1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418
|
#### PATTERN | EN | QUANTIFY #######################################################################
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
####################################################################################################
# Transforms numeral strings to numbers, and numbers (int, float) to numeral strings.
# Approximates quantities of objects ("dozens of chickens" etc.)
import os
import sys
import re
from math import log, ceil
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
if sys.version > "3":
long = int
sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))
from pattern.text.en.inflect import pluralize, referenced
sys.path.pop(0)
####################################################################################################
NUMERALS = {
"zero" : 0, "ten" : 10, "twenty" : 20,
"one" : 1, "eleven" : 11, "thirty" : 30,
"two" : 2, "twelve" : 12, "forty" : 40,
"three" : 3, "thirteen" : 13, "fifty" : 50,
"four" : 4, "fourteen" : 14, "sixty" : 60,
"five" : 5, "fifteen" : 15, "seventy" : 70,
"six" : 6, "sixteen" : 16, "eighty" : 80,
"seven" : 7, "seventeen" : 17, "ninety" : 90,
"eight" : 8, "eighteen" : 18,
"nine" : 9, "nineteen" : 19
}
NUMERALS_INVERSE = dict((i, w) for w, i in NUMERALS.items()) # 0 => "zero"
NUMERALS_VERBOSE = {
"half" : ( 1, 0.5),
"dozen" : (12, 0.0),
"score" : (20, 0.0)
}
ORDER = ["hundred", "thousand"] + [m+"illion" for m in ("m", "b", "tr",
"quadr",
"quint",
"sext",
"sept",
"oct",
"non",
"dec",
"undec",
"duodec",
"tredec",
"quattuordec",
"quindec",
"sexdec",
"septemdec",
"octodec",
"novemdec",
"vigint"
)]
# {"hundred": 100, "thousand": 1000, ...}
O = {
ORDER[0]: 100,
ORDER[1]: 1000
}
for i, k in enumerate(ORDER[2:]):
O[k] = 1000000 * 1000 ** i
ZERO, MINUS, RADIX, THOUSANDS, CONJUNCTION = \
"zero", "minus", "point", ",", "and"
def zshift(s):
""" Returns a (string, count)-tuple, with leading zeros strippped from the string and counted.
"""
s = s.lstrip()
i = 0
while s.startswith((ZERO, "0")):
s = re.sub(r"^(0|%s)\s*" % ZERO, "", s, 1)
i = i + 1
return s, i
#print zshift("zero one") # ("one", 1)
#print zshift("0 0 seven") # ("seven", 2)
#--- STRING TO NUMBER ------------------------------------------------------------------------------
def number(s):
""" Returns the given numeric string as a float or an int.
If no number can be parsed from the string, returns 0.
For example:
number("five point two million") => 5200000
number("seventy-five point two") => 75.2
number("three thousand and one") => 3001
"""
s = s.strip()
s = s.lower()
# Negative number.
if s.startswith(MINUS):
return -number(s.replace(MINUS, "", 1))
# Strip commas and dashes ("seventy-five").
# Split into integral and fractional part.
s = s.replace("&", " %s " % CONJUNCTION)
s = s.replace(THOUSANDS, "")
s = s.replace("-", " ")
s = s.split(RADIX)
# Process fractional part.
# Extract all the leading zeros.
if len(s) > 1:
f = " ".join(s[1:]) # zero point zero twelve => zero twelve
f, z = zshift(f) # zero twelve => (1, "twelve")
f = float(number(f)) # "twelve" => 12.0
f /= 10**(len(str(int(f)))+z) # 10**(len("12")+1) = 1000; 12.0 / 1000 => 0.012
else:
f = 0
i = n = 0
s = s[0].split()
for j, x in enumerate(s):
if x in NUMERALS:
# Map words from the dictionary of numerals: "eleven" => 11.
i += NUMERALS[x]
elif x in NUMERALS_VERBOSE:
# Map words from alternate numerals: "two dozen" => 2 * 12
i = i * NUMERALS_VERBOSE[x][0] + NUMERALS_VERBOSE[x][1]
elif x in O:
# Map thousands from the dictionary of orders.
# When a thousand is encountered, the subtotal is shifted to the total
# and we start a new subtotal. An exception to this is when we
# encouter two following thousands (e.g. two million vigintillion is one subtotal).
i *= O[x]
if j < len(s)-1 and s[j+1] in O:
continue
if O[x] > 100:
n += i
i = 0
elif x == CONJUNCTION:
pass
else:
# Words that are not in any dicionary may be numbers (e.g. "2.5" => 2.5).
try: i += "." in x and float(x) or int(x)
except:
pass
return n + i + f
#print number("five point two septillion")
#print number("seventy-five point two")
#print number("three thousand and one")
#print number("1.2 million point two")
#print number("nothing")
#--- NUMBER TO STRING ------------------------------------------------------------------------------
def numerals(n, round=2):
""" Returns the given int or float as a string of numerals.
