File: __init__.py

package info (click to toggle)
python-pattern 2.6%2Bgit20150109-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,672 kB
  • sloc: python: 53,865; xml: 11,965; ansic: 2,318; makefile: 94
file content (264 lines) | stat: -rw-r--r-- 8,726 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
#### PATTERN | ES ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2012 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern

####################################################################################################
# Spanish linguistical tools using fast regular expressions.

import os
import sys

try:
    MODULE = os.path.dirname(os.path.realpath(__file__))
except:
    MODULE = ""

sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))

# Import parser base classes.
from pattern.text import (
    Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
    PUNCTUATION
)
# Import parser universal tagset.
from pattern.text import (
    penntreebank2universal,
    PTB, PENN, UNIVERSAL,
    NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X
)
# Import parse tree base classes.
from pattern.text.tree import (
    Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
    SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import spelling base class.
from pattern.text import (
    Spelling
)
# Import verb tenses.
from pattern.text import (
    INFINITIVE, PRESENT, PAST, FUTURE, CONDITIONAL,
    FIRST, SECOND, THIRD,
    SINGULAR, PLURAL, SG, PL,
    INDICATIVE, IMPERATIVE, SUBJUNCTIVE,
    IMPERFECTIVE, PERFECTIVE, PROGRESSIVE,
    IMPERFECT, PRETERITE,
    PARTICIPLE, GERUND
)
# Import inflection functions.
from pattern.text.es.inflect import (
    article, referenced, DEFINITE, INDEFINITE,
    MASCULINE, MALE, FEMININE, FEMALE, NEUTER, NEUTRAL, PLURAL, M, F, N, PL,
    pluralize, singularize, NOUN, VERB, ADJECTIVE,
    verbs, conjugate, lemma, lexeme, tenses,
    predicative, attributive
)
# Import all submodules.
from pattern.text.es import inflect

sys.path.pop(0)

#--- SPANISH PARSER --------------------------------------------------------------------------------
# The Spanish parser (accuracy 92%) is based on the Spanish portion Wikicorpus v.1.0 (FDL license),
# using 1.5M words from the tagged sections 10000-15000.
# Samuel Reese, Gemma Boleda, Montse Cuadros, Lluís Padró, German Rigau. 
# Wikicorpus: A Word-Sense Disambiguated Multilingual Wikipedia Corpus. 
# Proceedings of 7th Language Resources and Evaluation Conference (LREC'10), 
# La Valleta, Malta. May, 2010. 
# http://www.lsi.upc.edu/~nlp/wikicorpus/

# The lexicon uses the Parole tagset:
# http://www.lsi.upc.edu/~nlp/SVMTool/parole.html
# http://nlp.lsi.upc.edu/freeling/doc/tagsets/tagset-es.html
PAROLE = "parole"
parole = {
    "AO": "JJ",   # primera
    "AQ": "JJ",   # absurdo
    "CC": "CC",   # e
    "CS": "IN",   # porque
    "DA": "DT",   # el
    "DD": "DT",   # ese
    "DI": "DT",   # mucha
    "DP": "PRP$", # mi, nuestra
    "DT": "DT",   # cuántos
    "Fa": ".",    # !
    "Fc": ",",    # ,
    "Fd": ":",    # :
    "Fe": "\"",   # "
    "Fg": ".",    # -
    "Fh": ".",    # /
    "Fi": ".",    # ?
    "Fp": ".",    # .
    "Fr": ".",    # >>
    "Fs": ".",    # ...
   "Fpa": "(",    # (
   "Fpt": ")",    # )
    "Fx": ".",    # ;
    "Fz": ".",    # 
     "I": "UH",   # ehm
    "NC": "NN",   # islam
   "NCS": "NN",   # guitarra
   "NCP": "NNS",  # guitarras
    "NP": "NNP",  # Óscar
    "P0": "PRP",  # se
    "PD": "DT",   # ése
    "PI": "DT",   # uno
    "PP": "PRP",  # vos
    "PR": "WP$",  # qué
    "PT": "WP$",  # qué
    "PX": "PRP$", # mío
    "RG": "RB",   # tecnológicamente
    "RN": "RB",   # no
    "SP": "IN",   # por
   "VAG": "VBG",  # habiendo
   "VAI": "MD",   # había
   "VAN": "MD",   # haber
   "VAS": "MD",   # haya
   "VMG": "VBG",  # habiendo
   "VMI": "VB",   # habemos
   "VMM": "VB",   # compare
   "VMN": "VB",   # comparecer
   "VMP": "VBN",  # comparando
   "VMS": "VB",   # compararan
   "VSG": "VBG",  # comparando
   "VSI": "VB",   # será
   "VSN": "VB",   # ser
   "VSP": "VBN",  # sido
   "VSS": "VB",   # sea
     "W": "NN",   # septiembre
     "Z": "CD",   # 1,7
    "Zd": "CD",   # 1,7
    "Zm": "CD",   # £1,7
    "Zp": "CD",   # 1,7%
}

def parole2penntreebank(token, tag):
    """ Converts a Parole tag to a Penn Treebank II tag.
        For example: importantísimo/AQ => importantísimo/ADJ
    """
    return (token, parole.get(tag, tag))

def parole2universal(token, tag):
    """ Converts a Parole tag to a universal tag.
        For example: importantísimo/AQ => importantísimo/ADJ
    """
    if tag == "CS":
        return (token, CONJ)
    if tag == "DP":
        return (token, DET)
    if tag in ("P0", "PD", "PI", "PP", "PR", "PT", "PX"):
        return (token, PRON)
    return penntreebank2universal(*parole2penntreebank(token, tag))

