1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424
|
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html>
<head>
<title>pattern-search</title>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<link type="text/css" rel="stylesheet" href="../clips.css" />
<style>
/* Small fixes because we omit the online layout.css. */
h3 { line-height: 1.3em; }
#page { margin-left: auto; margin-right: auto; }
#header, #header-inner { height: 175px; }
#header { border-bottom: 1px solid #C6D4DD; }
table { border-collapse: collapse; }
#checksum { display: none; }
</style>
<link href="../js/shCore.css" rel="stylesheet" type="text/css" />
<link href="../js/shThemeDefault.css" rel="stylesheet" type="text/css" />
<script language="javascript" src="../js/shCore.js"></script>
<script language="javascript" src="../js/shBrushXml.js"></script>
<script language="javascript" src="../js/shBrushJScript.js"></script>
<script language="javascript" src="../js/shBrushPython.js"></script>
</head>
<body class="node-type-page one-sidebar sidebar-right section-pages">
<div id="page">
<div id="page-inner">
<div id="header"><div id="header-inner"></div></div>
<div id="content">
<div id="content-inner">
<div class="node node-type-page"
<div class="node-inner">
<div class="breadcrumb">View online at: <a href="http://www.clips.ua.ac.be/pages/pattern-search" class="noexternal" target="_blank">http://www.clips.ua.ac.be/pages/pattern-search</a></div>
<h1>pattern.search</h1>
<!-- Parsed from the online documentation. -->
<div id="node-1357" class="node node-type-page"><div class="node-inner">
<div class="content">
<p class="big">The pattern.search module has a pattern matching system similar to regular expressions, that can be used to search a string by syntax (word function) or by semantics (word meaning).<span class="blue"> </span></p>
<p>It can be used by itself or with other <a href="pattern.html">pattern</a> modules: <a href="pattern-web.html">web</a> | <a href="pattern-db.html">db</a> | <a href="pattern-en.html">en</a> | search <span class="blue"> </span>| <a href="pattern-vector.html">vector</a> | <a href="pattern-graph.html">graph</a>.</p>
<p><img src="../g/pattern_schema.gif" alt="" width="620" height="180" /></p>
<hr />
<h2>Documentation</h2>
<ul>
<li><a href="#introduction">Searching + matching in a nutshell</a></li>
<li><a href="#pattern">Pattern</a></li>
<li><a href="#constraint">Constraint</a></li>
<li><a href="#match">Match</a></li>
<li><a href="#taxonomy">Taxonomy</a></li>
<li><a href="#utility">Utility functions</a></li>
</ul>
<p> </p>
<hr />
<h2><a name="introduction"></a>Searching + matching in a nutshell</h2>
<p>The <span class="inline_code">search()</span> function takes a string (e.g., a word or a sequence of words) and returns a list of non-overlapping matches in the given sentence. The <span class="inline_code">match()</span> function returns the first match, or <span class="inline_code">None</span>. Both functions call <span class="inline_code">compile()</span>, which takes a string and returns a <span class="inline_code">Pattern</span> object.</p>
<pre class="brush:python; gutter:false; light:true;">search(pattern, sentence)</pre><pre class="brush:python; gutter:false; light:true;">match(pattern, sentence)</pre><pre class="brush:python; gutter:false; light:true;">compile(pattern)</pre><div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import search
>>> print search('rabbit', 'big white rabbit')
[Match(words=[Word('rabbit')])]</pre></div>
<p>Search strings can contain a wildcard character at the <span class="inline_code">*start</span>, at the <span class="inline_code">end*</span>, at <span class="inline_code">*both*</span> ends or <span class="inline_code">in*between</span>:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> print search('rabbit*', 'big white rabbit')
>>> print search('rabbit*', 'big white rabbits')
[Match(words=[Word('rabbit')])]
[Match(words=[Word('rabbits')])]
</pre></div>
<p>Search strings can contain multiple options separated by a vertical dash:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> print search('rabbit|cony|bunny', 'big black bunny')
[Match(words=[Word('bunny')])]</pre></div>
<h3>Syntactical pattern matching</h3>
