1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343
|
# Module wordnet.py
#
# Original author: Oliver Steele <steele@osteele.com>
# Project Page: http://sourceforge.net/projects/pywordnet
#
# Copyright (c) 1998-2004 by Oliver Steele. Use is permitted under
# the Artistic License
# <http://www.opensource.org/licenses/artistic-license.html>
"""Utility functions to use with the wordnet module.
Usage
-----
>>> dog = N['dog'][0]
# (First 10) adjectives that are transitively SIMILAR to the main sense of 'red'
>>> closure(ADJ['red'][0], SIMILAR)[:10]
['red' in {adjective: red, reddish, ruddy, blood-red, carmine, cerise, cherry, cherry-red, crimson, ruby, ruby-red, scarlet}, {adjective: chromatic}, {adjective: amber, brownish-yellow, yellow-brown}, {adjective: amethyst}, {adjective: aureate, gilded, gilt, gold, golden}, {adjective: azure, cerulean, sky-blue, bright blue}, {adjective: blue, bluish, blueish, light-blue, dark-blue, blue-black}, {adjective: bluish green, blue-green, cyan, teal}, {adjective: blushful, rosy}, {adjective: bottle-green}]
>>> # Adjectives that are transitively SIMILAR to any of the senses of 'red'
>>> #flatten1(map(lambda sense:closure(sense, SIMILAR), ADJ['red'])) # too verbose
>>> # Hyponyms of the main sense of 'dog'(n.) that are homophonous with verbs
>>> filter(lambda sense:V.get(sense.form), flatten1(map(lambda e:e.getSenses(), hyponyms(N['dog'][0]))))
['dog' in {noun: dog, domestic dog, Canis familiaris}, 'pooch' in {noun: pooch, doggie, doggy, barker, bow-wow}, 'toy' in {noun: toy dog, toy}, 'hound' in {noun: hound, hound dog}, 'basset' in {noun: basset, basset hound}, 'cocker' in {noun: cocker spaniel, English cocker spaniel, cocker}, 'bulldog' in {noun: bulldog, English bulldog}]
>>> # Find the senses of 'raise'(v.) and 'lower'(v.) that are antonyms
>>> filter(lambda p:p[0] in p[1].pointerTargets(ANTONYM), product(V['raise'].getSenses(), V['lower'].getSenses()))
[('raise' in {verb: raise, lift, elevate, get up, bring up}, 'lower' in {verb: lower, take down, let down, get down, bring down})]
"""
__author__ = "Oliver Steele <steele@osteele.com>"
__version__ = "2.0"
from wordnet import *
#
# Domain utilities
#
def _requireSource(entity):
if not hasattr(entity, 'pointers'):
if isinstance(entity, Word):
raise TypeError(`entity` + " is not a Sense or Synset. Try " + `entity` + "[0] instead.")
else:
raise TypeError(`entity` + " is not a Sense or Synset")
def tree(source, pointerType):
"""
>>> dog = N['dog'][0]
>>> from pprint import pprint
>>> pprint(tree(dog, HYPERNYM))
['dog' in {noun: dog, domestic dog, Canis familiaris},
[{noun: canine, canid},
[{noun: carnivore},
[{noun: placental, placental mammal, eutherian, eutherian mammal},
[{noun: mammal},
[{noun: vertebrate, craniate},
[{noun: chordate},
[{noun: animal, animate being, beast, brute, creature, fauna},
[{noun: organism, being},
[{noun: living thing, animate thing},
[{noun: object, physical object}, [{noun: entity}]]]]]]]]]]]]
>>> #pprint(tree(dog, HYPONYM)) # too verbose to include here
"""
if isinstance(source, Word):
return map(lambda s, t=pointerType:tree(s,t), source.getSenses())
_requireSource(source)
return [source] + map(lambda s, t=pointerType:tree(s,t), source.pointerTargets(pointerType))
def closure(source, pointerType, accumulator=None):
"""Return the transitive closure of source under the pointerType
relationship. If source is a Word, return the union of the
closures of its senses.
