1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>pattern</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link type="text/css" rel="stylesheet" href="../clips.css" />
<style>
/* Small fixes because we omit the online layout.css. */
h3 { line-height: 1.3em; }
#page { margin-left: auto; margin-right: auto; }
#header, #header-inner { height: 175px; }
#header { border-bottom: 1px solid #C6D4DD; }
table { border-collapse: collapse; }
#checksum { display: none; }
</style>
<link href="../js/shCore.css" rel="stylesheet" type="text/css" />
<link href="../js/shThemeDefault.css" rel="stylesheet" type="text/css" />
<script language="javascript" src="../js/shCore.js"></script>
<script language="javascript" src="../js/shBrushXml.js"></script>
<script language="javascript" src="../js/shBrushJScript.js"></script>
<script language="javascript" src="../js/shBrushPython.js"></script>
</head>
<body class="node-type-page one-sidebar sidebar-right section-pages">
<div id="page">
<div id="page-inner">
<div id="header"><div id="header-inner"></div></div>
<div id="content">
<div id="content-inner">
<div class="node node-type-page"
<div class="node-inner">
<div class="breadcrumb">View online at: <a href="http://www.clips.ua.ac.be/pages/pattern" class="noexternal" target="_blank">http://www.clips.ua.ac.be/pages/pattern</a></div>
<h1>pattern</h1>
<!-- Parsed from the online documentation. -->
<div id="node-1350" class="node node-type-page"><div class="node-inner">
<div class="content">
<p><span class="big">Pattern is a web mining module for the Python programming language.</span></p>
<p><span class="big">It has tools for data mining (Google, Twitter and Wikipedia API, a web crawler, a HTML DOM parser), natural language processing (part-of-speech taggers, n-gram search, sentiment analysis, WordNet), machine learning (vector space model, clustering, SVM), network analysis and <canvas> visualization.</span></p>
<p>The module is free, well-document and bundled with 50+ examples and 350+ unit tests.</p>
<p><img src="../g/pattern_schema.gif" alt="" width="620" height="180" /></p>
<hr />
<h2>Download</h2>
<table>
<tbody>
<tr>
<td><a onclick="javascript:_gaq.push(['_trackPageview', '/downloads/pattern']);" href="http://www.clips.ua.ac.be/media/pattern-2.6.zip" target="_self"><img src="../g/download.gif" alt="download" align="left" /></a></td>
<td><strong>Pattern 2.6</strong> | <a onclick="javascript:_gaq.push(['_trackPageview', '/downloads/pattern']);" href="http://www.clips.ua.ac.be/media/pattern-2.6.zip" target="_self">download</a> (.zip, 23MB)<br />
<ul>
<li>Requires: Python 2.5+ on Windows | Mac | Linux</li>
<li>Licensed under <a href="http://www.linfo.org/bsdlicense.html" target="_blank">BSD</a></li>
<li>Latest releases: <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.6.zip">2.6</a> | <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.5.zip">2.5</a> | <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.4.zip">2.4</a> | <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.3.zip">2.3</a> | <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.2.zip">2.2</a> | <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.1.zip">2.1</a> | <a class="noexternal" href="http://www.clips.ua.ac.be/media/pattern-2.0.zip">2.0</a></li>
<li>Authors:<br /> Tom De Smedt (<em>tom at organisms.be</em>)<br /> Walter Daelemans </li>
</ul>
<p><span class="small"><span style="text-decoration: underline;">Reference</span>: De Smedt, T. & Daelemans, W. (2012)</span>.<br /><span class="small">Pattern for Python. <em>Journal of Machine Learning Research</em>, 13: 2031–2035.</span></p>
<p id="checksum" class="grey"><span class="small"><span style="text-decoration: underline;">SHA256</span> checksum of the .zip:<br />28213f05d94a86d2de1d8a03525d456a9e68dc3b563dc2481ad08fe3db180d02</span></p>
</td>
<td>
</td>
</tr>
</tbody>
</table>
<p> </p>
<hr />
<table border="0">
<tbody>
<tr>
<td style="width: 200px;">
<h2>Modules</h2>
<ul>
