1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626
|
#### PATTERN | GRAPH ###############################################################################
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
import os
import sys
from math import sqrt, pow
from math import sin, cos, atan2, degrees, radians, pi
from random import random
from heapq import heappush, heappop
from warnings import warn
from codecs import open
from shutil import rmtree
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
if sys.version > "3":
long = int
# float("inf") doesn't work on windows.
INFINITE = 1e20
#--- LIST FUNCTIONS --------------------------------------------------------------------------------
def unique(iterable):
""" Returns a list copy in which each item occurs only once (in-order).
"""
seen = set()
return [x for x in iterable if x not in seen and not seen.add(x)]
#--- DRAWING FUNCTIONS -----------------------------------------------------------------------------
# This module is standalone (i.e., it is not a graph rendering package).
# If you want to call Graph.draw() then line(), ellipse() and Text.draw() must be implemented.
def line(x1, y1, x2, y2, stroke=(0,0,0,1), strokewidth=1):
""" Draws a line from (x1, y1) to (x2, y2) using the given stroke color and stroke width.
"""
pass
def ellipse(x, y, width, height, fill=(0,0,0,1), stroke=None, strokewidth=1):
""" Draws an ellipse at (x, y) with given fill and stroke color and stroke width.
"""
pass
class Text(object):
def __init__(self, string, **kwargs):
""" Draws the node label.
Optional properties include width, fill, font, fontsize, fontweight.
"""
self.string = string
self.__dict__.update(kwargs)
def copy(self):
k = self.__dict__.copy()
k.pop("string")
return Text(self.string, **k)
def draw(self):
pass
class Vector(object):
def __init__(self, x=0, y=0):
self.x = x
self.y = y
def coordinates(x, y, distance, angle):
return (
(x + distance * cos(radians(angle))),
(y + distance * sin(radians(angle)))
)
#--- DEEPCOPY --------------------------------------------------------------------------------------
def deepcopy(o):
""" Returns a deep (recursive) copy of the given object.
"""
if o is None:
return o
if hasattr(o, "copy"):
return o.copy()
if isinstance(o, (basestring, bool, int, float, long, complex)):
return o
if isinstance(o, (list, tuple, set)):
return o.__class__(deepcopy(v) for v in o)
if isinstance(o, dict):
return dict((deepcopy(k), deepcopy(v)) for k,v in o.items())
raise Exception("don't know how to copy %s" % o.__class__.__name__)
#### NODE ##########################################################################################
#--- NODE ------------------------------------------------------------------------------------------
class Node(object):
def __init__(self, id="", radius=5, **kwargs):
""" A node with a unique id in the graph.
Node.id is drawn as a text label, unless optional parameter text=False.
Optional parameters include: fill, stroke, strokewidth, text, font, fontsize, fontweight.
"""
self.graph = None
self.links = Links()
self.id = id
self._x = 0.0 # Calculated by Graph.layout.update().
self._y = 0.0 # Calculated by Graph.layout.update().
self.force = Vector(0.0, 0.0)
self.radius = radius
self.fixed = kwargs.pop("fixed", False)
self.fill = kwargs.pop("fill", None)
self.stroke = kwargs.pop("stroke", (0,0,0,1))
self.strokewidth = kwargs.pop("strokewidth", 1)
self.text = kwargs.get("text", True) and \
Text(isinstance(id, unicode) and id or str(id).decode("utf-8", "ignore"),
width = 85,
fill = kwargs.pop("text", (0,0,0,1)),
fontsize = kwargs.pop("fontsize", 11), **kwargs) or None
self._weight = None # Calculated by Graph.eigenvector_centrality().
self._centrality = None # Calculated by Graph.betweenness_centrality().
@property
def _distance(self):
# Graph.distance controls the (x,y) spacing between nodes.
return self.graph and float(self.graph.distance) or 1.0
def _get_x(self):
return self._x * self._distance
def _get_y(self):
return self._y * self._distance
def _set_x(self, v):
self._x = v / self._distance
def _set_y(self, v):
self._y = v / self._distance
x = property(_get_x, _set_x)
y = property(_get_y, _set_y)
@property
def edges(self):
""" Yields a list of edges from/to the node.
"""
return self.graph is not None \
and [e for e in self.graph.edges if self.id in (e.node1.id, e.node2.id)] \
or []
@property
def edge(self, node, reverse=False):
""" Yields the Edge from this node to the given node, or None.
"""
if not isinstance(node, Node):
node = self.graph and self.graph.get(node) or node
if reverse:
return node.links.edge(self)
return self.links.edge(node)
@property
def weight(self):
""" Yields eigenvector centrality as a number between 0.0-1.0.
"""
if self.graph and self._weight is None:
self.graph.eigenvector_centrality()
return self._weight
@property
def centrality(self):
""" Yields betweenness centrality as a number between 0.0-1.0.
"""
if self.graph and self._centrality is None:
self.graph.betweenness_centrality()
return self._centrality
eigenvector = eigenvector_centrality = weight
betweenness = betweenness_centrality = centrality
@property
def degree(self):
""" Yields degree centrality as a number between 0.0-1.0.
"""
return self.graph and (1.0 * len(self.links) / len(self.graph)) or 0.0
def flatten(self, depth=1, traversable=lambda node, edge: True, _visited=None):
""" Recursively lists the node and nodes linked to it.
Depth 0 returns a list with the node.
Depth 1 returns a list with the node and all the directly linked nodes.
Depth 2 includes the linked nodes' links, and so on.
"""
_visited = _visited or {}
_visited[self.id] = (self, depth)
if depth >= 1:
for n in self.links:
if n.id not in _visited or _visited[n.id][1] < depth-1:
if traversable(self, self.links.edges[n.id]):
n.flatten(depth-1, traversable, _visited)
return [n for n,d in _visited.values()] # Fast, but not order-preserving.
def draw(self, weighted=False):
""" Draws the node as a circle with the given radius, fill, stroke and strokewidth.
Draws the node centrality as a shadow effect when weighted=True.
Draws the node text label.
Override this method in a subclass for custom drawing.
"""
# Draw the node weight as a shadow (based on node betweenness centrality).
if weighted is not False and self.centrality > (weighted==True and -1 or weighted):
w = self.centrality * 35
ellipse(
self.x,
self.y,
self.radius*2 + w,
self.radius*2 + w, fill=(0,0,0,0.2), stroke=None)
# Draw the node.
ellipse(
self.x,
self.y,
self.radius*2,
self.radius*2, fill=self.fill, stroke=self.stroke, strokewidth=self.strokewidth)
# Draw the node text label.
if self.text:
self.text.draw(
self.x + self.radius,
self.y + self.radius)
def contains(self, x, y):
""" Returns True if the given coordinates (x, y) are inside the node radius.
"""
return abs(self.x - x) < self.radius*2 and \
abs(self.y - y) < self.radius*2
def __repr__(self):
return "%s(id=%s)" % (self.__class__.__name__, repr(self.id))
def __eq__(self, node):
return isinstance(node, Node) and self.id == node.id
def __ne__(self, node):
return not self.__eq__(node)
#--- NODE LINKS ------------------------------------------------------------------------------------
class Links(list):
def __init__(self):
""" A list in which each node has an associated edge.
The Links.edge() method returns the edge for a given node id.