By default, the fractional part is rounded to two decimals.
For example:
numerals(4011) => four thousand and eleven
numerals(2.25) => two point twenty-five
numerals(2.249) => two point twenty-five
numerals(2.249, round=3) => two point two hundred and forty-nine
"""
if isinstance(n, basestring):
if n.isdigit():
n = int(n)
else:
# If the float is given as a string, extract the length of the fractional part.
if round is None:
round = len(n.split(".")[1])
n = float(n)
# For negative numbers, simply prepend minus.
if n < 0:
return "%s %s" % (MINUS, numerals(abs(n)))
# Split the number into integral and fractional part.
# Converting the integral part to a long ensures a better accuracy during the recursion.
i = long(n//1)
f = n-i
# The remainder, which we will stringify in recursion.
r = 0
if i in NUMERALS_INVERSE: # 11 => eleven
# Map numbers from the dictionary to numerals: 11 => "eleven".
s = NUMERALS_INVERSE[i]
elif i < 100:
# Map tens + digits: 75 => 70+5 => "seventy-five".
s = numerals((i//10)*10) + "-" + numerals(i%10)
elif i < 1000:
# Map hundreds: 500 => 5*100 => "five hundred".
# Store the remainders (tens + digits).
s = numerals(i//100) + " " + ORDER[0]
r = i % 100
else:
# Map thousands by extracting the order (thousand/million/billion/...).
# Store and recurse the remainder.
s = ""
o, base = 1, 1000
while i > base:
o+=1; base*=1000
while o > len(ORDER)-1:
s += " "+ORDER[-1] # This occurs for consecutive thousands: million vigintillion.
o -= len(ORDER)-1
s = "%s %s%s" % (numerals(i//(base/1000)), (o>1 and ORDER[o-1] or ""), s)
r = i % (base/1000)
if f != 0:
# Map the fractional part: "two point twenty-five" => 2.25.
# We cast it to a string first to find all the leading zeros.
# This actually seems more accurate than calculating the leading zeros,
# see also: http://python.org/doc/2.5.1/tut/node16.html.
# Some rounding occurs.
f = ("%." + str(round is None and 2 or round) + "f") % f
f = f.replace("0.","",1).rstrip("0")
f, z = zshift(f)
f = f and " %s%s %s" % (RADIX, " %s"%ZERO*z, numerals(long(f))) or ""
else:
f = ""
if r == 0:
return s+f
elif r >= 1000:
# Separate hundreds and thousands with a comma: two million, three hundred thousand.
return "%s%s %s" % (s, THOUSANDS, numerals(r)+f)
elif r <= 100:
# Separate hundreds and tens with "and": two thousand three hundred and five.
return "%s %s %s" % (s, CONJUNCTION, numerals(r)+f)
else:
return "%s %s" % (s, numerals(r)+f)
#--- APPROXIMATE -----------------------------------------------------------------------------------
# Based on the Ruby Linguistics module by Michael Granger:
# http://www.deveiate.org/projects/Linguistics/wiki/English
NONE = "no" # 0
PAIR = "a pair of" # 2
SEVERAL = "several" # 3-7
NUMBER = "a number of" # 8-17
SCORE = "a score of" # 18-22
DOZENS = "dozens of" # 22-200
COUNTLESS = "countless"
quantify_custom_plurals = {}
def approximate(word, amount=1, plural={}):
""" Returns an approximation of the number of given objects.
Two objects are described as being "a pair",
smaller than eight is "several",
smaller than twenty is "a number of",
smaller than two hundred are "dozens",
anything bigger is described as being tens or hundreds of thousands or millions.
For example: approximate("chicken", 100) => "dozens of chickens".
"""
try: p = pluralize(word, custom=plural)
except:
raise TypeError("can't pluralize %s (not a string)" % word.__class__.__name__)
# Anything up to 200.
if amount == 0:
return "%s %s" % (NONE, p)
if amount == 1:
return referenced(word) # "a" chicken, "an" elephant
if amount == 2:
return "%s %s" % (PAIR, p)
if 3 <= amount < 8:
return "%s %s" % (SEVERAL, p)
if 8 <= amount < 18:
return "%s %s" % (NUMBER, p)
if 18 <= amount < 23:
return "%s %s" % (SCORE, p)
if 23 <= amount < 200:
return "%s %s" % (DOZENS, p)
if amount > 10000000:
return "%s %s" % (COUNTLESS, p)