<p>The examples above can also be resolved with (faster) regular expressions. The pattern.search module is more useful with <em>parsed</em> sentences. The pattern.en module has a <a class="link-maintenance" href="pattern-en.html#parser">parser</a> that takes a string and assigns a part-of-speech tag to each word (e.g., <span class="postag">NN</span> = noun, <span class="postag">VB</span> = verb, <span class="postag">JJ</span> = adjective). The parser also groups words into chunks (e.g., <span class="postag">JJ</span> + <span class="postag">NN</span> = <span class="postag">NP</span> = noun phrase) and finds word lemmata (was → be).</p>
<p>A parsed <span class="inline_code">Sentence</span> or <span class="inline_code">Text</span> can be searched by part-of-speech tags:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import search
>>> from pattern.en import parsetree
>>>
>>> t = parsetree('big white rabbit')
>>> print t
>>> print
>>> print search('JJ', t) # all adjectives
>>> print search('NN', t) # all nouns
>>> print search('NP', t) # all noun phrases
[Sentence('big/JJ/B-NP/O white/JJ/I-NP/O rabbit/NN/I-NP/O')]
[Match(words=[Word(u'big/JJ')]), Match(words=[Word(u'white/JJ')])]
[Match(words=[Word(u'rabbit/NN')])]
[Match(words=[Word(u'big/JJ'), Word(u'white/JJ'), Word(u'rabbit/NN')])]</pre></div>
<h3>Semantical pattern matching</h3>
<p>A <span class="inline_code">Taxonomy</span> can be used to define semantical categories of words. Say we want to extract flower names from a text. The search pattern is rather clumsy: <span class="inline_code">"rose|lily|daisy|daffodil|begonia"</span>. A more robust approach is to work with a taxonomy:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import search, taxonomy
>>> from pattern.en import parsetree
>>>
>>> for f in ('rose', 'lily', 'daisy', 'daffodil', 'begonia'):
>>> taxonomy.append(f, type='flower')
>>>
>>> t = parsetree('A field of white daffodils.', lemmata=True)
>>> print t
>>> print
>>> print search('FLOWER', t)
[Sentence('A/DT/B-NP/O/a field/NN/I-NP/O/field of/IN/B-PP/B-PNP/of'
'white/JJ/B-NP/I-PNP/white daffodils/NNS/I-NP/I-PNP/daffodil ././O/O/.')]
[Match(words=[Word(u'white/JJ'), Word(u'daffodils/NNS')])]
</pre></div>
<p>Note how the search pattern has <span class="inline_code">"FLOWER"</span> in uppercase. Since <span class="inline_code">search()</span> is case-insensitive, uppercase words are recognized as taxonomy terms (i.e., <span class="postag">FLOWER</span> = rose + lily + daisy + daffodil + begonia). Furthermore, since lemmata were parsed, <em>daffodils</em> is recognized as the plural form of <em>daffodil</em> (the lemma), and as such also part of <span class="postag">FLOWER</span>.</p>
<p>Note that the returned match is <em>white daffodils</em>. Since <span class="inline_code">search()</span> is (by default) greedy, the whole <span class="postag">NP</span> chunk is matched. In other words, <em>white daffodils</em> is regarded as a more specific instance of <em>daffodil</em>.</p>
<p> </p>
<hr />
<h2><a name="pattern"></a>Pattern</h2>
<p>A <span class="inline_code">Pattern</span> is a sequence of constraints that matches certain phrases in a (parsed) sentence. Each constraint can match a word in the sentence. If a number of successive words corresponds to the entire sequence of constraints, the phrase is a match. The search is case-insensitive.</p>
<p>Constraints can be constructed for syntax (e.g., find all adjectives) and semantics (e.g., find all product names). For example, <span class="inline_code">Pattern.fromstring("NP</span> <span class="inline_code">be</span> <span class="inline_code">*</span> <span class="inline_code">than</span> <span class="inline_code">NP")</span> matches phrases such as <em><span style="text-decoration: underline;">the cat</span> was faster than <span style="text-decoration: underline;">the mouse</span></em>, and <em><span style="text-decoration: underline;">Chuck Norris</span> is cooler than <span style="text-decoration: underline;">Dolph Lundgren</span></em>, since <span class="postag">NP</span> matches any noun phrase.<em> </em>With <span class="inline_code">TAXONOMY</span>, the global <span class="inline_code">taxonomy</span> is used to categorize words.</p>
<pre class="brush:python; gutter:false; light:true;">pattern = Pattern(sequence=[])</pre><pre class="brush:python; gutter:false; light:true;">pattern = Pattern.fromstring(string, taxonomy=TAXONOMY)</pre><pre class="brush:python; gutter:false; light:true;">pattern.sequence # List of Constraint objects.
pattern.groups # List of groups, each a list of Constraint objects.
pattern.strict # Disable greedy matching?
