File: __init__.py

package info (click to toggle)
python-pattern 2.6%2Bgit20150109-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,672 kB
  • sloc: python: 53,865; xml: 11,965; ansic: 2,318; makefile: 94
file content (262 lines) | stat: -rw-r--r-- 9,083 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#### PATTERN | FR ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2013 University of Antwerp, Belgium
# Copyright (c) 2013 St. Lucas University College of Art & Design, Antwerp.
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern

####################################################################################################
# French linguistical tools using fast regular expressions.

import os
import sys

try:
    MODULE = os.path.dirname(os.path.realpath(__file__))
except:
    MODULE = ""

sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))

# Import parser base classes.
from pattern.text import (
    Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
    PUNCTUATION
)
# Import parser universal tagset.
from pattern.text import (
    penntreebank2universal as _penntreebank2universal,
    PTB, PENN, UNIVERSAL,
    NOUN, VERB, ADJ, ADV, PRON, DET, PREP, ADP, NUM, CONJ, INTJ, PRT, PUNC, X
)
# Import parse tree base classes.
from pattern.text.tree import (
    Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
    SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import sentiment analysis base classes.
from pattern.text import (
    Sentiment as _Sentiment,
    NOUN, VERB, ADJECTIVE, ADVERB,
    MOOD, IRONY
)
# Import spelling base class.
from pattern.text import (
    Spelling
)
# Import verb tenses.
from pattern.text import (
    INFINITIVE, PRESENT, PAST, FUTURE,
    FIRST, SECOND, THIRD,
    SINGULAR, PLURAL, SG, PL,
    INDICATIVE, IMPERATIVE, SUBJUNCTIVE, CONDITIONAL,
    IMPERFECTIVE, PERFECTIVE, PROGRESSIVE,
    IMPERFECT, PRETERITE,
    PARTICIPLE, GERUND
)
# Import inflection functions.
from pattern.text.fr.inflect import (
    pluralize, singularize, NOUN, VERB, ADJECTIVE,
    verbs, conjugate, lemma, lexeme, tenses,
    predicative, attributive
)
# Import all submodules.
from pattern.text.fr import inflect

sys.path.pop(0)

#--- FRENCH PARSER ---------------------------------------------------------------------------------
# The French parser is based on Lefff (Lexique des Formes Fléchies du Français).
# Benoît Sagot, Lionel Clément, Érice Villemonte de la Clergerie, Pierre Boullier.
# The Lefff 2 syntactic lexicon for French: architecture, acquisition.
# http://alpage.inria.fr/~sagot/lefff-en.html

# For words in Lefff that can have different part-of-speech tags,
# we used Lexique to find the most frequent POS-tag:
# http://www.lexique.org/

_subordinating_conjunctions = set((
    "afin", "comme", "lorsque", "parce", "puisque", "quand", "que", "quoique", "si"
))

def penntreebank2universal(token, tag):
    """ Converts a Penn Treebank II tag to a universal tag.
        For example: comme/IN => comme/CONJ
    """
    if tag == "IN" and token.lower() in _subordinating_conjunctions:
        return CONJ
    return _penntreebank2universal(token, tag)

ABBREVIATIONS = set((
    u"av.", u"boul.", u"C.-B.", u"c.-à-d.", u"ex.", u"éd.", u"fig.", u"I.-P.-E.", u"J.-C.", 
    u"Ltee.", u"Ltée.", u"M.", u"Me.","Mlle.", u"Mlles.", u"MM.", u"N.-B.", u"N.-É.", u"p.", 
    u"S.B.E.", u"Ste.", u"T.-N.", u"t.a.b."
))

# While contractions in English are optional, 
# they are required in French:
replacements = {
       "l'": "l' ",  # le/la
       "c'": "c' ",  # ce
       "d'": "d' ",  # de
       "j'": "j' ",  # je
       "m'": "m' ",  # me
       "n'": "n' ",  # ne
      "qu'": "qu' ", # que
       "s'": "s' ",  # se
       "t'": "t' ",  # te
   "jusqu'": "jusqu' ",
  "lorsqu'": "lorsqu' ",
  "puisqu'": "puisqu' ",
    # Same rule for Unicode apostrophe, see also Parser.find_tokens():
    ur"(l|c|d|j|m|n|qu|s|t|jusqu|lorsqu|puisqu)’": u"\\1&rsquo; "
}
replacements.update(((k.upper(), v.upper()) for k, v in replacements.items()))

