
# Assert 3 (1 insert, 1 delete, 1 replace).
v = metrics.levenshtein("gallahad", "_g_llaha")
self.assertEqual(v, 3)
print("pattern.metrics.levenshtein()")
def test_levenshtein_similarity(self):
# Assert 1.0 (identical strings).
v = metrics.levenshtein_similarity("gallahad", "gallahad")
self.assertEqual(v, 1.0)
# Assert 0.75 (2 out of 8 characters differ).
v = metrics.levenshtein_similarity("gallahad", "g_ll_had")
self.assertEqual(v, 0.75)
print("pattern.metrics.levenshtein_similarity()")
def test_dice_coefficient(self):
# Assert 1.0 (identical strings).
v = metrics.dice_coefficient("gallahad", "gallahad")
self.assertEqual(v, 1.0)
# Assert 0.25 (example from http://en.wikipedia.org/wiki/Dice_coefficient).
v = metrics.dice_coefficient("night", "nacht")
self.assertEqual(v, 0.25)
print("pattern.metrics.dice_coefficient()")
def test_similarity(self):
self.assertEqual(
metrics.levenshtein_similarity("night", "nacht"),
metrics.similarity("night", "nacht", metrics.LEVENSHTEIN))
self.assertEqual(
metrics.dice_coefficient("night", "nacht"),
metrics.similarity("night", "nacht", metrics.DICE))
print("pattern.metrics.similarity()")
def test_readability(self):
# Assert that technical jargon is in the "difficult" range (< 0.30).
s = "The Australian platypus is seemingly a hybrid of a mammal and reptilian creature."
v = metrics.readability(s)
self.assertTrue(v < 0.30)
# Assert that Dr. Seuss is in the "easy" range (> 0.70).
s = "'I know some good games we could play,' said the cat. " + \
"'I know some new tricks,' said the cat in the hat. " + \
"'A lot of good tricks. I will show them to you.' " + \
"'Your mother will not mind at all if I do.'"
v = metrics.readability(s)
self.assertTrue(v > 0.70)
print("pattern.metrics.readability()")
def test_intertextuality(self):
# Evaluate accuracy for plagiarism detection.
from pattern.db import Datasheet
data = Datasheet.load(os.path.join(PATH, "corpora", "plagiarism-clough&stevenson.csv"))
data = [((txt, src), int(plagiarism) > 0) for txt, src, plagiarism in data]
def plagiarism(txt, src):
return metrics.intertextuality([txt, src], n=3)[0,1] > 0.05
A, P, R, F = metrics.test(lambda x: plagiarism(*x), data)
self.assertTrue(P > 0.96)
self.assertTrue(R > 0.94)
print("pattern.metrics.intertextuality()")
def test_ttr(self):
# Assert type-token ratio: words = 7, unique words = 6.
s = "The black cat \n sat on the mat."
v = metrics.ttr(s)
self.assertAlmostEqual(v, 0.86, places=2)
print("pattern.metrics.ttr()")
def test_suffixes(self):
# Assert base => inflected and reversed inflected => base suffixes.
s = [("beau", "beaux"), ("jeune", "jeunes"), ("hautain", "hautaines")]
v = metrics.suffixes(s, n=3)
self.assertEqual(v, [
(2, "nes", [("ne", 0.5), ("n", 0.5)]),
(1, "aux", [("au", 1.0)])])
v = metrics.suffixes(s, n=2, reverse=False)
self.assertEqual(v, [
(1, "ne", [("nes", 1.0)]),
(1, "in", [("ines", 1.0)]),
(1, "au", [("aux", 1.0)])])
print("pattern.metrics.suffixes()")
def test_isplit(self):
# Assert string.split() iterator.
v = metrics.isplit("test\nisplit")
self.assertTrue(hasattr(v, "next"))
self.assertEqual(list(v), ["test", "isplit"])
print("pattern.metrics.isplit()")
def test_cooccurrence(self):
s = "The black cat sat on the mat."
v = metrics.cooccurrence(s, window=(-1, 1),
term1 = lambda w: w in ("cat",),
normalize = lambda w: w.lower().strip(".:;,!?()[]'\""))
self.assertEqual(sorted(v.keys()), ["cat"])
self.assertEqual(sorted(v["cat"].keys()), ["black", "cat", "sat"])
self.assertEqual(sorted(v["cat"].values()), [1, 1, 1])
s = [("The","DT"), ("black","JJ"), ("cat","NN"), ("sat","VB"), ("on","IN"), ("the","DT"), ("mat","NN")]
v = metrics.co_occurrence(s, window=(-2, -1),
term1 = lambda token: token[1].startswith("NN"),
term2 = lambda token: token[1].startswith("JJ"))
self.assertEqual(v, {("cat", "NN"): {("black", "JJ"): 1}})
print("pattern.metrics.cooccurrence()")
class TestInterpolation(unittest.TestCase):
def setUp(self):
pass
def test_lerp(self):
# Assert linear interpolation.
v = metrics.lerp(100, 200, 0.5)
self.assertEqual(v, 150.0)
print("pattern.metrics.lerp()")
def test_smoothstep(self):