</pre><pre class="brush:python; gutter:false; light:true;">pattern.scan(string)
pattern.search(sentence)
pattern.match(sentence, start=0)</pre><ul>
<li><span class="inline_code">Pattern.scan()</span> returns <span class="inline_code">True</span> if <span class="inline_code">Sentence(string)</span> <em>may</em> yield matches.<br />It can be faster to scan a tagged string, before casting it to a <span class="inline_code">Sentence</span> or <span class="inline_code">Text</span> and searching it. </li>
<li><span class="inline_code">Pattern.search()</span> returns a list of <span class="inline_code">Match</span> objects from the given sentence.</li>
<li><span class="inline_code">Pattern.match()</span> returns the first <span class="inline_code">Match</span> found in the given sentence, or <span class="inline_code">None</span>.</li>
</ul>
<div>For example:</div>
<div class="example">
<pre class="brush: python;gutter: false; light: true; fontsize: 100; first-line: 1; ">>>> from pattern.search import Pattern
>>> from pattern.en import parsetree
>>>
>>> t = parsetree('Chuck Norris is cooler than Dolph Lundgren.', lemmata=True)
>>> p = Pattern.fromstring('{NP} be * than {NP}')
>>> m = p.match(t)
>>> print m.group(1)
>>> print m.group(2)
[Word(u'Chuck/NNP'), Word(u'Norris/NNP')]
[Word(u'Dolph/NNP'), Word(u'Lundgren/NNP')]</pre></div>
<p> </p>
<hr />
<h2><a name="constraint"></a>Constraint</h2>
<p>A <span class="inline_code">Constraint</span> matches a set of (tagged) words and taxonomy terms. For example:</p>
<ul>
<li><span class="inline_code">Constraint.fromstring('with|of')</span> matches either <em>with</em> or <em>of</em>.</li>
<li><span class="inline_code">Constraint.fromstring('JJ?')</span> matches any adjective tagged <span class="postag">JJ</span>, but it is optional.</li>
<li><span class="inline_code">Constraint.fromstring('NP|SBJ')</span> matches subject noun phrases.</li>
<li><span class="inline_code">Constraint.fromstring('QUANTITY')</span> matches siblings of <span class="postag">QUANTITY</span> in the taxonomy.</li>
</ul>
<pre class="brush:python; gutter:false; light:true;">constraint = Constraint(
words = [],
tags = [],
chunks = [],
roles = [],
taxa = [],
optional = False,
multiple = False,
first = False,
taxonomy = TAXONOMY,
exclude = None,
custom = None )</pre><pre class="brush:python; gutter:false; light:true;">constraint = Constraint.fromstring(string, **kwargs)</pre><pre class="brush:python; gutter:false; light:true;">constraint.index
constraint.string
constraint.words # List of allowed words/lemmata (of, with, ...)
constraint.tags # List of allowed parts-of-speech (NN, JJ, ...)
constraint.chunks # List of allowed chunk types (NP, VP, ...)
constraint.roles # List of allowed chunk roles (SBJ, OBJ, ...)
constraint.taxa # List of allowed taxonomy terms.
constraint.taxonomy # Taxonomy used for lookup.
constraint.optional # True => matches zero or one word.
constraint.multiple # True => matches one or more words.
constraint.first # True => can only match first word.
constraint.exclude # None, or Constraint of disallowed options.