def find_lemmata(tokens):
    """ Annotates the tokens with lemmata for plural nouns and conjugated verbs,
        where each token is a [word, part-of-speech] list.
    """
    for token in tokens:
        word, pos, lemma = token[0], token[1], token[0]
        if pos.startswith(("DT", "PR", "WP")):
            lemma = singularize(word, pos=pos)
        if pos.startswith(("RB", "IN")) and (word.endswith(("'", u"’")) or word == "du"):
            lemma = singularize(word, pos=pos)
        if pos.startswith(("JJ",)):
            lemma = predicative(word)
        if pos == "NNS":
            lemma = singularize(word)
        if pos.startswith(("VB", "MD")):
            lemma = conjugate(word, INFINITIVE) or word
        token.append(lemma.lower())
    return tokens

class Parser(_Parser):

    def find_tokens(self, tokens, **kwargs):
        kwargs.setdefault("abbreviations", ABBREVIATIONS)
        kwargs.setdefault("replace", replacements)
        s = _Parser.find_tokens(self, tokens, **kwargs)
        s = [s.replace("&rsquo ;", u"’") if isinstance(s, unicode) else s for s in s]
        return s

    def find_lemmata(self, tokens, **kwargs):
        return find_lemmata(tokens)
        
    def find_tags(self, tokens, **kwargs):
        if kwargs.get("tagset") in (PENN, None):
            kwargs.setdefault("map", lambda token, tag: (token, tag))
        if kwargs.get("tagset") == UNIVERSAL:
            kwargs.setdefault("map", lambda token, tag: penntreebank2universal(token, tag))
        return _Parser.find_tags(self, tokens, **kwargs)

class Sentiment(_Sentiment):
    
    def load(self, path=None):
        _Sentiment.load(self, path)
        # Map "précaire" to "precaire" (without diacritics, +1% accuracy).
        if not path:
            for w, pos in dict.items(self):
                w0 = w
                if not w.endswith((u"à", u"è", u"é", u"ê", u"ï")):
                    w = w.replace(u"à", "a")
                    w = w.replace(u"é", "e")
                    w = w.replace(u"è", "e")
                    w = w.replace(u"ê", "e")
                    w = w.replace(u"ï", "i")
                if w != w0:
                    for pos, (p, s, i) in pos.items():
                        self.annotate(w, pos, p, s, i)

parser = Parser(
     lexicon = os.path.join(MODULE, "fr-lexicon.txt"),
   frequency = os.path.join(MODULE, "fr-frequency.txt"),
  morphology = os.path.join(MODULE, "fr-morphology.txt"), 
     context = os.path.join(MODULE, "fr-context.txt"),
     default = ("NN", "NNP", "CD"),
    language = "fr"
)

lexicon = parser.lexicon # Expose lexicon.

sentiment = Sentiment(
        path = os.path.join(MODULE, "fr-sentiment.xml"), 
      synset = None,
   negations = ("n'", "ne", "ni", "non", "pas", "rien", "sans", "aucun", "jamais"),
   modifiers = ("RB",),
   modifier  = lambda w: w.endswith("ment"),
   tokenizer = parser.find_tokens,
    language = "fr"
)

spelling = Spelling(
        path = os.path.join(MODULE, "fr-spelling.txt")
)

def tokenize(s, *args, **kwargs):
    """ Returns a list of sentences, where punctuation marks have been split from words.
    """
    return parser.find_tokens(s, *args, **kwargs)

def parse(s, *args, **kwargs):
    """ Returns a tagged Unicode string.
    """
    return parser.parse(s, *args, **kwargs)

def parsetree(s, *args, **kwargs):
    """ Returns a parsed Text from the given string.
    """
    return Text(parse(s, *args, **kwargs))

def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
    """ Returns a parsed Text from the given parsed string.
    """
    return Text(s, token)
    
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
    """ Returns a list of (token, tag)-tuples from the given string.
    """
    tags = []
    for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
        for token in sentence:
            tags.append((token[0], token[1]))
    return tags
    
def keywords(s, top=10, **kwargs):
    """ Returns a sorted list of keywords in the given string.
    """
    return parser.find_keywords(s, **dict({
        "frequency": parser.frequency,
              "top": top,
              "pos": ("NN",),
           "ignore": ("rt",)}, **kwargs))

def suggest(w):
    """ Returns a list of (word, confidence)-tuples of spelling corrections.
    """
    return spelling.suggest(w)

def polarity(s, **kwargs):
    """ Returns the sentence polarity (positive/negative) between -1.0 and 1.0.
    """
    return sentiment(s, **kwargs)[0]

def subjectivity(s, **kwargs):
    """ Returns the sentence subjectivity (objective/subjective) between 0.0 and 1.0.
    """
    return sentiment(s, **kwargs)[1]

def positive(s, threshold=0.1, **kwargs):
    """ Returns True if the given sentence has a positive sentiment (polarity >= threshold).
    """
    return polarity(s, **kwargs) >= threshold

split = tree # Backwards compatibility.

#---------------------------------------------------------------------------------------------------
# python -m pattern.fr xml -s "C'est l'exception qui confirme la règle." -OTCL

if __name__ == "__main__":
    commandline(parse)