<li><a href="pattern-web.html">pattern.web</a></li>
<li><a href="pattern-db.html">pattern.db</a></li>
<li><a href="pattern-en.html">pattern.en</a> | <a href="pattern-es.html">es</a> | <a href="pattern-de.html">de</a> | <a href="pattern-fr.html">fr</a> | <a href="pattern-it.html">it</a> | <a href="pattern-nl.html">nl</a></li>
<li><a href="pattern-search.html">pattern.search</a></li>
<li><a href="pattern-vector.html">pattern.vector</a></li>
<li><a href="pattern-graph.html">pattern.graph</a> </li>
</ul>
<p><span class="smallcaps">Helper modules</span></p>
<ul style="margin-top: 0;">
<li><a href="pattern-metrics.html">pattern.metrics</a></li>
<li><a href="pattern-canvas.html">canvas.js</a></li>
</ul>
<p><span class="smallcaps">Command-line</span></p>
<ul style="margin-top: 0;">
<li><a href="pattern-shell.html">Command-line interface</a></li>
</ul>
</td>
<td>
<h2><a name="contribute"></a>Contribute</h2>
<ul>
<li><a href="pattern-dev.html">Developer documentation</a></li>
<li><a href="https://github.com/clips/pattern" target="_blank">GitHub repository</a></li>
<li><a href="http://groups.google.com/group/pattern-for-python" target="_blank">Google group</a></li>
</ul>
<form action="https://www.paypal.com/cgi-bin/webscr" method="post"><input type="hidden" name="cmd" value="_s-xclick" /> <input type="hidden" name="hosted_button_id" value="HW2GU5PNWYQV8" /> <input type="image" name="submit" src="../g/paypal-donate.jpg" alt="PayPal - The safer, easier way to pay online!" /> <img src="https://www.paypalobjects.com/en_US/i/scr/pixel.gif" alt="" width="1" height="1" border="0" /></form>
</td>
</tr>
</tbody>
</table>
<p> </p>
<hr />
<h2>Installation</h2>
<p>Pattern is written for Python 2.5+ (no support for Python 3 yet). The module has no external dependencies, except <span class="inline_code">LSA</span> in the pattern.vector module, which requires <a href="http://numpy.scipy.org/" target="_blank">NumPy</a> (installed by default on Mac OS X). </p>
<p>To install Pattern so that the module is available in all Python scripts, from the command line do:</p>
<div class="install">
<pre class="gutter:false; light:true;">> cd pattern-2.6
> python setup.py install </pre></div>
<p>If you have pip, you can automatically download and install from the PyPi repository:</p>
<div class="install">
<pre class="gutter:false; light:true;">> pip install pattern</pre></div>
<p>If none of the above works, you can make Python aware of the module in three ways:</p>
<ul>
<li>Put the <span class="inline_code">pattern</span> subfolder in the .zip archive in the same folder as your script.</li>
<li>Put the <span class="inline_code">pattern</span> subfolder in the standard location for modules so it is available to all scripts:<br /><span class="inline_code">c:\python27\Lib\site-packages\</span> (Windows),<br /><span class="inline_code"> /Library/Python/2.7/site-packages/</span> (Mac),
<br /><span class="inline_code">/usr/lib/python2.7/site-packages/</span> (Unix).<span style="font-family: Courier, monospace; font-size: small;"><span style="font-size: 12px;"><br /></span></span></li>
<li>Add the location of the module to <span class="inline_code">sys.path</span> in your Python script, before importing it:</li>
</ul>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> import sys; sys.path.append('/users/tom/desktop/pattern')
>>> from pattern.web import Twitter </pre></div>
<p> </p>
<hr />
<h2>Quick overview</h2>
<h3>pattern.web</h3>
<p>The <a href="pattern-web.html">pattern.web</a> module is a web toolkit that contains API's (Google, Gmail, Bing, Twitter, Facebook, Wikipedia, Wiktionary, DBPedia, Flickr, ...), a robust HTML DOM parser and a web crawler.</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.web import Twitter, plaintext
>>>
>>> twitter = Twitter(language='en')
>>> for tweet in twitter.search('"more important than"', cached=False):
>>> print plaintext(tweet.text)
'The mobile web is more important than mobile apps.'