constraint.custom # function(word) returns True if match. </pre><pre class="brush:python; gutter:false; light:true;">constraint.match(word)</pre><h3>Constraint string syntax</h3>
<p><span class="inline_code">Constraint.fromstring()</span> returns a new <span class="inline_code">Constraint</span> from the given string. It takes the same optional parameters as the constructor. Uppercase words in the given string indicate a <a class="link-maintenance" href="MBSP-tags.html">part-of-speech tag</a> (e.g., <span class="postag">NN</span>, <span class="postag">JJ</span>, <span class="postag">VP</span>) or a taxonomy term (e.g. <span class="postag">PRODUCT</span>, <span class="postag">PERSON</span>).</p>
<p>Some characters like <span class="inline_code">|</span> or <span class="inline_code">?</span> are special. They affect how the constraint is interpreted:</p>
<table class="border">
<tbody>
<tr>
<td style="text-align: center;"><span class="smallcaps">Character</span></td>
<td><span class="smallcaps">Example</span></td>
<td><span class="smallcaps">Description</span></td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">(</span></td>
<td><span class="inline_code">(JJ)</span></td>
<td>Wrapper for an optional constraint (deprecated).</td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">[</span></td>
<td><span class="inline_code">[Mac OS X | Windows Vista]</span></td>
<td>Wrapper for a constraint that has spaces.<span class="inline_code"> </span></td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">{</span></td>
<td><span class="inline_code">DT {JJ?} NN</span></td>
<td>Wrapper for match groups, e.g., <span class="inline_code">Match.group(1)</span>.</td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">_</span></td>
<td><span class="inline_code">Windows_Vista</span></td>
<td>Converted to a space.<span class="inline_code"> </span></td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">|</span></td>
<td><span class="inline_code">ADJP|ADVP</span></td>
<td>Separator for different options.</td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">*</span></td>
<td><span class="inline_code">JJ*</span></td>
<td>Used as a wildcard character. <span class="inline_code"> </span></td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">!</span></td>
<td><span class="inline_code">!be|VB*</span></td>
<td>Used in front of words/tags that are <span style="text-decoration: underline;">not</span> allowed.</td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">?</span></td>
<td><span class="inline_code">JJ?</span></td>
<td>Used as a suffix, constraint is optional.</td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">+</span></td>
<td><span class="inline_code">RB|JJ+</span> or <span class="inline_code">JJ?+</span> or <span class="inline_code">*+</span></td>
<td>Used as a suffix, constraint can span multiple words.<span class="inline_code"> </span></td>
</tr>
<tr>
<td style="text-align: center;"><span class="inline_code">^</span></td>
<td><span class="inline_code">^hello</span></td>
<td>Used as a prefix, constraint can only match first word.</td>
</tr>
</tbody>
</table>
<p>The characters listed in the table must be escaped if used as content (e.g., <span class="inline_code">"\?"</span>). You can use the module's <span class="inline_code">escape()</span> function. For example, <span class="inline_code">escape("hello?")</span> returns <span class="inline_code">"hello\?"</span>.</p>
<h3>Constraint matching</h3>
<p><span class="inline_code">Constraint.match()</span> returns <span class="inline_code">True</span> if the given string or <span class="inline_code">Word</span> is part of the constraint:</p>
<ul>
<li>the word (or its lemma) occurs in <span class="inline_code">Constraint.words</span>, OR,</li>
<li>the word (or its lemma) occurs in <span class="inline_code">Constraint.taxa</span> taxonomy tree, AND</li>
<li>the word tags and/or chunk tags match those defined in the constraint.</li>
</ul>
<p>It is case-insensitive. Individual terms in <span class="inline_code">Constraint.words</span> can contain wildcards (<span class="inline_code">*</span>). Some part-of-speech-tags can also contain wildcards: <span class="postag">NN*</span>, <span class="postag">VB*</span>, <span class="postag">JJ*</span>, <span class="postag">RB*</span>, <span class="postag">PR*</span>, <span class="postag">WP*</span>.</p>
<p>The following example demonstrates the use of optional and multiple constraints:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import search
>>> from pattern.en import parsetree
>>>
>>> t = parsetree('tasty cat food')
>>> print t
>>> print
>>> print search('DT? RB? JJ? NN+', t)
[Sentence('tasty/JJ/B-NP/O cat/NN/I-NP/O food/NN/I-NP/O')]
[Match(words=[Word(u'tasty/JJ'), Word(u'cat/NN')]), Word(u'food/NN')])]</pre></div>
<p>The pattern matches successive nouns (<span class="postag">NN</span>), optionally preceded by a determiner (<span class="postag">DT</span>), adverb (<span class="postag">RB</span>) and/or adjective (<span class="postag">JJ</span>). It matches anything from <em>food</em> to <em>cat food</em>, <em>tasty cat food</em>, <em>the tasty cat food</em>, etc.</p>
<h3>Constraint = greedy</h3>
<p>The pattern.en parser groups words that belong together into chunks. For example, <em>the black cat</em> is one chunk, tagged <span class="postag">NP</span> (i.e., a noun phrase). The head of the chunk is <em>cat</em>. By default, when a constraint matches the chunk head, it will greedily match the entire chunk. This means that if we search for <em>cat</em> and the sentence has <em>a big black cat</em>, the entire chunk will be returned.</p>
<p>This behavior can be disabled by passing a <span class="inline_code">STRICT</span> flag to <span class="inline_code">Pattern</span>, <span class="inline_code">compile()</span>, <span class="inline_code">search()</span> or <span class="inline_code">match()</span>:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import search, STRICT
>>> from pattern.en import parsetree
>>>
>>> t = parsetree('The black cat is lurking in the tree.')