"""
self.edges = dict()
def append(self, node, edge=None):
if node.id not in self.edges:
list.append(self, node)
self.edges[node.id] = edge
def remove(self, node):
list.remove(self, node)
self.edges.pop(node.id, None)
def edge(self, node):
return self.edges.get(isinstance(node, Node) and node.id or node)
#### EDGE ##########################################################################################
class Edge(object):
def __init__(self, node1, node2, weight=0.0, length=1.0, type=None, stroke=(0,0,0,1), strokewidth=1):
""" A connection between two nodes.
Its weight indicates the importance (not the cost) of the connection.
Its type is useful in a semantic network (e.g. "is-a", "is-part-of", ...)
"""
self.node1 = node1
self.node2 = node2
self._weight = weight
self.length = length
self.type = type
self.stroke = stroke
self.strokewidth = strokewidth
def _get_weight(self):
return self._weight
def _set_weight(self, v):
self._weight = v
# Clear cached adjacency map in the graph, since edge weights have changed.
if self.node1.graph is not None:
self.node1.graph._adjacency = None
if self.node2.graph is not None:
self.node2.graph._adjacency = None
weight = property(_get_weight, _set_weight)
def draw(self, weighted=False, directed=False):
""" Draws the edge as a line with the given stroke and strokewidth (increased with Edge.weight).
Override this method in a subclass for custom drawing.
"""
w = weighted and self.weight or 0
line(
self.node1.x,
self.node1.y,
self.node2.x,
self.node2.y, stroke=self.stroke, strokewidth=self.strokewidth+w)
if directed:
self.draw_arrow(stroke=self.stroke, strokewidth=self.strokewidth+w)
def draw_arrow(self, **kwargs):
""" Draws the direction of the edge as an arrow on the rim of the receiving node.
"""
x0, y0 = self.node1.x, self.node1.y
x1, y1 = self.node2.x, self.node2.y
# Find the edge's angle based on node1 and node2 position.
a = degrees(atan2(y1-y0, x1-x0))
# The arrow points to node2's rim instead of it's center.
r = self.node2.radius
d = sqrt(pow(x1-x0, 2) + pow(y1-y0, 2))
x01, y01 = coordinates(x0, y0, d-r-1, a)
# Find the two other arrow corners under the given angle.
r = max(kwargs.get("strokewidth", 1) * 3, 6)
dx1, dy1 = coordinates(x01, y01, -r, a-20)
dx2, dy2 = coordinates(x01, y01, -r, a+20)
line(x01, y01, dx1, dy1, **kwargs)
line(x01, y01, dx2, dy2, **kwargs)
line(dx1, dy1, dx2, dy2, **kwargs)
def __repr__(self):
return "%s(id1=%s, id2=%s)" % (self.__class__.__name__, repr(self.node1.id), repr(self.node2.id))
#### GRAPH #########################################################################################
#--- GRAPH NODE DICTIONARY -------------------------------------------------------------------------
class nodedict(dict):
def __init__(self, graph, *args, **kwargs):
""" Graph.shortest_paths() and Graph.eigenvector_centrality() return a nodedict,
where dictionary values can be accessed by Node as well as by node id.
"""
dict.__init__(self, *args, **kwargs)
self.graph = graph
def __contains__(self, node):
return dict.__contains__(self, self.graph.get(node, node))
def __getitem__(self, node):
return dict.__getitem__(self, isinstance(node, Node) and node or self.graph[node])
def get(self, node, default=None):
return dict.get(self, self.graph.get(node, node), default)
#--- GRAPH -----------------------------------------------------------------------------------------
# Graph layouts:
SPRING = "spring"
# Graph node centrality:
EIGENVECTOR = "eigenvector"
BETWEENNESS = "betweenness"
DEGREE = "degree"
# Graph node sort order:
WEIGHT, CENTRALITY = "weight", "centrality"
ALL = "all"
class Graph(dict):
def __init__(self, layout=SPRING, distance=10.0):
""" A network of nodes connected by edges that can be drawn with a given layout.
"""
self.nodes = [] # List of Node objects.
self.edges = [] # List of Edge objects.
self.root = None
self._adjacency = None # Cached adjacency() dict.
self.layout = layout == SPRING and GraphSpringLayout(self) or GraphLayout(self)
self.distance = distance
def __getitem__(self, id):
try:
return dict.__getitem__(self, id)
except KeyError:
raise KeyError("no node with id '%s' in graph" % id)
def append(self, base, *args, **kwargs):
""" Appends a Node or Edge to the graph: Graph.append(Node, id="rabbit").
"""
kwargs["base"] = base
if issubclass(base, Node):
return self.add_node(*args, **kwargs)
if issubclass(base, Edge):
return self.add_edge(*args, **kwargs)
def add_node(self, id, *args, **kwargs):
""" Appends a new Node to the graph.
An optional base parameter can be used to pass a subclass of Node.
"""
n = kwargs.pop("base", Node)
n = isinstance(id, Node) and id or self.get(id) or n(id, *args, **kwargs)
if n.id not in self:
self.nodes.append(n)
self[n.id] = n; n.graph = self
self.root = kwargs.get("root", False) and n or self.root
# Clear adjacency cache.
self._adjacency = None
return n
def add_edge(self, id1, id2, *args, **kwargs):
""" Appends a new Edge to the graph.
An optional base parameter can be used to pass a subclass of Edge:
Graph.add_edge("cold", "winter", base=IsPropertyOf)
"""
# Create nodes that are not yet part of the graph.
n1 = self.add_node(id1)
n2 = self.add_node(id2)
# Creates an Edge instance.
# If an edge (in the same direction) already exists, yields that edge instead.
e1 = n1.links.edge(n2)
if e1 and e1.node1 == n1 and e1.node2 == n2:
return e1
e2 = kwargs.pop("base", Edge)
e2 = e2(n1, n2, *args, **kwargs)
self.edges.append(e2)
# Synchronizes Node.links:
# A.links.edge(B) yields edge A->B
# B.links.edge(A) yields edge B->A
n1.links.append(n2, edge=e2)
n2.links.append(n1, edge=e1 or e2)
# Clear adjacency cache.
self._adjacency = None
return e2
def remove(self, x):
""" Removes the given Node (and all its edges) or Edge from the graph.
Note: removing Edge a->b does not remove Edge b->a.
"""
if isinstance(x, Node) and x.id in self:
self.pop(x.id)
self.nodes.remove(x); x.graph = None
# Remove all edges involving the given node.
for e in list(self.edges):
if x in (e.node1, e.node2):
if x in e.node1.links: e.node1.links.remove(x)
if x in e.node2.links: e.node2.links.remove(x)
self.edges.remove(e)
if isinstance(x, Edge):
self.edges.remove(x)
# Clear adjacency cache.
self._adjacency = None
def node(self, id):
""" Returns the node in the graph with the given id.
"""
if isinstance(id, Node) and id.graph == self:
return id
return self.get(id, None)
def edge(self, id1, id2):
""" Returns the edge between the nodes with given id1 and id2.
"""
if isinstance(id1, Node) and id1.graph == self:
id1 = id1.id
if isinstance(id2, Node) and id2.graph == self:
id2 = id2.id
return id1 in self and id2 in self and self[id1].links.edge(id2) or None
def paths(self, node1, node2, length=4, path=[]):
""" Returns a list of paths (shorter than or equal to given length) connecting the two nodes.