>>> dog = N['dog'][0]
>>> closure(dog, HYPERNYM)
['dog' in {noun: dog, domestic dog, Canis familiaris}, {noun: canine, canid}, {noun: carnivore}, {noun: placental, placental mammal, eutherian, eutherian mammal}, {noun: mammal}, {noun: vertebrate, craniate}, {noun: chordate}, {noun: animal, animate being, beast, brute, creature, fauna}, {noun: organism, being}, {noun: living thing, animate thing}, {noun: object, physical object}, {noun: entity}]
"""
if isinstance(source, Word):
return reduce(union, map(lambda s, t=pointerType:tree(s,t), source.getSenses()))
_requireSource(source)
if accumulator is None:
accumulator = []
if source not in accumulator:
accumulator.append(source)
for target in source.pointerTargets(pointerType):
closure(target, pointerType, accumulator)
return accumulator
def hyponyms(source):
"""Return source and its hyponyms. If source is a Word, return
the union of the hyponyms of its senses."""
return closure(source, HYPONYM)
def hypernyms(source):
"""Return source and its hypernyms. If source is a Word, return
the union of the hypernyms of its senses."""
return closure(source, HYPERNYM)
def meet(a, b, pointerType=HYPERNYM):
"""Return the meet of a and b under the pointerType relationship.
>>> meet(N['dog'][0], N['cat'][0])
{noun: carnivore}
>>> meet(N['dog'][0], N['person'][0])
{noun: organism, being}
>>> meet(N['thought'][0], N['belief'][0])
{noun: content, cognitive content, mental object}
"""
return (intersection(closure(a, pointerType), closure(b, pointerType)) + [None])[0]
#
# String Utility Functions
#
def startsWith(str, prefix):
"""Return true iff _str_ starts with _prefix_.
>>> startsWith('unclear', 'un')
1
"""
return str[:len(prefix)] == prefix
def endsWith(str, suffix):
"""Return true iff _str_ ends with _suffix_.
>>> endsWith('clearly', 'ly')
1
"""
return str[-len(suffix):] == suffix
def equalsIgnoreCase(a, b):
"""Return true iff a and b have the same lowercase representation.
>>> equalsIgnoreCase('dog', 'Dog')
1
>>> equalsIgnoreCase('dOg', 'DOG')
1
"""
# test a == b first as an optimization where they're equal
return a == b or string.lower(a) == string.lower(b)
#
# Sequence Utility Functions
#
def issequence(item):
"""Return true iff _item_ is a Sequence (a List, String, or Tuple).
>>> issequence((1,2))
1
>>> issequence([1,2])
1
>>> issequence('12')
1
>>> issequence(1)
0
"""
return type(item) in (ListType, StringType, TupleType)
def intersection(u, v):
"""Return the intersection of _u_ and _v_.
>>> intersection((1,2,3), (2,3,4))
[2, 3]
"""
w = []
for e in u:
if e in v:
w.append(e)
return w
def union(u, v):
"""Return the union of _u_ and _v_.
>>> union((1,2,3), (2,3,4))
[1, 2, 3, 4]
"""
w = list(u)
if w is u:
import copy
w = copy.copy(w)
for e in v:
if e not in w:
w.append(e)
return w
def product(u, v):
"""Return the Cartesian product of u and v.
>>> product("123", "abc")
[('1', 'a'), ('1', 'b'), ('1', 'c'), ('2', 'a'), ('2', 'b'), ('2', 'c'), ('3', 'a'), ('3', 'b'), ('3', 'c')]
"""
return flatten1(map(lambda a, v=v:map(lambda b, a=a:(a,b), v), u))
def removeDuplicates(sequence):
"""Return a copy of _sequence_ with equal items removed.