>>> print search('cat', t)
[Match(words=[Word(u'The/DT'), Word(u'black/JJ'), Word(u'cat/NN')])]
</pre></div>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> print search('cat', t, STRICT)
[Match(words=[Word(u'cat/NN')])]
</pre></div>
<p> </p>
<hr />
<h2><a name="match"></a>Match</h2>
<p><span class="inline_code">Pattern.search()</span> returns a list of <span class="inline_code">Match</span> objects, where each match is a list of successive <span class="inline_code">Word</span> objects.</p>
<pre class="brush:python; gutter:false; light:true;">match = Match(pattern, words=[])</pre><pre class="brush:python; gutter:false; light:true;">match.pattern # Pattern source.
match.words # List of Word objects.
match.string # String of words separated with a space.
match.start # Index of first word in sentence.
match.stop # Index of last word in sentence + 1.</pre><pre class="brush:python; gutter:false; light:true;">match.group(index, chunked=False)
match.constraint(word)
match.constraints(chunk)
match.constituents(constraint=None)</pre><ul>
<li><span class="inline_code">Match.group()</span> returns a list of <span class="inline_code">Word</span> objects matching the constraints in a <span class="inline_code">{</span> <span class="inline_code">}</span> group.</li>
<li><span class="inline_code">Match.constraint()</span> returns the <span class="inline_code">Constraint</span> that matched the given <span class="inline_code">Word</span>, or <span class="inline_code">None</span>.</li>
<li><span class="inline_code">Match.constraints()</span> returns the list of constraints that matched the given <span class="inline_code">Chunk</span>.</li>
<li><span class="inline_code">Match.constituents()</span> returns a list of <span class="inline_code">Word</span> and <span class="inline_code">Chunk</span> objects, with successive words grouped into chunks whenever possible. Optionally, returns only chunks/words that matched the given <span class="inline_code">Constraint</span> (or list of constraints). Chunks are only available if a <span class="inline_code">Sentence</span> or <span class="inline_code">Text</span> was given (i.e., not for plain strings).</li>
</ul>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import match
>>> from pattern.en import parsetree
>>>
>>> t = parsetree('The turtle was faster than the hare.', lemmata=True)
>>> m = match('NP be ADJP|ADVP than NP', t)
>>>
>>> for w in m.words:
>>> print w, '\t =>', m.constraint(w)
Word(u'The/DT') => Constraint(chunks=['NP'])
Word(u'turtle/NN') => Constraint(chunks=['NP'])
Word(u'was/VBD') => Constraint(words=['be'])
Word(u'faster/RBR') => Constraint(chunks=['ADJP', 'ADVP'])
Word(u'than/IN') => Constraint(words=['than'])
Word(u'the/DT') => Constraint(chunks=['NP'])
Word(u'hare/NN') => Constraint(chunks=['NP'])
</pre></div>
<h3>Match groups</h3>
<p>Match groups in the search pattern can be used to quickly retrieve what you need from a <span class="inline_code">Match</span>:</p>
<div class="example">
<pre class="brush: python;gutter: false; light: true; fontsize: 100; first-line: 1; ">>>> t = parsetree('the big black dog')
>>> m = match('DT {JJ?+ NN}', t)
>>> print m.group(0) # full pattern
>>> print m.group(1) # {JJ?+ NN}
>>> print m.group(1).string
[Word(u'the/DT'), Word(u'big/JJ'), Word(u'black/JJ'), Word(u'dog/NN')]
[Word(u'big/JJ'), Word(u'black/JJ'), Word(u'dog/NN')]
'big black dog'</pre></div>
<h3>Match words</h3>
<p>Each <span class="inline_code">Word</span> in a <span class="inline_code">Match</span> or <span class="inline_code">Match.group()</span> has the following attributes:</p>
<pre class="brush:python; gutter:false; light:true;">word = Word(sentence, string, tag=None, index=0)</pre><pre class="brush:python; gutter:false; light:true;">word.string
word.tag # Part-of-speech tag (e.g. NN, JJ).