"""
if not isinstance(node1, Node):
node1 = self[node1]
if not isinstance(node2, Node):
node2 = self[node2]
return [[self[id] for id in p] for p in paths(self, node1.id, node2.id, length, path)]
def shortest_path(self, node1, node2, heuristic=None, directed=False):
""" Returns a list of nodes connecting the two nodes.
"""
if not isinstance(node1, Node):
node1 = self[node1]
if not isinstance(node2, Node):
node2 = self[node2]
try:
p = dijkstra_shortest_path(self, node1.id, node2.id, heuristic, directed)
p = [self[id] for id in p]
return p
except IndexError:
return None
def shortest_paths(self, node, heuristic=None, directed=False):
""" Returns a dictionary of nodes, each linked to a list of nodes (shortest path).
"""
if not isinstance(node, Node):
node = self[node]
p = nodedict(self)
for id, path in dijkstra_shortest_paths(self, node.id, heuristic, directed).items():
p[self[id]] = path and [self[id] for id in path] or None
return p
def eigenvector_centrality(self, normalized=True, reversed=True, rating={}, iterations=100, tolerance=0.0001):
""" Calculates eigenvector centrality and returns a node => weight dictionary.
Node.weight is updated in the process.
Node.weight is higher for nodes with a lot of (indirect) incoming traffic.
"""
ec = eigenvector_centrality(self, normalized, reversed, rating, iterations, tolerance)
ec = nodedict(self, ((self[id], w) for id, w in ec.items()))
for n, w in ec.items():
n._weight = w
return ec
def betweenness_centrality(self, normalized=True, directed=False):
""" Calculates betweenness centrality and returns a node => weight dictionary.
Node.centrality is updated in the process.
Node.centrality is higher for nodes with a lot of passing traffic.
"""
bc = brandes_betweenness_centrality(self, normalized, directed)
bc = nodedict(self, ((self[id], w) for id, w in bc.items()))
for n, w in bc.items():
n._centrality = w
return bc
def sorted(self, order=WEIGHT, threshold=0.0):
""" Returns a list of nodes sorted by WEIGHT or CENTRALITY.
Nodes with a lot of traffic will be at the start of the list.
"""
o = lambda node: getattr(node, order)
nodes = ((o(n), n) for n in self.nodes if o(n) >= threshold)
nodes = reversed(sorted(nodes))
return [n for w, n in nodes]
def prune(self, depth=0):
""" Removes all nodes with less or equal links than depth.
"""
for n in (n for n in self.nodes if len(n.links) <= depth):
self.remove(n)
def fringe(self, depth=0, traversable=lambda node, edge: True):
""" For depth=0, returns the list of leaf nodes (nodes with only one connection).
For depth=1, returns the list of leaf nodes and their connected nodes, and so on.
"""
u = []; [u.extend(n.flatten(depth, traversable)) for n in self.nodes if len(n.links) == 1]
return unique(u)
@property
def density(self):
""" Yields the number of edges vs. the maximum number of possible edges.
For example, <0.35 => sparse, >0.65 => dense, 1.0 => complete.
"""
return 2.0*len(self.edges) / (len(self.nodes) * (len(self.nodes)-1))
@property
def is_complete(self):
return self.density == 1.0
@property
def is_dense(self):
return self.density > 0.65
@property
def is_sparse(self):
return self.density < 0.35
def split(self):
""" Returns the list of unconnected subgraphs.
"""
return partition(self)
def update(self, iterations=10, **kwargs):
""" Graph.layout.update() is called the given number of iterations.
"""
for i in range(iterations):
self.layout.update(**kwargs)
def draw(self, weighted=False, directed=False):
""" Draws all nodes and edges.
"""
for e in self.edges:
e.draw(weighted, directed)
for n in reversed(self.nodes): # New nodes (with Node._weight=None) first.
n.draw(weighted)
def node_at(self, x, y):
""" Returns the node at (x,y) or None.
"""
for n in self.nodes:
if n.contains(x, y): return n
def _add_node_copy(self, n, **kwargs):
# Magical fairy dust to copy subclasses of Node.
# We assume that the subclass constructor takes an optional "text" parameter
# (Text objects in NodeBox for OpenGL's implementation are expensive).
try:
new = self.add_node(n.id, root=kwargs.get("root",False), text=False)
except TypeError:
new = self.add_node(n.id, root=kwargs.get("root",False))
new.__class__ = n.__class__
new.__dict__.update((k, deepcopy(v)) for k,v in n.__dict__.items()
if k not in ("graph", "links", "_x", "_y", "force", "_weight", "_centrality"))
def _add_edge_copy(self, e, **kwargs):
if kwargs.get("node1", e.node1).id not in self \
or kwargs.get("node2", e.node2).id not in self:
return
new = self.add_edge(
kwargs.get("node1", self[e.node1.id]),
kwargs.get("node2", self[e.node2.id]))
new.__class__ = e.__class__
new.__dict__.update((k, deepcopy(v)) for k,v in e.__dict__.items()
if k not in ("node1", "node2"))
def copy(self, nodes=ALL):
""" Returns a copy of the graph with the given list of nodes (and connecting edges).
The layout will be reset.
"""
g = Graph(layout=None, distance=self.distance)
g.layout = self.layout.copy(graph=g)
for n in (nodes==ALL and self.nodes or (isinstance(n, Node) and n or self[n] for n in nodes)):
g._add_node_copy(n, root=self.root==n)
for e in self.edges:
g._add_edge_copy(e)
return g
def export(self, *args, **kwargs):
export(self, *args, **kwargs)
def write(self, *args, **kwargs):
write(self, *args, **kwargs)
def serialize(self, *args, **kwargs):
return render(self, *args, **kwargs)
#--- GRAPH LAYOUT ----------------------------------------------------------------------------------
# Graph drawing or graph layout, as a branch of graph theory,
# applies topology and geometry to derive two-dimensional representations of graphs.
class GraphLayout(object):
def __init__(self, graph):
""" Calculates node positions iteratively when GraphLayout.update() is called.
"""
self.graph = graph
self.iterations = 0
def update(self):
self.iterations += 1
def reset(self):
self.iterations = 0
for n in self.graph.nodes:
n._x = 0.0
n._y = 0.0
n.force = Vector(0.0, 0.0)
@property
def bounds(self):
""" Returns a (x, y, width, height)-tuple of the approximate layout dimensions.
"""
x0, y0 = +INFINITE, +INFINITE
x1, y1 = -INFINITE, -INFINITE
for n in self.graph.nodes:
if (n.x < x0): x0 = n.x
if (n.y < y0): y0 = n.y
if (n.x > x1): x1 = n.x
if (n.y > y1): y1 = n.y
return (x0, y0, x1-x0, y1-y0)
def copy(self, graph):
return GraphLayout(self, graph)
#--- GRAPH LAYOUT: FORCE-BASED ---------------------------------------------------------------------
class GraphSpringLayout(GraphLayout):
def __init__(self, graph):
""" A force-based layout in which edges are regarded as springs.
The forces are applied to the nodes, pulling them closer or pushing them apart.
