1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
#### PATTERN | ES ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2012 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# Spanish linguistical tools using fast regular expressions.
import os
import sys
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))
# Import parser base classes.
from pattern.text import (
Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
PUNCTUATION
)
# Import parser universal tagset.
from pattern.text import (
penntreebank2universal,
PTB, PENN, UNIVERSAL,
NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X
)
# Import parse tree base classes.
from pattern.text.tree import (
Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import spelling base class.
from pattern.text import (
Spelling
)
# Import verb tenses.
from pattern.text import (
INFINITIVE, PRESENT, PAST, FUTURE, CONDITIONAL,
FIRST, SECOND, THIRD,
SINGULAR, PLURAL, SG, PL,
INDICATIVE, IMPERATIVE, SUBJUNCTIVE,
IMPERFECTIVE, PERFECTIVE, PROGRESSIVE,
IMPERFECT, PRETERITE,
PARTICIPLE, GERUND
)
# Import inflection functions.
from pattern.text.es.inflect import (
article, referenced, DEFINITE, INDEFINITE,
MASCULINE, MALE, FEMININE, FEMALE, NEUTER, NEUTRAL, PLURAL, M, F, N, PL,
pluralize, singularize, NOUN, VERB, ADJECTIVE,
verbs, conjugate, lemma, lexeme, tenses,
predicative, attributive
)
# Import all submodules.
from pattern.text.es import inflect
sys.path.pop(0)
#--- SPANISH PARSER --------------------------------------------------------------------------------
# The Spanish parser (accuracy 92%) is based on the Spanish portion Wikicorpus v.1.0 (FDL license),
# using 1.5M words from the tagged sections 10000-15000.
# Samuel Reese, Gemma Boleda, Montse Cuadros, Lluís Padró, German Rigau.
# Wikicorpus: A Word-Sense Disambiguated Multilingual Wikipedia Corpus.
# Proceedings of 7th Language Resources and Evaluation Conference (LREC'10),
# La Valleta, Malta. May, 2010.
# http://www.lsi.upc.edu/~nlp/wikicorpus/
# The lexicon uses the Parole tagset:
# http://www.lsi.upc.edu/~nlp/SVMTool/parole.html
# http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
PAROLE = "parole"
parole = {
"AO": "JJ", # primera
"AQ": "JJ", # absurdo
"CC": "CC", # e
"CS": "IN", # porque
"DA": "DT", # el
"DD": "DT", # ese
"DI": "DT", # mucha
"DP": "PRP$", # mi, nuestra
"DT": "DT", # cuántos
"Fa": ".", # !
"Fc": ",", # ,
"Fd": ":", # :
"Fe": "\"", # "
"Fg": ".", # -
"Fh": ".", # /
"Fi": ".", # ?
"Fp": ".", # .
"Fr": ".", # >>
"Fs": ".", # ...
"Fpa": "(", # (
"Fpt": ")", # )
"Fx": ".", # ;
"Fz": ".", #
"I": "UH", # ehm
"NC": "NN", # islam
"NCS": "NN", # guitarra
"NCP": "NNS", # guitarras
"NP": "NNP", # Óscar
"P0": "PRP", # se
"PD": "DT", # ése
"PI": "DT", # uno
"PP": "PRP", # vos
"PR": "WP$", # qué
"PT": "WP$", # qué
"PX": "PRP$", # mío
"RG": "RB", # tecnológicamente
"RN": "RB", # no
"SP": "IN", # por
"VAG": "VBG", # habiendo
"VAI": "MD", # había
"VAN": "MD", # haber
"VAS": "MD", # haya
"VMG": "VBG", # habiendo
"VMI": "VB", # habemos
"VMM": "VB", # compare
"VMN": "VB", # comparecer
"VMP": "VBN", # comparando
"VMS": "VB", # compararan
"VSG": "VBG", # comparando
"VSI": "VB", # será
"VSN": "VB", # ser
"VSP": "VBN", # sido
"VSS": "VB", # sea
"W": "NN", # septiembre
"Z": "CD", # 1,7
"Zd": "CD", # 1,7
"Zm": "CD", # £1,7
"Zp": "CD", # 1,7%
}
def parole2penntreebank(token, tag):
""" Converts a Parole tag to a Penn Treebank II tag.