ABBREVIATIONS = set((
    u"a.C.", u"a.m.", u"apdo.", u"aprox.", u"Av.", u"Avda.", u"c.c.", u"D.", u"Da.", u"d.C.", 
    u"d.j.C.", u"dna.", u"Dr.", u"Dra.", u"esq.", u"etc.", u"Gob.", u"h.", u"m.n.", u"no.", 
    u"núm.", u"pág.", u"P.D.", u"P.S.", u"p.ej.", u"p.m.", u"Profa.", u"q.e.p.d.", u"S.A.", 
    u"S.L.", u"Sr.", u"Sra.", u"Srta.", u"s.s.s.", u"tel.", u"Ud.", u"Vd.", u"Uds.", u"Vds.", 
    u"v.", u"vol.", u"W.C."
))

def find_lemmata(tokens):
    """ Annotates the tokens with lemmata for plural nouns and conjugated verbs,
        where each token is a [word, part-of-speech] list.
    """
    for token in tokens:
        word, pos, lemma = token[0], token[1], token[0]
        if pos.startswith(("DT",)):
            lemma = singularize(word, pos="DT")
        if pos.startswith(("JJ",)):
            lemma = predicative(word)
        if pos == "NNS":
            lemma = singularize(word)
        if pos.startswith(("VB", "MD")):
            lemma = conjugate(word, INFINITIVE) or word
        token.append(lemma.lower())
    return tokens
    
class Parser(_Parser):

    def find_tokens(self, tokens, **kwargs):
        kwargs.setdefault("abbreviations", ABBREVIATIONS)
        kwargs.setdefault("replace", {})
        return _Parser.find_tokens(self, tokens, **kwargs)

    def find_lemmata(self, tokens, **kwargs):
        return find_lemmata(tokens)

    def find_tags(self, tokens, **kwargs):
        if kwargs.get("tagset") in (PENN, None):
            kwargs.setdefault("map", lambda token, tag: parole2penntreebank(token, tag))
        if kwargs.get("tagset") == UNIVERSAL:
            kwargs.setdefault("map", lambda token, tag: parole2universal(token, tag))
        if kwargs.get("tagset") is PAROLE:
            kwargs.setdefault("map", lambda token, tag: (token, tag))
        return _Parser.find_tags(self, tokens, **kwargs)

parser = Parser(
     lexicon = os.path.join(MODULE, "es-lexicon.txt"),
   frequency = os.path.join(MODULE, "es-frequency.txt"),
  morphology = os.path.join(MODULE, "es-morphology.txt"),
     context = os.path.join(MODULE, "es-context.txt"),
     default = ("NCS", "NP", "Z"),
    language = "es"
)

lexicon = parser.lexicon # Expose lexicon.

spelling = Spelling(
        path = os.path.join(MODULE, "es-spelling.txt")
)

def tokenize(s, *args, **kwargs):
    """ Returns a list of sentences, where punctuation marks have been split from words.
    """
    return parser.find_tokens(s, *args, **kwargs)

def parse(s, *args, **kwargs):
    """ Returns a tagged Unicode string.
    """
    return parser.parse(s, *args, **kwargs)

def parsetree(s, *args, **kwargs):
    """ Returns a parsed Text from the given string.
    """
    return Text(parse(s, *args, **kwargs))

def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
    """ Returns a parsed Text from the given parsed string.
    """
    return Text(s, token)
    
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
    """ Returns a list of (token, tag)-tuples from the given string.
    """
    tags = []
    for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
        for token in sentence:
            tags.append((token[0], token[1]))
    return tags

def keywords(s, top=10, **kwargs):
    """ Returns a sorted list of keywords in the given string.
    """
    return parser.find_keywords(s, **dict({
        "frequency": parser.frequency,
              "top": top,
              "pos": ("NN",),
           "ignore": ("rt",)}, **kwargs))

def suggest(w):
    """ Returns a list of (word, confidence)-tuples of spelling corrections.
    """
    return spelling.suggest(w)

split = tree # Backwards compatibility.

#---------------------------------------------------------------------------------------------------
# python -m pattern.es xml -s "A quien se hace de miel las moscas le comen." -OTCL

if __name__ == "__main__":
    commandline(parse)