'Start slowly, direction is more important than speed.'
'Imagination is more important than knowledge. - Albert Einstein'
... </pre></div>
<h3>pattern.en</h3>
<p>The <a href="pattern-en.html">pattern.en</a> module is a natural language processing (NLP) toolkit for English. Because language is ambiguous (e.g., <em>I can</em> ↔ <em>a can</em>) it uses statistical approaches + regular expressions. This means that it is fast, quite accurate and occasionally incorrect. It has a part-of-speech tagger that identifies word types (e.g., noun, verb, adjective), word inflection (conjugation, singularization) and a WordNet API.</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.en import parse
>>>
>>> s = 'The mobile web is more important than mobile apps.'
>>> s = parse(s, relations=True, lemmata=True)
>>> print s
'The/DT/B-NP/O/NP-SBJ-1/the mobile/JJ/I-NP/O/NP-SBJ-1/mobile' ...
</pre></div>
<table class="border">
<tbody>
<tr>
<td class="smallcaps" style="text-align: right;">word</td>
<td class="smallcaps" style="text-align: center;">tag</td>
<td class="smallcaps" style="text-align: center;">chunk</td>
<td class="smallcaps" style="text-align: center;">role</td>
<td class="smallcaps" style="text-align: center;">id</td>
<td class="smallcaps" style="text-align: center;">pnp</td>
<td class="smallcaps">lemma</td>
</tr>
<tr>
<td style="text-align: right;">The</td>
<td class="inline_code" style="text-align: center;">DT</td>
<td class="inline_code" style="text-align: center;">NP </td>
<td class="inline_code" style="text-align: center;">SBJ</td>
<td class="inline_code" style="text-align: center;">1</td>
<td class="inline_code" style="text-align: center;">-</td>
<td><em>the</em></td>
</tr>
<tr>
<td style="text-align: right;">mobile</td>
<td class="inline_code" style="text-align: center;">JJ</td>
<td class="inline_code" style="text-align: center;">NP^</td>
<td class="inline_code" style="text-align: center;">SBJ</td>
<td class="inline_code" style="text-align: center;">1</td>
<td class="inline_code" style="text-align: center;">-</td>
<td><em>mobile</em></td>
</tr>
<tr>
<td style="text-align: right;">web</td>
<td class="inline_code" style="text-align: center;">NN</td>
<td class="inline_code" style="text-align: center;">NP^</td>
<td class="inline_code" style="text-align: center;">SBJ</td>
<td class="inline_code" style="text-align: center;">1</td>
<td class="inline_code" style="text-align: center;">-</td>
<td><em>web</em></td>
</tr>
<tr>
<td style="text-align: right;">is</td>
<td class="inline_code" style="text-align: center;">VBZ</td>
<td class="inline_code" style="text-align: center;">VP </td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">1</td>
<td class="inline_code" style="text-align: center;">-</td>
<td><em>be</em></td>
</tr>
<tr>
<td style="text-align: right;">more</td>
<td class="inline_code" style="text-align: center;">RBR</td>
<td class="inline_code" style="text-align: center;">ADJP </td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td><em>more</em></td>
</tr>
<tr>
<td style="text-align: right;">important</td>
<td class="inline_code" style="text-align: center;">JJ</td>
<td class="inline_code" style="text-align: center;">ADJP^</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td><em>important</em></td>
</tr>
<tr>
<td style="text-align: right;">than</td>
<td class="inline_code" style="text-align: center;">IN</td>