"""
# Based on: http://snipplr.com/view/1950/graph-javascript-framework-version-001/
GraphLayout.__init__(self, graph)
self.k = 4.0 # Force constant.
self.force = 0.01 # Force multiplier.
self.repulsion = 50 # Maximum repulsive force radius.
def _distance(self, node1, node2):
# Yields a tuple with distances (dx, dy, d, d**2).
# Ensures that the distance is never zero (which deadlocks the animation).
dx = node2._x - node1._x
dy = node2._y - node1._y
d2 = dx * dx + dy * dy
if d2 < 0.01:
dx = random() * 0.1 + 0.1
dy = random() * 0.1 + 0.1
d2 = dx * dx + dy * dy
return dx, dy, sqrt(d2), d2
def _repulse(self, node1, node2):
# Updates Node.force with the repulsive force.
dx, dy, d, d2 = self._distance(node1, node2)
if d < self.repulsion:
f = self.k ** 2 / d2
node2.force.x += f * dx
node2.force.y += f * dy
node1.force.x -= f * dx
node1.force.y -= f * dy
def _attract(self, node1, node2, weight=0, length=1.0):
# Updates Node.force with the attractive edge force.
dx, dy, d, d2 = self._distance(node1, node2)
d = min(d, self.repulsion)
f = (d2 - self.k ** 2) / self.k * length
f *= weight * 0.5 + 1
f /= d
node2.force.x -= f * dx
node2.force.y -= f * dy
node1.force.x += f * dx
node1.force.y += f * dy
def update(self, weight=10.0, limit=0.5):
""" Updates the position of nodes in the graph.
The weight parameter determines the impact of edge weight.
The limit parameter determines the maximum movement each update().
"""
GraphLayout.update(self)
# Forces on all nodes due to node-node repulsions.
for i, n1 in enumerate(self.graph.nodes):
for j, n2 in enumerate(self.graph.nodes[i+1:]):
self._repulse(n1, n2)
# Forces on nodes due to edge attractions.
for e in self.graph.edges:
self._attract(e.node1, e.node2, weight * e.weight, 1.0 / (e.length or 0.01))
# Move nodes by given force.
for n in self.graph.nodes:
if not n.fixed:
n._x += max(-limit, min(self.force * n.force.x, limit))
n._y += max(-limit, min(self.force * n.force.y, limit))
n.force.x = 0
n.force.y = 0
def copy(self, graph):
g = GraphSpringLayout(graph)
g.k, g.force, g.repulsion = self.k, self.force, self.repulsion
return g
#### GRAPH ANALYSIS ################################################################################
#--- GRAPH SEARCH ----------------------------------------------------------------------------------
def depth_first_search(node, visit=lambda node: False, traversable=lambda node, edge: True, _visited=None):
""" Visits all the nodes connected to the given root node, depth-first.
The visit function is called on each node.
Recursion will stop if it returns True, and subsequently dfs() will return True.
The traversable function takes the current node and edge,
and returns True if we are allowed to follow this connection to the next node.
For example, the traversable for directed edges is follows:
lambda node, edge: node == edge.node1
"""
stop = visit(node)
_visited = _visited or {}
_visited[node.id] = True
for n in node.links:
if stop: return True
if traversable(node, node.links.edge(n)) is False: continue
if not n.id in _visited:
stop = depth_first_search(n, visit, traversable, _visited)
return stop
dfs = depth_first_search;
def breadth_first_search(node, visit=lambda node: False, traversable=lambda node, edge: True):
""" Visits all the nodes connected to the given root node, breadth-first.
"""
q = [node]
_visited = {}
while q:
node = q.pop(0)
if not node.id in _visited:
if visit(node):
return True
q.extend((n for n in node.links if traversable(node, node.links.edge(n)) is not False))
_visited[node.id] = True
return False
bfs = breadth_first_search;
def paths(graph, id1, id2, length=4, path=[], _root=True):
""" Returns a list of paths from node with id1 to node with id2.
Only paths shorter than or equal to the given length are included.
Uses a brute-force DFS approach (performance drops exponentially for longer paths).
"""
if len(path) >= length:
return []
if id1 not in graph:
return []
if id1 == id2:
return [path + [id1]]
path = path + [id1]
p = []
s = set(path) # 5% speedup.
for node in graph[id1].links:
if node.id not in s:
p.extend(paths(graph, node.id, id2, length, path, False))
return _root and sorted(p, key=len) or p
def edges(path):
""" Returns an iterator of Edge objects for the given list of nodes.
It yields None where two successive nodes are not connected.
"""
# For example, the distance (i.e., edge weight sum) of a path:
# sum(e.weight for e in edges(path))
return len(path) > 1 and (n.links.edge(path[i+1]) for i,n in enumerate(path[:-1])) or iter(())
#--- GRAPH ADJACENCY -------------------------------------------------------------------------------
def adjacency(graph, directed=False, reversed=False, stochastic=False, heuristic=None):
""" Returns a dictionary indexed by node id1's,
in which each value is a dictionary of connected node id2's linking to the edge weight.
If directed=True, edges go from id1 to id2, but not the other way.
If stochastic=True, all the weights for the neighbors of a given node sum to 1.
A heuristic function can be given that takes two node id's and returns
an additional cost for movement between the two nodes.
"""
# Caching a heuristic from a method won't work.
# Bound method objects are transient,
# i.e., id(object.method) returns a new value each time.
if graph._adjacency is not None and \
graph._adjacency[1:] == (directed, reversed, stochastic, heuristic and heuristic.func_code):
return graph._adjacency[0]
map = {}
for n in graph.nodes:
map[n.id] = {}
for e in graph.edges:
id1, id2 = not reversed and (e.node1.id, e.node2.id) or (e.node2.id, e.node1.id)
map[id1][id2] = 1.0 - 0.5 * e.weight
if heuristic:
map[id1][id2] += heuristic(id1, id2)
if not directed:
map[id2][id1] = map[id1][id2]
if stochastic:
for id1 in map:
n = sum(map[id1].values())
for id2 in map[id1]:
map[id1][id2] /= n
# Cache the adjacency map: this makes dijkstra_shortest_path() 2x faster in repeated use.
graph._adjacency = (map, directed, reversed, stochastic, heuristic and heuristic.func_code)
return map
def dijkstra_shortest_path(graph, id1, id2, heuristic=None, directed=False):
""" Dijkstra algorithm for finding the shortest path between two nodes.
Returns a list of node id's, starting with id1 and ending with id2.
Raises an IndexError between nodes on unconnected graphs.
"""
# Based on: Connelly Barnes, http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/119466
def flatten(list):
# Flattens a linked list of the form [0,[1,[2,[]]]]
while len(list) > 0:
yield list[0]; list=list[1]
G = adjacency(graph, directed=directed, heuristic=heuristic)
q = [(0, id1, ())] # Heap of (cost, path_head, path_rest).
visited = set() # Visited nodes.
while True:
(cost1, n1, path) = heappop(q)
if n1 not in visited:
visited.add(n1)
if n1 == id2:
return list(flatten(path))[::-1] + [n1]
path = (n1, path)
for (n2, cost2) in G[n1].items():
if n2 not in visited:
heappush(q, (cost1 + cost2, n2, path))
def dijkstra_shortest_paths(graph, id, heuristic=None, directed=False):
""" Dijkstra algorithm for finding the shortest paths from the given node to all other nodes.