>>> removeDuplicates("this is a test")
['t', 'h', 'i', 's', ' ', 'a', 'e']
>>> removeDuplicates(map(lambda tuple:apply(meet, tuple), product(N['story'].getSenses(), N['joke'].getSenses())))
[{noun: message, content, subject matter, substance}, None, {noun: abstraction}, {noun: communication}]
"""
accumulator = []
for item in sequence:
if item not in accumulator:
accumulator.append(item)
return accumulator
#
# Tree Utility Functions
#
def flatten1(sequence):
accumulator = []
for item in sequence:
if type(item) == TupleType:
item = list(item)
if type(item) == ListType:
accumulator.extend(item)
else:
accumulator.append(item)
return accumulator
#
# WordNet utilities
#
GET_INDEX_SUBSTITUTIONS = ((' ', '-'), ('-', ' '), ('-', ''), (' ', ''), ('.', ''))
def getIndex(form, pos='noun'):
"""Search for _form_ in the index file corresponding to
_pos_. getIndex applies to _form_ an algorithm that replaces
underscores with hyphens, hyphens with underscores, removes
hyphens and underscores, and removes periods in an attempt to find
a form of the string that is an exact match for an entry in the
index file corresponding to _pos_. getWord() is called on each
transformed string until a match is found or all the different
strings have been tried. It returns a Word or None."""
def trySubstitutions(trySubstitutions, form, substitutions, lookup=1, dictionary=dictionaryFor(pos)):
if lookup and dictionary.has_key(form):
return dictionary[form]
elif substitutions:
(old, new) = substitutions[0]
substitute = string.replace(form, old, new) and substitute != form
if substitute and dictionary.has_key(substitute):
return dictionary[substitute]
return trySubstitutions(trySubstitutions, form, substitutions[1:], lookup=0) or \
(substitute and trySubstitutions(trySubstitutions, substitute, substitutions[1:]))
return trySubstitutions(returnMatch, form, GET_INDEX_SUBSTITUTIONS)
MORPHOLOGICAL_SUBSTITUTIONS = {
NOUN:
[('s', ''),
('ses', 's'),
('ves', 'f'),
('xes', 'x'),
('zes', 'z'),
('ches', 'ch'),
('shes', 'sh'),
('men', 'man'),
('ies', 'y')],
VERB:
[('s', ''),
('ies', 'y'),
('es', 'e'),
('es', ''),
('ed', 'e'),
('ed', ''),
('ing', 'e'),
('ing', '')],
ADJECTIVE:
[('er', ''),
('est', ''),
('er', 'e'),
('est', 'e')],
ADVERB: []}
def morphy(form, pos='noun', collect=0):
"""Recursively uninflect _form_, and return the first form found
in the dictionary. If _collect_ is true, a sequence of all forms
is returned, instead of just the first one.
>>> morphy('dogs')
'dog'
>>> morphy('churches')
'church'
>>> morphy('aardwolves')
'aardwolf'
>>> morphy('abaci')
'abacus'
>>> morphy('hardrock', 'adv')
"""
from wordnet import _normalizePOS, _dictionaryFor
pos = _normalizePOS(pos)
fname = os.path.join(WNSEARCHDIR, {NOUN: 'noun', VERB: 'verb', ADJECTIVE: 'adj', ADVERB: 'adv'}[pos] + '.exc')
excfile = open(fname)
substitutions = MORPHOLOGICAL_SUBSTITUTIONS[pos]
def trySubstitutions(trySubstitutions, # workaround for lack of nested closures in Python < 2.1
form, # reduced form
substitutions, # remaining substitutions
lookup=1,
dictionary=_dictionaryFor(pos),
excfile=excfile,
collect=collect,
collection=[]):
import string
exceptions = binarySearchFile(excfile, form)
if exceptions:
form = exceptions[string.find(exceptions, ' ')+1:-1]
if lookup and dictionary.has_key(form):
if collect:
collection.append(form)
else:
return form
elif substitutions:
old, new = substitutions[0]
substitutions = substitutions[1:]
substitute = None
if endsWith(form, old):
substitute = form[:-len(old)] + new
#if dictionary.has_key(substitute):
# return substitute
form = trySubstitutions(trySubstitutions, form, substitutions) or \
(substitute and trySubstitutions(trySubstitutions, substitute, substitutions))
return (collect and collection) or form
elif collect:
return collection
return trySubstitutions(trySubstitutions, form, substitutions)
#
# Testing
#
def _test(reset=0):
import doctest, wntools
if reset:
doctest.master = None # This keeps doctest from complaining after a reload.
return doctest.testmod(wntools)
|