# Assert cubic interpolation.
v1 = metrics.smoothstep(0.0, 1.0, 0.5)
v2 = metrics.smoothstep(0.0, 1.0, 0.9)
v3 = metrics.smoothstep(0.0, 1.0, 0.1)
self.assertEqual(v1, 0.5)
self.assertTrue(v2 > 0.9)
self.assertTrue(v3 < 0.1)
print("pattern.metrics.smoothstep()")
def test_smoothrange(self):
# Assert nice ranges for line charts.
v = list(metrics.smoothrange(0.0, 1.0))
[self.assertAlmostEqual(x, y, places=1) for x, y in zip(v,
[0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0])]
v = list(metrics.smoothrange(-2, 2))
[self.assertAlmostEqual(x, y, places=1) for x, y in zip(v,
[-2.0, -1.5, -1.0, -0.5, 0.0, 0.5, 1.0, 1.5, 2.0])]
v = list(metrics.smoothrange(1, 13))
[self.assertAlmostEqual(x, y, places=1) for x, y in zip(v,
[0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0])]
print("pattern.metrics.smoothrange()")
class TestStatistics(unittest.TestCase):
def setUp(self):
pass
def test_mean(self):
# Assert (1+2+3+4) / 4 = 2.5.
v = metrics.mean([1,2,3,4])
self.assertEqual(v, 2.5)
print("pattern.metrics.mean()")
def test_median(self):
# Assert 2.5 (between 2 and 3).
v = metrics.median([1,2,3,4])
self.assertEqual(v, 2.5)
# Assert 3 (middle of list).
v = metrics.median([1,2,3,4,5])
self.assertEqual(v, 3)
# Assert that empty list raises ValueError.
self.assertRaises(ValueError, metrics.median, [])
print("pattern.metrics.median()")
def test_variance(self):
# Assert 2.5.
v = metrics.variance([1,2,3,4,5], sample=True)
self.assertEqual(v, 2.5)
# Assert 2.0 (population variance).
v = metrics.variance([1,2,3,4,5], sample=False)
self.assertEqual(v, 2.0)
print("pattern.metrics.variance()")
def test_standard_deviation(self):
# Assert 2.429 (sample).
v = metrics.standard_deviation([1,5,6,7,6,8], sample=True)
self.assertAlmostEqual(v, 2.429, places=3)
# Assert 2.217 (population).
v = metrics.standard_deviation([1,5,6,7,6,8], sample=False)
self.assertAlmostEqual(v, 2.217, places=3)
print("pattern.metrics.standard_deviation()")
def test_histogram(self):
# Assert 1 bin.
v = metrics.histogram([1,2,3,4], k=0)
self.assertTrue(len(v) == 1)
# Assert 4 bins, each with one value, each with midpoint == value.
v = metrics.histogram([1,2,3,4], k=4, range=(0.5,4.5))
for i, ((start, stop), v) in enumerate(sorted(v.items())):
self.assertTrue(i+1 == v[0])
self.assertAlmostEqual(start + (stop-start)/2, i+1, places=3)
# Assert 2 bins, one with all the low numbers, one with the high number.
v = metrics.histogram([1,2,3,4,100], k=2)
v = sorted(v.values(), key=lambda item: len(item))
self.assertTrue(v[0] == [100])
self.assertTrue(v[1] == [1,2,3,4])
print("pattern.metrics.histogram()")
def test_moment(self):
# Assert 0.0 (1st central moment = 0.0).
v = metrics.moment([1,2,3,4,5], n=1)
self.assertEqual(v, 0.0)
# Assert 2.0 (2nd central moment = population variance).
v = metrics.moment([1,2,3,4,5], n=2)
self.assertEqual(v, 2.0)
print("pattern.metrics.moment()")
def test_skewness(self):
# Assert < 0.0 (few low values).
v = metrics.skewness([1,100,101,102,103])
self.assertTrue(v < 0.0)
# Assert > 0.0 (few high values).
v = metrics.skewness([1,2,3,4,100])
self.assertTrue(v > 0.0)
# Assert 0.0 (evenly distributed).
v = metrics.skewness([1,2,3,4])
self.assertTrue(v == 0.0)
print("pattern.metrics.skewness()")
def test_kurtosis(self):
# Assert -1.2 for the uniform distribution.
a = 1
b = 1000
v = metrics.kurtosis([float(i-a)/(b-a) for i in range(a,b)])
self.assertAlmostEqual(v, -1.2, places=3)
print("pattern.metrics.kurtosis()")
def test_quantile(self):
# Assert 2.5 (quantile with p=0.5 == median).
v = metrics.quantile([1,2,3,4], p=0.5, a=1, b=-1, c=0, d=1)
self.assertEqual(v, 2.5)
# Assert 3.0 (discontinuous sample).
v = metrics.quantile([1,2,3,4], p=0.5, a=0.5, b=0, c=1, d=0)
self.assertEqual(v, 3.0)
return "pattern.metrics.quantile()"
def test_boxplot(self):