Returns a dictionary of node id's, each linking to a list of node id's (i.e., the path).
"""
# Based on: Dijkstra's algorithm for shortest paths modified from Eppstein.
# Based on: NetworkX 1.4.1: Aric Hagberg, Dan Schult and Pieter Swart.
# This is 5x faster than:
# for n in g: dijkstra_shortest_path(g, id, n.id)
W = adjacency(graph, directed=directed, heuristic=heuristic)
Q = [] # Use Q as a heap with (distance, node id)-tuples.
D = {} # Dictionary of final distances.
P = {} # Dictionary of paths.
P[id] = [id]
seen = {id: 0}
heappush(Q, (0, id))
while Q:
(dist, v) = heappop(Q)
if v in D: continue
D[v] = dist
for w in W[v].keys():
vw_dist = D[v] + W[v][w]
if w not in D and (w not in seen or vw_dist < seen[w]):
seen[w] = vw_dist
heappush(Q, (vw_dist, w))
P[w] = P[v] + [w]
for n in graph:
if n not in P: P[n]=None
return P
def floyd_warshall_all_pairs_distance(graph, heuristic=None, directed=False):
""" Floyd-Warshall's algorithm for finding the path length for all pairs for nodes.
Returns a dictionary of node id's,
each linking to a dictionary of node id's linking to path length.
"""
from collections import defaultdict # Requires Python 2.5+.
g = graph.keys()
d = defaultdict(lambda: defaultdict(lambda: 1e30)) # float('inf')
p = defaultdict(dict) # Predecessors.
for e in graph.edges:
u = e.node1.id
v = e.node2.id
w = 1.0 - 0.5 * e.weight
w = heuristic and heuristic(u, v) + w or w
d[u][v] = min(w, d[u][v])
d[u][u] = 0
p[u][v] = u
if not directed:
d[v][u] = min(w, d[v][u])
p[v][u] = v
for w in g:
dw = d[w]
for u in g:
du, duw = d[u], d[u][w]
for v in g:
# Performance optimization, assumes d[w][v] > 0.
#if du[v] > duw + dw[v]:
if du[v] > duw and du[v] > duw + dw[v]:
d[u][v] = duw + dw[v]
p[u][v] = p[w][v]
class pdict(dict):
def __init__(self, predecessors, *args, **kwargs):
dict.__init__(self, *args, **kwargs)
self.predecessors = predecessors
return pdict(p, ((u, dict((v, w) for v,w in d[u].items() if w < 1e30)) for u in d))
def predecessor_path(tree, u, v):
""" Returns the path between node u and node v as a list of node id's.
The given tree is the return value of floyd_warshall_all_pairs_distance().predecessors.
"""
def _traverse(u, v):
w = tree[u][v]
if w == u:
return []
return _traverse(u,w) + [w] + _traverse(w,v)
return [u] + _traverse(u,v) + [v]
#--- GRAPH CENTRALITY ------------------------------------------------------------------------------
def brandes_betweenness_centrality(graph, normalized=True, directed=False):
""" Betweenness centrality for nodes in the graph.
Betweenness centrality is a measure of the number of shortests paths that pass through a node.
Nodes in high-density areas will get a good score.
"""
# Ulrik Brandes, A Faster Algorithm for Betweenness Centrality,
# Journal of Mathematical Sociology 25(2):163-177, 2001,
# http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf
# Based on: Dijkstra's algorithm for shortest paths modified from Eppstein.
# Based on: NetworkX 1.0.1: Aric Hagberg, Dan Schult and Pieter Swart.
# http://python-networkx.sourcearchive.com/documentation/1.0.1/centrality_8py-source.html
W = adjacency(graph, directed=directed)
b = dict.fromkeys(graph, 0.0)
for id in graph:
Q = [] # Use Q as a heap with (distance, node id)-tuples.
D = {} # Dictionary of final distances.
P = {} # Dictionary of paths.
for n in graph: P[n]=[]
seen = {id: 0}
heappush(Q, (0, id, id))
S = []
E = dict.fromkeys(graph, 0) # sigma
E[id] = 1.0
while Q:
(dist, pred, v) = heappop(Q)
if v in D:
continue
D[v] = dist
S.append(v)
E[v] += E[pred]
for w in W[v]:
vw_dist = D[v] + W[v][w]
if w not in D and (w not in seen or vw_dist < seen[w]):
seen[w] = vw_dist
heappush(Q, (vw_dist, v, w))
P[w] = [v]
E[w] = 0.0
elif vw_dist == seen[w]: # Handle equal paths.
P[w].append(v)
E[w] += E[v]
d = dict.fromkeys(graph, 0.0)
for w in reversed(S):
for v in P[w]:
d[v] += (1.0 + d[w]) * E[v] / E[w]
if w != id:
b[w] += d[w]
# Normalize between 0.0 and 1.0.
m = normalized and max(b.values()) or 1
b = dict((id, w/m) for id, w in b.items())
return b
def eigenvector_centrality(graph, normalized=True, reversed=True, rating={}, iterations=100, tolerance=0.0001):
""" Eigenvector centrality for nodes in the graph (cfr. Google's PageRank).
Eigenvector centrality is a measure of the importance of a node in a directed network.
It rewards nodes with a high potential of (indirectly) connecting to high-scoring nodes.
Nodes with no incoming connections have a score of zero.
If you want to measure outgoing connections, reversed should be False.
"""
# Based on: NetworkX, Aric Hagberg (hagberg@lanl.gov)
# http://python-networkx.sourcearchive.com/documentation/1.0.1/centrality_8py-source.html
# Note: much faster than betweenness centrality (which grows exponentially).
def normalize(vector):
w = 1.0 / (sum(vector.values()) or 1)
for node in vector:
vector[node] *= w
return vector
G = adjacency(graph, directed=True, reversed=reversed)
v = normalize(dict([(n, random()) for n in graph])) # Node ID => weight vector.
# Eigenvector calculation using the power iteration method: y = Ax.
# It has no guarantee of convergence.
for i in range(iterations):
v0 = v
v = dict.fromkeys(v0.keys(), 0)
for n1 in v:
for n2 in G[n1]:
v[n1] += 0.01 + v0[n2] * G[n1][n2] * rating.get(n1, 1)
normalize(v)
e = sum([abs(v[n]-v0[n]) for n in v]) # Check for convergence.
if e < len(G) * tolerance:
# Normalize between 0.0 and 1.0.
m = normalized and max(v.values()) or 1
v = dict((id, w/m) for id, w in v.items())
return v
warn("node weight is 0 because eigenvector_centrality() did not converge.", Warning)
return dict((n, 0) for n in G)
#--- GRAPH PARTITIONING ----------------------------------------------------------------------------
# a | b => all elements from a and all the elements from b.
# a & b => elements that appear in a as well as in b.
# a - b => elements that appear in a but not in b.
def union(a, b):
return list(set(a) | set(b))
def intersection(a, b):
return list(set(a) & set(b))
def difference(a, b):
return list(set(a) - set(b))
def partition(graph):
""" Returns a list of unconnected subgraphs.