For example: importantísimo/AQ => importantísimo/ADJ
"""
return (token, parole.get(tag, tag))
def parole2universal(token, tag):
""" Converts a Parole tag to a universal tag.
For example: importantísimo/AQ => importantísimo/ADJ
"""
if tag == "CS":
return (token, CONJ)
if tag == "DP":
return (token, DET)
if tag in ("P0", "PD", "PI", "PP", "PR", "PT", "PX"):
return (token, PRON)
return penntreebank2universal(*parole2penntreebank(token, tag))
ABBREVIATIONS = set((
u"a.C.", u"a.m.", u"apdo.", u"aprox.", u"Av.", u"Avda.", u"c.c.", u"D.", u"Da.", u"d.C.",
u"d.j.C.", u"dna.", u"Dr.", u"Dra.", u"esq.", u"etc.", u"Gob.", u"h.", u"m.n.", u"no.",
u"núm.", u"pág.", u"P.D.", u"P.S.", u"p.ej.", u"p.m.", u"Profa.", u"q.e.p.d.", u"S.A.",
u"S.L.", u"Sr.", u"Sra.", u"Srta.", u"s.s.s.", u"tel.", u"Ud.", u"Vd.", u"Uds.", u"Vds.",
u"v.", u"vol.", u"W.C."
))
def find_lemmata(tokens):
""" Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list.
"""
for token in tokens:
word, pos, lemma = token[0], token[1], token[0]
if pos.startswith(("DT",)):
lemma = singularize(word, pos="DT")
if pos.startswith(("JJ",)):
lemma = predicative(word)
if pos == "NNS":
lemma = singularize(word)
if pos.startswith(("VB", "MD")):
lemma = conjugate(word, INFINITIVE) or word
token.append(lemma.lower())
return tokens
class Parser(_Parser):
def find_tokens(self, tokens, **kwargs):
kwargs.setdefault("abbreviations", ABBREVIATIONS)
kwargs.setdefault("replace", {})
return _Parser.find_tokens(self, tokens, **kwargs)
def find_lemmata(self, tokens, **kwargs):
return find_lemmata(tokens)
def find_tags(self, tokens, **kwargs):
if kwargs.get("tagset") in (PENN, None):
kwargs.setdefault("map", lambda token, tag: parole2penntreebank(token, tag))
if kwargs.get("tagset") == UNIVERSAL:
kwargs.setdefault("map", lambda token, tag: parole2universal(token, tag))
if kwargs.get("tagset") is PAROLE:
kwargs.setdefault("map", lambda token, tag: (token, tag))
return _Parser.find_tags(self, tokens, **kwargs)
parser = Parser(
lexicon = os.path.join(MODULE, "es-lexicon.txt"),
frequency = os.path.join(MODULE, "es-frequency.txt"),
morphology = os.path.join(MODULE, "es-morphology.txt"),
context = os.path.join(MODULE, "es-context.txt"),
default = ("NCS", "NP", "Z"),
language = "es"
)
lexicon = parser.lexicon # Expose lexicon.
spelling = Spelling(
path = os.path.join(MODULE, "es-spelling.txt")
)
def tokenize(s, *args, **kwargs):
""" Returns a list of sentences, where punctuation marks have been split from words.
"""
return parser.find_tokens(s, *args, **kwargs)
def parse(s, *args, **kwargs):
""" Returns a tagged Unicode string.
"""
return parser.parse(s, *args, **kwargs)
def parsetree(s, *args, **kwargs):
""" Returns a parsed Text from the given string.
"""
return Text(parse(s, *args, **kwargs))
def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
""" Returns a parsed Text from the given parsed string.
"""
return Text(s, token)
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
""" Returns a list of (token, tag)-tuples from the given string.
"""
tags = []
for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
for token in sentence:
tags.append((token[0], token[1]))
return tags
def keywords(s, top=10, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return parser.find_keywords(s, **dict({
"frequency": parser.frequency,
"top": top,
"pos": ("NN",),
"ignore": ("rt",)}, **kwargs))
def suggest(w):
""" Returns a list of (word, confidence)-tuples of spelling corrections.
"""
return spelling.suggest(w)
split = tree # Backwards compatibility.
#---------------------------------------------------------------------------------------------------
# python -m pattern.es xml -s "A quien se hace de miel las moscas le comen." -OTCL
if __name__ == "__main__":
commandline(parse)
|