# Different a,b,c,d quantile parameters produce different results.
# By approximation, assert (53, 79.5, 84.5, 92, 98).
a = [79,53,82,91,87,98,80,93]
v = metrics.boxplot(a)
self.assertEqual(v[0], min(a))
self.assertTrue(abs(v[1] - 79.5) <= 0.5)
self.assertTrue(abs(v[2] - metrics.median(a)) <= 0.5)
self.assertTrue(abs(v[3] - 92.0) <= 0.5)
self.assertEqual(v[4], max(a))
print("pattern.metrics.boxplot()")
class TestStatisticalTests(unittest.TestCase):
def setUp(self):
pass
def test_fisher_test(self):
# Assert Fisher exact test significance.
v = metrics.fisher_exact_test(a=1, b=9, c=11, d=3)
self.assertAlmostEqual(v, 0.0028, places=4)
v = metrics.fisher_exact_test(a=45, b=15, c=75, d=45)
self.assertAlmostEqual(v, 0.1307, places=4)
print("pattern.metrics.fisher_test()")
def test_chi_squared(self):
# Assert chi-squared test (upper tail).
o1, e1 = [[44, 56]], [[50, 50]]
o2, e2 = [[22, 21, 22, 27, 22, 36]], []
o3, e3 = [[48, 35, 15, 3]], [[58, 34.5, 7, 0.5]]
o4, e4 = [[36, 14], [30, 25]], []
o5, e5 = [[46, 71], [37, 83]], [[40.97, 76.02], [42.03, 77.97]]
v1 = metrics.chi2(o1, e1)
v2 = metrics.chi2(o2, e2)
v3 = metrics.chi2(o3, e3)
v4 = metrics.chi2(o4, e4)
v5 = metrics.chi2(o5, e5)
self.assertAlmostEqual(v1[0], 1.4400, places=4)
self.assertAlmostEqual(v1[1], 0.2301, places=4)
self.assertAlmostEqual(v2[0], 6.7200, places=4)
self.assertAlmostEqual(v2[1], 0.2423, places=4)
self.assertAlmostEqual(v3[0], 23.3742, places=4)
self.assertAlmostEqual(v4[0], 3.4177, places=4)
self.assertAlmostEqual(v5[0], 1.8755, places=4)
print("pattern.metrics.chi2()")
def test_chi_squared_p(self):
# Assert chi-squared P-value (upper tail).
for df, X2 in [
(1, ( 3.85, 5.05, 6.65, 7.90)),
(2, ( 6.00, 7.40, 9.25, 10.65)),
(3, ( 7.85, 9.40, 11.35, 12.85)),
(4, ( 9.50, 11.15, 13.30, 14.90)),
(5, (11.10, 12.85, 15.10, 16.80))]:
for i, x2 in enumerate(X2):
v = metrics.chi2p(x2, df, tail=metrics.UPPER)
self.assertTrue(v < (0.05, 0.025, 0.01, 0.005)[i])
print("pattern.metrics.chi2p()")
def test_kolmogorov_smirnov(self):
v = metrics.ks2([1, 2, 3], [1, 2, 4])
self.assertAlmostEqual(v[0], 0.3333, places=4)
self.assertAlmostEqual(v[1], 0.9762, places=4)
print("pattern.metrics.ks2()")
class TestSpecialFunctions(unittest.TestCase):
def setUp(self):
pass
def test_gamma(self):
# Assert complete gamma function.
v = metrics.gamma(0.5)
self.assertAlmostEqual(v, math.sqrt(math.pi), places=4)
print("pattern.metrics.gamma()")
def test_gammai(self):
# Assert incomplete gamma function.
v = metrics.gammai(a=1, x=2)
self.assertAlmostEqual(v, 0.1353, places=4)
print("pattern.metrics.gammai()")
def test_erfc(self):
# Assert complementary error function.
for x, y in [
(-3.00, 2.000),
(-2.00, 1.995),
(-1.00, 1.843),
(-0.50, 1.520),
(-0.25, 1.276),
( 0.00, 1.000),
( 0.25, 0.724),
( 0.50, 0.480),
( 1.00, 0.157),
( 2.00, 0.005),
( 3.00, 0.000)]:
self.assertAlmostEqual(metrics.erfc(x), y, places=3)
print("pattern.metrics.erfc()")
def test_kolmogorov(self):
# Assert Kolmogorov limit distribution.
self.assertAlmostEqual(metrics.kolmogorov(0.0), 1.0000, places=4)
self.assertAlmostEqual(metrics.kolmogorov(0.5), 0.9639, places=4)
self.assertAlmostEqual(metrics.kolmogorov(1.0), 0.2700, places=4)
self.assertAlmostEqual(metrics.kolmogorov(2.0), 0.0007, places=4)
self.assertAlmostEqual(metrics.kolmogorov(4.0), 0.0000, places=4)
print("pattern.metrics.kolmogorov()")
#---------------------------------------------------------------------------------------------------
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestProfiling))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestTextMetrics))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestInterpolation))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestStatistics))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestStatisticalTests))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestSpecialFunctions))
return suite
if __name__ == "__main__":
unittest.TextTestRunner(verbosity=1).run(suite())
|