"""
# Creates clusters of nodes and directly connected nodes.
# Iteratively merges two clusters if they overlap.
g = []
for n in graph.nodes:
g.append(dict.fromkeys((n.id for n in n.flatten()), True))
for i in reversed(range(len(g))):
for j in reversed(range(i+1, len(g))):
if g[i] and g[j] and len(intersection(g[i], g[j])) > 0:
g[i] = union(g[i], g[j])
g[j] = []
g = [graph.copy(nodes=[graph[id] for id in n]) for n in g if n]
g.sort(lambda a, b: len(b) - len(a))
return g
def is_clique(graph):
""" A clique is a set of nodes in which each node is connected to all other nodes.
"""
#for n1 in graph.nodes:
# for n2 in graph.nodes:
# if n1 != n2 and graph.edge(n1.id, n2.id) is None:
# return False
return graph.density == 1.0
def clique(graph, id):
""" Returns the largest possible clique for the node with given id.
"""
if isinstance(id, Node):
id = id.id
a = [id]
for n in graph.nodes:
try:
# Raises StopIteration if all nodes in the clique are connected to n:
next(id for id in a if n.id==id or graph.edge(n.id, id) is None)
except StopIteration:
a.append(n.id)
return a
def cliques(graph, threshold=3):
""" Returns all cliques in the graph with at least the given number of nodes.
"""
a = []
for n in graph.nodes:
c = clique(graph, n.id)
if len(c) >= threshold:
c.sort()
if c not in a: a.append(c)
return a
#### GRAPH UTILITY FUNCTIONS #######################################################################
# Utility functions for safely linking and unlinking of nodes,
# with respect for the surrounding nodes.
def unlink(graph, node1, node2=None):
""" Removes the edges between node1 and node2.
If only node1 is given, removes all edges to and from it.
This does not remove node1 from the graph.
"""
if not isinstance(node1, Node):
node1 = graph[node1]
if not isinstance(node2, Node) and node2 is not None:
node2 = graph[node2]
for e in list(graph.edges):
if node1 in (e.node1, e.node2) and node2 in (e.node1, e.node2, None):
graph.edges.remove(e)
try:
node1.links.remove(node2)
node2.links.remove(node1)
except: # 'NoneType' object has no attribute 'links'
pass
def redirect(graph, node1, node2):
""" Connects all of node1's edges to node2 and unlinks node1.
"""
if not isinstance(node1, Node):
node1 = graph[node1]
if not isinstance(node2, Node):
node2 = graph[node2]
for e in graph.edges:
if node1 in (e.node1, e.node2):
if e.node1 == node1 and e.node2 != node2:
graph._add_edge_copy(e, node1=node2, node2=e.node2)
if e.node2 == node1 and e.node1 != node2:
graph._add_edge_copy(e, node1=e.node1, node2=node2)
unlink(graph, node1)
def cut(graph, node):
""" Unlinks the given node, but keeps edges intact by connecting the surrounding nodes.
If A, B, C, D are nodes and A->B, B->C, B->D, if we then cut B: A->C, A->D.
"""
if not isinstance(node, Node):
node = graph[node]
for e in graph.edges:
if node in (e.node1, e.node2):
for n in node.links:
if e.node1 == node and e.node2 != n:
graph._add_edge_copy(e, node1=n, node2=e.node2)
if e.node2 == node and e.node1 != n:
graph._add_edge_copy(e, node1=e.node1, node2=n)
unlink(graph, node)
def insert(graph, node, a, b):
""" Inserts the given node between node a and node b.
If A, B, C are nodes and A->B, if we then insert C: A->C, C->B.
"""
if not isinstance(node, Node):
node = graph[node]
if not isinstance(a, Node):
a = graph[a]
if not isinstance(b, Node):
b = graph[b]
for e in graph.edges:
if e.node1 == a and e.node2 == b:
graph._add_edge_copy(e, node1=a, node2=node)
graph._add_edge_copy(e, node1=node, node2=b)
if e.node1 == b and e.node2 == a:
graph._add_edge_copy(e, node1=b, node2=node)
graph._add_edge_copy(e, node1=node, node2=a)
unlink(graph, a, b)
#### GRAPH EXPORT ##################################################################################
class GraphRenderer(object):
def __init__(self, graph):
self.graph = graph
def serialize(self, *args, **kwargs):
pass
def export(self, path, *args, **kwargs):
pass
#--- GRAPH EXPORT: HTML5 <CANVAS> ELEMENT ---------------------------------------------------------
# Exports graphs to interactive web pages using graph.js.
def minify(js):
""" Returns a compressed Javascript string with comments and whitespace removed.
"""
import re
W = (
"\(\[\{\,\;\=\-\+\*\/",
"\)\]\}\,\;\=\-\+\*\/"
)
for a, b in (
(re.compile(r"\/\*.*?\*\/", re.S), ""), # multi-line comments /**/
(re.compile(r"\/\/.*"), ""), # singe line comments //
(re.compile(r";\n"), "; "), # statements (correctly) terminated with ;
(re.compile(r"[ \t]+"), " "), # spacing and indentation
(re.compile(r"[ \t]([\(\[\{\,\;\=\-\+\*\/])"), "\\1"),
(re.compile(r"([\)\]\}\,\;\=\-\+\*\/])[ \t]"), "\\1"),
(re.compile(r"\s+\n"), "\n"),
(re.compile(r"\n+"), "\n")):
js = a.sub(b, js)
return js.strip()
DEFAULT, INLINE = "default", "inline"
HTML, CANVAS, STYLE, CSS, SCRIPT, DATA = \
"html", "canvas", "style", "css", "script", "data"
class HTMLCanvasRenderer(GraphRenderer):
def __init__(self, graph, **kwargs):
self.graph = graph
self._source = \
"<!doctype html>\n" \
"<html>\n" \
"<head>\n" \
"\t<title>%s</title>\n" \
"\t<meta charset=\"utf-8\">\n" \
"\t%s\n" \
"\t<script type=\"text/javascript\" src=\"%scanvas.js\"></script>\n" \
"\t<script type=\"text/javascript\" src=\"%sgraph.js\"></script>\n" \
"</head>\n" \
"<body>\n" \
"\t<div id=\"%s\" style=\"width:%spx; height:%spx;\">\n" \
"\t\t<script type=\"text/canvas\">\n" \
"\t\t%s\n" \
"\t\t</script>\n" \
"\t</div>\n" \
"</body>\n" \
"</html>"
# HTML
self.title = "Graph" # <title>Graph</title>
self.javascript = None # Path to canvas.js + graph.js.
self.stylesheet = INLINE # Either None, INLINE, DEFAULT (style.css) or a custom path.
self.id = "graph" # <div id="graph">
self.ctx = "canvas.element"
self.width = 700 # Canvas width in pixels.
self.height = 500 # Canvas height in pixels.
# JS Graph
self.frames = 500 # Number of frames of animation.
self.fps = 30 # Frames per second.
self.ipf = 2 # Iterations per frame.
self.weighted = False # Indicate betweenness centrality as a shadow?
self.directed = False # Indicate edge direction with an arrow?
self.prune = None # None or int, calls Graph.prune() in Javascript.
self.pack = True # Shortens leaf edges, adds eigenvector weight to node radius.
# JS GraphLayout
self.distance = graph.distance # Node spacing.
self.k = graph.layout.k # Force constant.
self.force = graph.layout.force # Force dampener.
self.repulsion = graph.layout.repulsion # Repulsive force radius.