word.sentence # Sentence (a list of successive Words).
word.index # Sentence index.
</pre><p>When <span class="inline_code">search()</span> or <span class="inline_code">match()</span> is given a string, <span class="inline_code">Word</span> objects are created when the <span class="inline_code">Match</span> is returned. When given a parsed <span class="inline_code">Sentence</span>, <span class="inline_code">Word</span> objects are linked from the sentence. These have extra attributes. For an overview of <span class="inline_code">Sentence</span>, <span class="inline_code">Chunk</span> and <span class="inline_code">Word</span>, see the <a class="link-maintenance" href="pattern-en.html#tree">parse tree</a> documentation.</p>
<p> </p>
<hr />
<h2><a name="taxonomy"></a>Taxonomy</h2>
<p>A taxonomy is a hierarchical tree of words classified by semantic type. For example: a <em>begonia</em> is a <em>flower</em>, and a <em>flower</em> is a <em>plant</em>. Taxonomy terms can be used as constraints. For example, <span class="inline_code">"FLOWER"</span> will match <em>flower</em> as well as <em>begonia</em>, or any other flower that has been defined in the taxonomy. By default, constraints will retrieve terms from the global <span class="inline_code">taxonomy</span>.</p>
<pre class="brush:python; gutter:false; light:true;">taxonomy = Taxonomy()</pre><pre class="brush:python; gutter:false; light:true;">taxonomy.case_sensitive # False by default.
taxonomy.classifiers # List of Classifier objects.</pre><pre class="brush:python; gutter:false; light:true;">taxonomy.append(term, type=None)
taxonomy.remove(term)</pre><pre class="brush:python; gutter:false; light:true;">taxonomy.classify(term)
taxonomy.parents(term, recursive=False)
taxonomy.children(term, recursive=False)
</pre><ul>
<li><span class="inline_code">Taxonomy.classify()</span> returns the (most recent) semantic type for a given term.<br />If the term is not in the taxonomy, it will try <span class="inline_code">Taxonomy.classifiers</span> (see further).</li>
<li><span class="inline_code">Taxonomy.parents()</span> returns a list of all semantic types for the given term.</li>
<li><span class="inline_code">Taxonomy.children()</span> returns a list of all terms for the given semantic type.<br />With <span class="inline_code">recursive=True</span>, traverses the entire branch.</li>
</ul>
<p>For example:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import taxonomy, search
>>>
>>> taxonomy.append('chicken', type='food')
>>> taxonomy.append('chicken', type='bird')
>>> taxonomy.append('penguin', type='bird')
>>> taxonomy.append('bird', type='animal')
>>>
>>> print taxonomy.parents('chicken')
>>> print taxonomy.children('animal', recursive=True)
>>> print
>>> print search('FOOD', "I'm eating chicken.")
['bird', 'food']
['bird', 'penguin', 'chicken']
[Match(words=[Word('chicken')])]</pre></div>
<h3>Taxonomy classifier</h3>
<p>A <span class="inline_code">Classifier</span> offers a rule-based approach to enrich the taxonomy. If a term is not in the taxonomy, it will iterate its list of classifiers. Each classifier is a set of functions that can be customized to yield the semantic type of a term.</p>
<pre class="brush:python; gutter:false; light:true;">classifier = Classifier(
parents = lambda term: [],
children = lambda term: [])</pre><pre class="brush:python; gutter:false; light:true;">classifier.parents(term) # Returns a list of parents for a term.
classifier.children(term) # Returns a list of children for a term.