# Hundreds and thousands.
thousands = int(log(amount, 10) / 3)
hundreds = ceil(log(amount, 10) % 3) - 1
h = hundreds==2 and "hundreds of " or (hundreds==1 and "tens of " or "")
t = thousands>0 and pluralize(ORDER[thousands])+" of " or ""
return "%s%s%s" % (h, t, p)
#print approximate("chicken", 0)
#print approximate("chicken", 1)
#print approximate("chicken", 2)
#print approximate("chicken", 3)
#print approximate("chicken", 10)
#print approximate("chicken", 100)
#print approximate("chicken", 1000)
#print approximate("chicken", 10000)
#print approximate("chicken", 100000)
#print approximate("chicken", 1000000)
#print approximate("chicken", 10000000)
#print approximate("chicken", 100000000)
#print approximate("chicken", 10000000000)
#--- COUNT -----------------------------------------------------------------------------------------
# count(word, amount, plural={})
# count([word1, word2, ...], plural={})
# counr({word1:0, word2:0, ...}, plural={})
def count(*args, **kwargs):
""" Returns an approximation of the entire set.
Identical words are grouped and counted and then quantified with an approximation.
"""
if len(args) == 2 and isinstance(args[0], basestring):
return approximate(args[0], args[1], kwargs.get("plural", {}))
if len(args) == 1 and isinstance(args[0], basestring) and "amount" in kwargs:
return approximate(args[0], kwargs["amount"], kwargs.get("plural", {}))
if len(args) == 1 and isinstance(args[0], dict):
count = args[0]
if len(args) == 1 and isinstance(args[0], (list, tuple)):
# Keep a count of each item in the list.
count = {}
for word in args[0]:
try:
count.setdefault(word, 0)
count[word] += 1
except:
raise TypeError("can't count %s (not a string)" % word.__class__.__name__)
# Create an iterator of (count, item) tuples, sorted highest-first.
s = [(count[word], word) for word in count]
s = max([n for (n,w) in s]) > 1 and reversed(sorted(s)) or s
# Concatenate approximate quantities of each item,
# starting with the one that has the highest occurence.
phrase = []
for i, (n, word) in enumerate(s):
phrase.append(approximate(word, n, kwargs.get("plural", {})))
phrase.append(i==len(count)-2 and " and " or ", ")
return "".join(phrase[:-1])
quantify = count
#print count(["goose", "goose", "duck", "chicken", "chicken", "chicken"])
#print count(["penguin", "polar bear"])
#print count(["whale"])
#--- REFLECT ---------------------------------------------------------------------------------------
readable_types = (
("^<type '" , ""),
("^<class '(.*)'\>", "\\1 class"),
("'>" , ""),
("pyobjc" , "PyObjC"),
("objc_class" , "Objective-C class"),
("objc" , "Objective-C"),
("<objective-c class (.*) at [0-9][0-9|a-z]*>" , "Objective-C \\1 class"),
("bool" , "boolean"),
("int" , "integer"),
("long" , "long integer"),
("float" , "float"),
("str" , "string"),
("unicode" , "unicode string"),
("dict" , "dictionary"),
("NoneType" , "None type"),
("instancemethod" , "instance method"),
("builtin_function_or_method" , "built-in function"),
("classobj" , "class object"),
("\." , " "),
("_" , " ")
)
def reflect(object, quantify=True, replace=readable_types):
""" Returns the type of each object in the given object.
- For modules, this means classes and functions etc.
- For list and tuples, means the type of each item in it.
- For other objects, means the type of the object itself.
"""
_type = lambda object: type(object).__name__
types = []
# Classes and modules with a __dict__ attribute listing methods, functions etc.
if hasattr(object, "__dict__"):
# Function and method objects.
if _type(object) in ("function", "instancemethod"):
types.append(_type(object))
# Classes and modules.
else:
for v in object.__dict__.values():
try: types.append(str(v.__classname__))
except:
# Not a class after all (some stuff like ufunc in Numeric).
types.append(_type(v))
# Lists and tuples can consist of several types of objects.
elif isinstance(object, (list, tuple, set)):
types += [_type(x) for x in object]
# Dictionaries have keys pointing to objects.
elif isinstance(object, dict):
types += [_type(k) for k in object]
types += [_type(v) for v in object.values()]
else:
types.append(_type(object))
# Clean up type strings.
m = {}
for i in range(len(types)):
k = types[i]
# Execute the regular expressions once only,
# next time we'll have the conversion cached.
if k not in m:
for a,b in replace:
types[i] = re.sub(a, b, types[i])
m[k] = types[i]
types[i] = m[k]
if not quantify:
if not isinstance(object, (list, tuple, set, dict)) and not hasattr(object, "__dict__"):
return types[0]
return types
return count(types, plural={"built-in function" : "built-in functions"})
#print reflect("hello")
#print reflect(["hello", "goobye"])
#print reflect((1,2,3,4,5))
#print reflect({"name": "linguistics", "version": 1.0})
#print reflect(reflect)
#print reflect(__dict__)
#import Foundation; print reflect(Foundation)
#import Numeric; print reflect(Numeric)
|