# Data
self.weight = [DEGREE, WEIGHT, CENTRALITY]
self.href = {} # Dictionary of Node.id => URL.
self.css = {} # Dictionary of Node.id => CSS classname.
# Default options.
# If a Node or Edge has one of these settings,
# it is not passed to Javascript to save bandwidth.
self.default = {
"radius": 5,
"fixed": False,
"fill": None,
"stroke": (0,0,0,1),
"strokewidth": 1,
"text": (0,0,0,1),
"fontsize": 11,
}
# Override settings from keyword arguments.
self.default.update(kwargs.pop("default", {}))
for k, v in kwargs.items():
setattr(self, k, v)
def _escape(self, s):
if isinstance(s, basestring):
return "\"%s\"" % s.replace("\"", "\\\"")
return s
def _rgba(self, clr):
# Color or tuple to a CSS "rgba(255,255,255,1.0)" string.
return "\"rgba(%s,%s,%s,%.2f)\"" % (int(clr[0]*255), int(clr[1]*255), int(clr[2]*255), clr[3])
@property
def data(self):
""" Yields a string of Javascript code that loads the nodes and edges into variable g,
which is a Javascript Graph object (see graph.js).
This can be the response of an XMLHttpRequest, after wich you move g into your own variable.
"""
return "".join(self._data())
def _data(self):
s = []
s.append("g = new Graph(%s, %s);\n" % (self.ctx, self.distance))
s.append("var n = {")
if len(self.graph.nodes) > 0:
s.append("\n")
# Translate node properties to Javascript dictionary (var n).
for n in self.graph.nodes:
p = []
if n._x != 0:
p.append("x:%i" % n._x) # 0
if n._y != 0:
p.append("y:%i" % n._y) # 0
if n.radius != self.default["radius"]:
p.append("radius:%.1f" % n.radius) # 5.0
if n.fixed != self.default["fixed"]:
p.append("fixed:%s" % repr(n.fixed).lower()) # false
if n.fill != self.default["fill"]:
p.append("fill:%s" % self._rgba(n.fill)) # [0,0,0,1.0]
if n.stroke != self.default["stroke"]:
p.append("stroke:%s" % self._rgba(n.stroke)) # [0,0,0,1.0]
if n.strokewidth != self.default["strokewidth"]:
p.append("strokewidth:%.1f" % n.strokewidth) # 0.5
if n.text is None:
p.append("text:false")
if n.text and n.text.fill != self.default["text"]:
p.append("text:%s" % self._rgba(n.text.fill)) # [0,0,0,1.0]
if n.text and "font" in n.text.__dict__:
p.append("font:\"%s\"" % n.text.__dict__["font"]) # "sans-serif"
if n.text and n.text.__dict__.get("fontsize", self.default["fontsize"]) != self.default["fontsize"]:
p.append("fontsize:%i" % int(max(1, n.text.fontsize)))
if n.text and "fontweight" in n.text.__dict__: # "bold"
p.append("fontweight:\"%s\"" % n.text.__dict__["fontweight"])
if n.text and n.text.string != n.id:
p.append("label:\"%s\"" % n.text.string)
if n.id in self.href:
p.append("href:\"%s\"" % self.href[n.id])
if n.id in self.css:
p.append("css:\"%s\"" % self.css[n.id])
s.append("\t%s: {%s},\n" % (self._escape(n.id), ", ".join(p)))
s[-1] = s[-1].rstrip(",\n") # Trailing comma breaks in IE.
s.append("\n};\n")
s.append("var e = [")
if len(self.graph.edges) > 0:
s.append("\n")
# Translate edge properties to Javascript dictionary (var e).
for e in self.graph.edges:
id1, id2 = self._escape(e.node1.id), self._escape(e.node2.id)
p = []
if e.weight != 0:
p.append("weight:%.2f" % e.weight) # 0.00
if e.length != 1:
p.append("length:%.2f" % e.length) # 1.00
if e.type is not None:
p.append("type:\"%s\"" % e.type) # "is-part-of"
if e.stroke != self.default["stroke"]:
p.append("stroke:%s" % self._rgba(e.stroke)) # [0,0,0,1.0]
if e.strokewidth != self.default["strokewidth"]:
p.append("strokewidth:%.2f" % e.strokewidth) # 0.5
s.append("\t[%s, %s, {%s}],\n" % (id1, id2, ", ".join(p)))
s[-1] = s[-1].rstrip(",\n") # Trailing comma breaks in IE.
s.append("\n];\n")
# Append the nodes to graph g.
s.append("for (var id in n) {\n"
"\tg.addNode(id, n[id]);\n"
"}\n")
# Append the edges to graph g.
s.append("for (var i=0; i < e.length; i++) {\n"
"\tvar n1 = g.nodeset[e[i][0]];\n"
"\tvar n2 = g.nodeset[e[i][1]];\n"
"\tg.addEdge(n1, n2, e[i][2]);\n"
"}")
return s
@property
def script(self):
""" Yields a string of canvas.js code.
A setup() function loads the nodes and edges into variable g (Graph),
A draw() function starts the animation and updates the layout of g.
"""
return "".join(self._script())
def _script(self):
s = [];
s.append("function setup(canvas) {\n")
s.append( "\tcanvas.size(%s, %s);\n" % (self.width, self.height))
s.append( "\tcanvas.fps = %s;\n" % (self.fps))
s.append( "\t" + "".join(self._data()).replace("\n", "\n\t"))
s.append( "\n")
# Apply the layout settings.
s.append( "\tg.layout.k = %s; // Force constant (= edge length).\n"
"\tg.layout.force = %s; // Repulsive strength.\n"
"\tg.layout.repulsion = %s; // Repulsive radius.\n" % (
self.k,
self.force,
self.repulsion))
# Apply eigenvector, betweenness and degree centrality.
if self.weight is True: s.append(
"\tg.eigenvectorCentrality();\n"
"\tg.betweennessCentrality();\n"
"\tg.degreeCentrality();\n")
if isinstance(self.weight, (list, tuple)):
if WEIGHT in self.weight: s.append(
"\tg.eigenvectorCentrality();\n")
if CENTRALITY in self.weight: s.append(
"\tg.betweennessCentrality();\n")
if DEGREE in self.weight: s.append(
"\tg.degreeCentrality();\n")
# Apply node weight to node radius.
if self.pack: s.append(
"\t// Apply Node.weight to Node.radius.\n"
"\tfor (var i=0; i < g.nodes.length; i++) {\n"
"\t\tvar n = g.nodes[i];\n"
"\t\tn.radius = n.radius + n.radius * n.weight;\n"
"\t}\n")
# Apply edge length (leaves get shorter edges).
if self.pack: s.append(
"\t// Apply Edge.length (leaves get shorter edges).\n"
"\tfor (var i=0; i < g.nodes.length; i++) {\n"
"\t\tvar e = g.nodes[i].edges();\n"
"\t\tif (e.length == 1) {\n"
"\t\t\te[0].length *= 0.2;\n"
"\t\t}\n"
"\t}\n")
# Apply pruning.
if self.prune is not None: s.append(
"\tg.prune(%s);\n" % self.prune)
# Implement <canvas> draw().
s.append("}\n")
s.append("function draw(canvas) {\n"
"\tif (g.layout.iterations <= %s) {\n"
"\t\tcanvas.clear();\n"
"\t\t//shadow();\n"
"\t\tstroke(0);\n"
"\t\tfill(0,0);\n"
"\t\tg.update(%s);\n"
"\t\tg.draw(%s, %s);\n"
"\t}\n"
"\tg.drag(canvas.mouse);\n"
"}" % (
int(self.frames),
int(self.ipf),
str(self.weighted).lower(),
str(self.directed).lower()))
return s
@property
def canvas(self):
""" Yields a string of HTML with a <div id="graph"> containing a <script type="text/canvas">.