<td class="inline_code" style="text-align: center;">PP </td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">PNP</td>
<td><em>than</em></td>
</tr>
<tr>
<td style="text-align: right;">mobile</td>
<td class="inline_code" style="text-align: center;">JJ</td>
<td class="inline_code" style="text-align: center;">NP </td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">PNP</td>
<td><em>mobile</em></td>
</tr>
<tr>
<td style="text-align: right;">apps</td>
<td class="inline_code" style="text-align: center;">NNS</td>
<td class="inline_code" style="text-align: center;">NP^</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">PNP</td>
<td><em>app</em></td>
</tr>
<tr>
<td style="text-align: right;">.</td>
<td class="inline_code" style="text-align: center;">.</td>
<td class="inline_code" style="text-align: center;">- </td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td class="inline_code" style="text-align: center;">-</td>
<td>.</td>
</tr>
</tbody>
</table>
<p>The text has been annotated with word types, for example nouns (<span class="postag">NN</span>), verbs(<span class="postag">VB</span>), adjectives (<span class="postag">JJ</span>) and determiners (<span class="postag">DT</span>), word types (e.g., sentence subject <span class="postag">SBJ</span>) and prepositional noun phrases (<span class="postag">PNP</span>). To iterate over the parts in the tagged text we can construct a <em>parse tree</em>.</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.en import parsetree
>>>
>>> s = 'The mobile web is more important than mobile apps.'
>>> s = parsetree(s)
>>> for sentence in s:
>>> for chunk in sentence.chunks:
>>> for word in chunk.words:
>>> print word,
>>> print
Word(u'The/DT') Word(u'mobile/JJ') Word(u'web/NN')
Word(u'is/VBZ')
Word(u'more/RBR') Word(u'important/JJ')
Word(u'than/IN')
Word(u'mobile/JJ') Word(u'apps/NNS')
</pre></div>
<p>Parsers for Spanish, French, Italian, German and Dutch are also available: <br /><a href="pattern-es.html">pattern.es</a> | <a href="pattern-fr.html">pattern.fr</a> | <a href="pattern-it.html">pattern.it</a> | <a href="pattern-de.html">pattern.de</a> | <a href="pattern-nl.html">pattern.nl</a></p>
<h3>pattern.search</h3>
<p>The <a href="pattern-search.html">pattern.search</a> module contains a search algorithm to retrieve sequences of words (called <em>n-grams</em>) from tagged text.</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.en import parsetree
>>> from pattern.search import search
>>>
>>> s = 'The mobile web is more important than mobile apps.'
>>> s = parsetree(s, relations=True, lemmata=True)
>>>
>>> for match in search('NP be RB?+ important than NP', s):
>>> print match.constituents()[-1], '=>', \
>>> match.constituents()[0]
Chunk('mobile apps/NP') => Chunk('The mobile web/NP-SBJ-1')
</pre></div>
<p>The search pattern <span class="inline_code">NP</span> <span class="inline_code">be</span> <span class="inline_code">RB?+</span> <span class="inline_code">important</span> <span class="inline_code">than</span> <span class="inline_code">NP</span> means any noun phrase (<span class="postag">NP</span>) followed by the verb <em>to be</em>, followed by zero or more adverbs (<span class="postag">RB</span>, e.g., <em>much</em>, <em>more</em>), followed by the words <em>important than</em>, followed by any noun phrase. It will also match "<em>The mobile web <span style="text-decoration: underline;">will</span> <span style="text-decoration: underline;">be</span> <span style="text-decoration: underline;">much</span> <span style="text-decoration: underline;">less</span> important than mobile apps</em>" and other grammatical variations.</p>