</pre><p>This is useful because taxonomy terms can't include wildcards (i.e., the <span class="inline_code">*</span> character is taken literally).</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import taxonomy, search
>>> from pattern.search import Classifier
>>>
>>> def parents(term):
>>> return ['quality'] if term.endswith('ness') else []
>>>
>>> taxonomy.classifiers.append(Classifier(parents))
>>> taxonomy.append('cat', type='animal')
>>>
>>> print search('QUALITY of a|an|the ANIMAL', 'the litheness of a cat')
[Match(words=[Word('litheness'), Word('of'), Word('a'), Word('cat')])]</pre></div>
<p>This example creates a classifier that tags words ending in <em>-ness</em> as <span class="postag">quality</span> (e.g., sharpness, greediness). This is more concise than manually adding all words ending in <em>-ness</em> to the taxonomy. The <span class="postag">quality</span> term is then used as a constraint. Remember to always define <span class="inline_code">Classifier.parents()</span>. For performance, <span class="inline_code">Classifier.children()</span> is not called in <span class="inline_code">Constraint.match()</span>.</p>
<h3 class="example">Taxonomy classifier from WordNet</h3>
<p class="example">The following example creates a rule-based taxonomy from the <span class="inline_code">pattern.en.wordnet</span> module:</p>
<div class="example">
<pre class="brush:python; gutter:false; light:true;">>>> from pattern.search import taxonomy, WordNetClassifier
>>>
>>> taxonomy.classifiers.append(WordNetClassifier())
>>>
>>> print taxonomy.parents('cat', pos='NN')
>>> print taxonomy.parents('cat', pos='VB')
['feline']
['flog']</pre></div>
<table class="border">
<tbody>
<tr>
<td style="text-align: center;">
<p><br /><img src="../g/pattern-search-taxonomy.jpg" alt="" width="300" height="163" /></p>
<p><span style="display: inline !important;"><br /><span class="smallcaps">wordnet taxonomy example</span></span></p>
</td>
</tr>
</tbody>
</table>
<p> </p>
<hr />
<h2><a name="utility"></a>Utility functions</h2>
<p>The pattern.search module has a number of useful list functions:</p>
<pre class="brush:python; gutter:false; light:true;">unique(iterable) # Returns a new list with unique items.</pre><pre class="brush:python; gutter:false; light:true;">find(function, iterable) # Returns first item for which function(item) is True.</pre><pre class="brush:python; gutter:false; light:true;">product(iterable, repeat=1) # Returns a generator of all combinations of length n.</pre><pre class="brush:python; gutter:false; light:true;">variations(iterable, optional=lambda item: False)</pre><pre class="brush:python; gutter:false; light:true;">odict(items=[])</pre><ul>
<li><span class="inline_code">product()</span> returns a generator of all permutations, with replacement. <br />For example: <span class="inline_code">product([1,2,3),</span> <span class="inline_code">repeat=2)</span> yields:<br /><span class="inline_code">[1,1],</span> <span class="inline_code">[1,2],</span> <span class="inline_code">[1,3],</span> <span class="inline_code">[2,1],</span> <span class="inline_code">[2,2],</span> <span class="inline_code">[2,3],</span> <span class="inline_code">[3,1],</span> <span class="inline_code">[3,2],</span> <span class="inline_code">[3,3]</span></li>
<li><span class="inline_code">variations()</span> returns all variations of a sequence with optional items (in-order).</li>
<li><span class="inline_code">odict()</span> is a dictionary with ordered keys (e.g., like a stack).<br />The most recent keys will be returned first when traversing the dictionary.<br /><span class="inline_code">odict.push()</span> takes a <span class="inline_code">(key,</span> <span class="inline_code">value)</span>-tuple and sets the given key to the given value. If the key exists, it pushes the updated item to the top of the stack.</li>
</ul>
</div>
</div></div>
</div>
</div>
</div>
</div>
</div>
</div>
<script>
SyntaxHighlighter.all();
</script>
</body>
</html>
|