The <div id="graph"> wrapper is required as a container for the node labels.
"""
s = [
"<div id=\"%s\" style=\"width:%spx; height:%spx;\">\n" % (self.id, self.width, self.height),
"\t<script type=\"text/canvas\">\n",
"\t\t%s\n" % self.script.replace("\n", "\n\t\t"),
"\t</script>\n",
"</div>"
]
return "".join(s)
@property
def style(self):
""" Yields a string of CSS for <div id="graph">.
"""
return \
"body { font: 11px sans-serif; }\n" \
"a { color: dodgerblue; }\n" \
"#%s canvas { }\n" \
"#%s .node-label { font-size: 11px; }\n" \
"#%s {\n" \
"\tdisplay: inline-block;\n" \
"\tposition: relative;\n" \
"\toverflow: hidden;\n" \
"\tborder: 1px solid #ccc;\n" \
"}" % (self.id, self.id, self.id)
@property
def html(self):
""" Yields a string of HTML to visualize the graph using a force-based spring layout.
The js parameter sets the path to graph.js and canvas.js.
"""
js = self.javascript or ""
if self.stylesheet == INLINE:
css = self.style.replace("\n","\n\t\t").rstrip("\t")
css = "<style type=\"text/css\">\n\t\t%s\n\t</style>" % css
elif self.stylesheet == DEFAULT:
css = "<link rel=\"stylesheet\" href=\"style.css\" type=\"text/css\" media=\"screen\" />"
elif self.stylesheet is not None:
css = "<link rel=\"stylesheet\" href=\"%s\" type=\"text/css\" media=\"screen\" />" % self.stylesheet
else:
css = ""
s = self._script()
s = "".join(s)
s = "\t" + s.replace("\n", "\n\t\t\t")
s = s.rstrip()
s = self._source % (
self.title,
css,
js,
js,
self.id,
self.width,
self.height,
s)
return s
def serialize(self, type=HTML):
if type == HTML:
return self.html
if type == CANVAS:
return self.canvas
if type in (STYLE, CSS):
return self.style
if type == SCRIPT:
return self.script
if type == DATA:
return self.data
# Backwards compatibility.
render = serialize
def export(self, path, encoding="utf-8"):
""" Generates a folder at the given path containing an index.html
that visualizes the graph using the HTML5 <canvas> tag.
"""
if os.path.exists(path):
rmtree(path)
os.mkdir(path)
# Copy compressed graph.js + canvas.js (unless a custom path is given.)
if self.javascript is None:
for p, f in (("..", "canvas.js"), (".", "graph.js")):
a = open(os.path.join(MODULE, p, f), "r")
b = open(os.path.join(path, f), "w")
b.write(minify(a.read()))
b.close()
# Create style.css.
if self.stylesheet == DEFAULT:
f = open(os.path.join(path, "style.css"), "w")
f.write(self.style)
f.close()
# Create index.html.
f = open(os.path.join(path, "index.html"), "w", encoding=encoding)
f.write(self.html)
f.close()
#--- GRAPH EXPORT: GRAPHML ------------------------------------------------------------------------
# Exports graphs as GraphML XML, which can be read by Gephi (https://gephi.org).
# Author: Frederik Elwert <frederik.elwert@web.de>, 2014.
GRAPHML = "graphml"
class GraphMLRenderer(GraphRenderer):
def serialize(self, directed=False):
p = "tmp.graphml"
self.export(p, directed, encoding="utf-8")
s = open(p, encoding="utf-8").read()
os.unlink(p)
return s
def export(self, path, directed=False, encoding="utf-8"):
""" Generates a GraphML XML file at the given path.
"""
import xml.etree.ElementTree as etree
ns = "{http://graphml.graphdrawing.org/xmlns}"
etree.register_namespace("", ns.strip("{}"))
# Define type for node labels (string).
# Define type for node edges (float).
root = etree.Element(ns + "graphml")
root.insert(0, etree.Element(ns + "key", **{
"id": "node_label", "for": "node", "attr.name": "label", "attr.type": "string"
}))
root.insert(0, etree.Element(ns + "key", **{
"id": "edge_weight", "for": "edge", "attr.name": "weight", "attr.type": "double"
}))
# Map Node.id => GraphML node id.
m = {}
g = etree.SubElement(root, ns + "graph", id="g", edgedefault=directed and "directed" or "undirected")
# Export nodes.
for i, n in enumerate(self.graph.nodes):
m[n.id] = "node%s" % i
x = etree.SubElement(g, ns + "node", id=m[n.id])
x = etree.SubElement(x, ns + "data", key="node_label")
if n.text and n.text.string != n.id:
x.text = n.text.string
# Export edges.
for i, e in enumerate(self.graph.edges):
x = etree.SubElement(g, ns + "edge", id="edge%s" % i, source=m[e.node1.id], target=m[e.node2.id])
x = etree.SubElement(x, ns + "data", key="edge_weight")
x.text = "%.3f" % e.weight
# Export graph with pretty indented XML.
# http://effbot.org/zone/element-lib.htm#prettyprint
def indent(e, level=0):
w = "\n" + level * " "
if len(e):
if not e.text or not e.text.strip():
e.text = w + " "
if not e.tail or not e.tail.strip():
e.tail = w
for e in e:
indent(e, level+1)
if not e.tail or not e.tail.strip():
e.tail = w
else:
if level and (not e.tail or not e.tail.strip()):
e.tail = w
indent(root)
tree = etree.ElementTree(root)
tree.write(path, encoding=encoding)
#--------------------------------------------------------------------------------------------------
# The export() and serialize() function are called from Graph.export() and Graph.serialize(),
# and are expected to handle any GraphRenderer by specifying an optional type=HTML|GRAPHML.
def export(graph, path, encoding="utf-8", **kwargs):
type = kwargs.pop("type", HTML)
# Export to GraphML.
if type == GRAPHML or path.endswith(".graphml"):
r = GraphMLRenderer(graph)
return r.export(path, directed=kwargs.get("directed", False), encoding=encoding)
# Export to HTML with <canvas>.
if type == HTML:
kwargs.setdefault("stylesheet", DEFAULT)
r = HTMLCanvasRenderer(graph, **kwargs)
return r.export(path, encoding)
def serialize(graph, type=HTML, **kwargs):
# Return GraphML string.
if type == GRAPHML:
r = GraphMLRenderer(graph)
return r.serialize(directed=kwargs.get("directed", False))
# Return HTML string.
if type in (HTML, CANVAS, STYLE, CSS, SCRIPT, DATA):
kwargs.setdefault("stylesheet", INLINE)
r = HTMLCanvasRenderer(graph, **kwargs)
return r.serialize(type)
# Backwards compatibility.
write, render = export, serialize
|