<h3>pattern.vector</h3>
<p>The <a href="pattern-vector.html">pattern.vector</a> module is a toolkit for machine learning, based on a vector space model of bag-of-words documents with weighted features (e.g., tf-idf) and distance metrics (e.g., cosine similarity, infogain). Models can be used for clustering (<em>k</em>-means, hierarchical), classification (Naive Bayes, Perceptron, <em>k-</em>NN, SVM) and latent semantic analysis (LSA).</p>
<div>
<div class="example">
<pre class="brush: python;gutter: false; fontsize: 100; first-line: 1; ">>>> from pattern.web import Twitter
>>> from pattern.en import tag
>>> from pattern.vector import KNN, count
>>>
>>> twitter, knn = Twitter(), KNN()
>>>
>>> for i in range(1, 10):
>>> for tweet in twitter.search('#win OR #fail', start=i, count=100):
>>> s = tweet.text.lower()
>>> p = '#win' in s and 'WIN' or 'FAIL'
>>> v = tag(s)
>>> v = [word for word, pos in v if pos == 'JJ'] # JJ = adjective
>>> v = count(v)
>>> if v:
>>> knn.train(v, type=p)
>>>
>>> print knn.classify('sweet potato burger')
>>> print knn.classify('stupid autocorrect')
'WIN'
'FAIL' </pre></div>
</div>
<p>This example trains a classifier on adjectives mined from Twitter. First, tweets with hashtag #win or #fail are mined. For example: <em>"$20 tip off a <span style="text-decoration: underline;">sweet</span> <span style="text-decoration: underline;">little</span> <span style="text-decoration: underline;">old</span> lady today #win"</em>. The word part-of-speech tags are parsed, keeping only adjectives. Each tweet is transformed to a vector, a dictionary of adjective → count items, labeled <span class="inline_code">WIN</span> or <span class="inline_code">FAIL</span>. The classifier uses the vectors to learn which other, unknown tweets look more like <span class="inline_code">WIN</span> (e.g., <em>sweet potato burger</em>) or more like <span class="inline_code">FAIL</span> (e.g., <em>stupid autocorrect</em>).</p>
<h3>pattern.graph</h3>
<p>The <a href="pattern-graph.html">pattern.graph</a> module provides a graph data structure that represents relations between nodes (e.g., terms, concepts). Graphs can be exported as HTML <span class="inline_code"><canvas></span> animations (<span class="link-maintenance"><a href="http://www.clips.ua.ac.be/media/pattern-graph" target="_blank">demo</a></span>). In the example below, more <em>central</em> nodes (= more incoming traffic) are colored in blue.</p>
<p><img class="border" src="../g/pattern_graph5.jpg" alt="" width="610" height="198" /></p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.web import Bing, plaintext
>>> from pattern.en import parsetree
>>> from pattern.search import search
>>> from pattern.graph import Graph
>>>
>>> g = Graph()
>>> for i in range(10):
>>> for result in Bing().search('"more important than"', start=i+1, count=50):
>>> s = r.text.lower()
>>> s = plaintext(s)
>>> s = parsetree(s)
>>> p = '{NP} (VP) more important than {NP}'
>>> for m in search(p, s):
>>> x = m.group(1).string # NP left
>>> y = m.group(2).string # NP right
>>> if x not in g:
>>> g.add_node(x)
>>> if y not in g:
>>> g.add_node(y)
>>> g.add_edge(g[x], g[y], stroke=(0,0,0,0.75)) # R,G,B,A
>>>
>>> g = g.split()[0] # Largest subgraph.
>>>
>>> for n in g.sorted()[:40]: # Sort by Node.weight.
