1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
|
# coding: utf-8
import os, sys; sys.path.insert(0, os.path.join(os.path.dirname(__file__), "..", ".."))
# By default, parse() uses part-of-speech tags from the Penn Treebank tagset:
# http://www.clips.ua.ac.be/pages/penn-treebank-tagset
# It is a good idea to study the tagset and its abbreviations for a few minutes.
from pattern.en import parse as parse_en
print parse_en("the black cats", chunks=False) # the/DT black/JJ cat/NNS
print
# ... where DT = determiner, JJ = adjective, NN = noun.
# This is true for all languages that Pattern supports:
from pattern.de import parse as parse_de
from pattern.es import parse as parse_es
from pattern.fr import parse as parse_fr
from pattern.it import parse as parse_it
from pattern.nl import parse as parse_nl
print parse_de("die schwarzen Katzen", chunks=False) # die/DT schwarze/JJ Katzen/NNS
print parse_es("los gatos negros" , chunks=False) # los/DT gatos/NNS negros/JJ
print parse_fr("les chats noirs" , chunks=False) # les/DT chats/NNS noirs/JJ
print parse_it("i gatti neri" , chunks=False) # i/DT gatti/NNS neri/JJ
print parse_nl("de zwarte katten" , chunks=False) # de/DT zwarte/JJ katten/NNS
print
# In some cases, this means the original tagset is mapped to Penn Treebank:
# e.g., for German (STTS), Spanish (PAROLE), Dutch (WOTAN).
from pattern.de import STTS
from pattern.es import PAROLE
from pattern.nl import WOTAN
print parse_de("die schwarzen Katzen", chunks=False, tagset=STTS)
print parse_es("los gatos negros" , chunks=False, tagset=PAROLE)
print parse_nl("de zwarte katten" , chunks=False, tagset=WOTAN)
print
# Not all languages are equally suited to Penn Treebank,
# which was originally developed for English.
# This becomes more problematic as more languages are added to Pattern.
# It is sometimes difficult to fit determiners, pronouns, prepositions
# in a particular language to Penn Treebank tags (e.g., Italian "che").
# With parse(tagset=UNIVERSAL), a simplified universal tagset is used,
# loosely corresponding to the recommendations of Petrov (2012):
# http://www.petrovi.de/data/lrec.pdf
# This simplified tagset will still contain all the information that most users require.
from pattern.text import UNIVERSAL
from pattern.text import NOUN, VERB, ADJ, ADV, PRON, DET, PREP, NUM, CONJ, INTJ, PRT, PUNC, X
# NOUN = "NN" (noun)
# VERB = "VB" (verb)
# ADJ = "JJ" (adjective)
# ADV = "RB" (adverb)
# PRON = "PR" (pronoun)
# DET = "DT" (determiner)
# PREP = "PP" (preposition)
# NUM = "NO" (number)
# CONJ = "CJ" (conjunction)
# INTJ = "UH" (interjection)
# PRT = "PT" (particle)
# PUNC = "." (punctuation)
# X = "X" (foreign word, abbreviation)
# We can combine this with the multilingual pattern.text.parse() function,
# when we need to deal with code that handles many languages at once:
from pattern.text import parse
print parse("die schwarzen Katzen", chunks=False, language="de", tagset=UNIVERSAL)
print parse("the black cats" , chunks=False, language="en", tagset=UNIVERSAL)
print parse("los gatos negros" , chunks=False, language="es", tagset=UNIVERSAL)
print parse("les chats noirs" , chunks=False, language="fr", tagset=UNIVERSAL)
print parse("i gatti neri" , chunks=False, language="it", tagset=UNIVERSAL)
print parse("de zwarte katten" , chunks=False, language="nl", tagset=UNIVERSAL)
print
# This comes at the expense of (in this example) losing information about plural nouns (NNS => NN).
# But it may be more comfortable for you to build multilingual apps
# using the universal constants (e.g., PRON, PREP, CONJ),
# instead of learning the Penn Treebank tagset by heart,
# or wonder why the Italian "che" is tagged "PRP", "IN" or "CC"
# (in the universal tagset it is a PRON or a CONJ).
from pattern.text import parsetree
for sentence in parsetree("i gatti neri che sono la mia", language="it", tagset=UNIVERSAL):
for word in sentence.words:
if word.tag == PRON:
print word
# The language() function in pattern.text can be used to guess the language of a text.
# It returns a (language code, confidence)-tuple.
# It can guess en, es, de, fr, it, nl.
from pattern.text import language
print
print language(u"the cat sat on the mat") # ("en", 1.00)
print language(u"de kat zat op de mat") # ("nl", 0.80)
print language(u"le chat s'était assis sur le tapis") # ("fr", 0.86)
|