>>> n.fill = (0, 0.5, 1, 0.75 * n.weight)
>>>
>>> g.export('test', directed=True, weighted=0.6) </pre></div>
<p>Some relations (= edges) could use some extra post-processing, e.g., in <em>nothing is more important than life</em>, <em>nothing</em> is <span style="text-decoration: underline;">not</span> more important than <em>life</em>.</p>
<p> </p>
<hr />
<h2>Case studies </h2>
<p>Case studies with hands-on source code examples.</p>
<table border="0">
<tbody>
<tr>
<td>
<p><a href="http://www.clips.ua.ac.be/pages/modeling-creativity-with-a-semantic-network-of-common-sense"><img src="../g/pattern_example_semantic_network.jpg" alt="" width="70" height="70" /><br /></a></p>
</td>
<td> </td>
<td><span class="smallcaps">modeling creativity with a semantic network of common sense </span><span class="small">(2013)</span> <br />This case study offers a computational model of creativity, by representing the mind as a semantic network of common sense, using <a class="link-maintenance" href="pattern-graph.html">pattern.graph</a> & <a class="link-maintenance" href="pattern-web.html">web</a>.<br /><a href="http://www.clips.ua.ac.be/pages/modeling-creativity-with-a-semantic-network-of-common-sense">read more »</a></td>
</tr>
<tr>
<td>
<p><a class="noexternal" href="http://www.clips.ua.ac.be/pages/using-wiktionary-to-build-an-italian-part-of-speech-tagger"><img src="../g/pattern_example_italian.jpg" alt="" width="70" height="70" /><br /></a></p>
</td>
<td> </td>
<td><span class="smallcaps">using wiktionary to build an italian part-of-speech tagger </span><span class="small">(2013)</span> <br />This case study demonstrates how a part-of-speech tagger for Italian (see <a class="link-maintenance" href="pattern-it.html">pattern.it</a>) can be built by mining Wiktionary and Wikipedia. <br /><a href="http://www.clips.ua.ac.be/pages/using-wiktionary-to-build-an-italian-part-of-speech-tagger">read more »</a></td>
</tr>
<tr>
<td>
<p><a class="noexternal" href="http://www.clips.ua.ac.be/pages/using-wikicorpus-nltk-to-build-a-spanish-part-of-speech-tagger"><img src="../g/pattern_example_spanish.jpg" alt="" width="70" height="70" /><br /></a></p>
</td>
<td> </td>
<td><span class="smallcaps">using wikicorpus and nltk to build a spanish part-of-speech tagger </span><span class="small">(2012)</span><br />This case study demonstrates how a part-of-speech tagger for Spanish (see <a class="link-maintenance" href="pattern-es.html">pattern.es</a>) can be built by using NLTK and the freely available Wikicorpus. <br /><a href="http://www.clips.ua.ac.be/pages/using-wikicorpus-nltk-to-build-a-spanish-part-of-speech-tagger">read more »</a></td>
</tr>
<tr>
<td>
<p><a class="noexternal" href="http://www.clips.ua.ac.be/pages/pattern-examples-elections"><img src="../g/pattern_example_elections.jpg" alt="" width="70" height="70" /><br /></a></p>
</td>
<td> </td>
<td><span class="smallcaps">belgian elections</span><span class="smallcaps">, twitter sentiment analysis </span><span class="small">(2010)</span><br />This case study uses sentiment analysis (e.g., positive or negative tone) on 7,500 Dutch and French tweets (see <a class="link-maintenance" href="pattern-web.html">pattern.web</a> | <a class="link-maintenance" href="pattern-nl.html">nl</a> | <a class="link-maintenance" href="pattern-fr.html">fr</a>) in the weeks before the Belgian 2010 elections. <br /><a href="http://www.clips.ua.ac.be/pages/pattern-examples-elections">read more »</a></td>
</tr>
<tr>
<td>
<p><a class="noexternal" href="http://www.clips.ua.ac.be/pages/pattern-examples-100days"><img src="../g/pattern_example_100days.jpg" alt="" width="70" height="70" /><br /></a></p>
</td>
<td> </td>
<td><span class="smallcaps">web mining and visualization </span><span class="small">(2010)</span><br />This case study uses a number of different approaches to mine, correlate and visualize about 6,000 Google News items and 70,000 tweets. <br /><a href="http://www.clips.ua.ac.be/pages/pattern-examples-100days">read more »</a></td>
</tr>
</tbody>
</table>
</div>
</div></div>
</div>
</div>
</div>
</div>
</div>
</div>
<script>
SyntaxHighlighter.all();
</script>
</body>
</html>
|