1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089
|
#### PATTERN | TEXT | PATTERN MATCHING #############################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
import re
import itertools
#--- TEXT, SENTENCE AND WORD -----------------------------------------------------------------------
# The search() and match() functions work on Text, Sentence and Word objects (see pattern.text.tree),
# i.e., the parse tree including part-of-speech tags and phrase chunk tags.
# The pattern.text.search Match object will contain matched Word objects,
# emulated with the following classes if the original input was a plain string:
PUNCTUATION = ".,;:!?()[]{}`'\"@#$^&*+-|=~_"
RE_PUNCTUATION = "|".join(map(re.escape, PUNCTUATION))
RE_PUNCTUATION = re.compile("(%s)" % RE_PUNCTUATION)
class Text(list):
def __init__(self, string="", token=["word"]):
""" A list of sentences, where each sentence is separated by a period.
"""
list.__init__(self, (Sentence(s + ".", token) for s in string.split(".")))
@property
def sentences(self):
return self
@property
def words(self):
return list(chain(*self))
class Sentence(list):
def __init__(self, string="", token=["word"]):
""" A list of words, where punctuation marks are split from words.
"""
s = RE_PUNCTUATION.sub(" \\1 ", string) # Naive tokenization.
s = re.sub(r"\s+", " ", s)
s = re.sub(r" ' (d|m|s|ll|re|ve)", " '\\1", s)
s = s.replace("n ' t", " n't")
s = s.split(" ")
list.__init__(self, (Word(self, w, index=i) for i, w in enumerate(s)))
@property
def string(self):
return " ".join(w.string for w in self)
@property
def words(self):
return self
@property
def chunks(self):
return []
class Word(object):
def __init__(self, sentence, string, tag=None, index=0):
""" A word with a position in a sentence.
"""
self.sentence, self.string, self.tag, self.index = sentence, string, tag, index
def __repr__(self):
return "Word(%s)" % repr(self.string)
def _get_type(self):
return self.tag
def _set_type(self, v):
self.tag = v
type = property(_get_type, _set_type)
@property
def chunk(self):
return None
@property
def lemma(self):
return None
#--- STRING MATCHING -------------------------------------------------------------------------------
WILDCARD = "*"
regexp = type(re.compile(r"."))
def _match(string, pattern):
""" Returns True if the pattern matches the given word string.
The pattern can include a wildcard (*front, back*, *both*, in*side),
or it can be a compiled regular expression.
"""
p = pattern
try:
if p[:1] == WILDCARD and (p[-1:] == WILDCARD and p[1:-1] in string or string.endswith(p[1:])):
return True
if p[-1:] == WILDCARD and not p[-2:-1] == "\\" and string.startswith(p[:-1]):
return True
if p == string:
return True
if WILDCARD in p[1:-1]:
p = p.split(WILDCARD)
return string.startswith(p[0]) and string.endswith(p[-1])
except:
# For performance, calling isinstance() last is 10% faster for plain strings.
if isinstance(p, regexp):
return p.search(string) is not None
return False
#--- LIST FUNCTIONS --------------------------------------------------------------------------------
# Search patterns can contain optional constraints,
# so we need to find all possible variations of a pattern.
def unique(iterable):
""" Returns a list copy in which each item occurs only once (in-order).
"""
seen = set()
return [x for x in iterable if x not in seen and not seen.add(x)]
def find(function, iterable):
""" Returns the first item in the list for which function(item) is True, None otherwise.
"""
for x in iterable:
if function(x) is True:
return x
def combinations(iterable, n):
# Backwards compatibility.
return product(iterable, repeat=n)
def product(*args, **kwargs):
""" Yields all permutations with replacement:
list(product("cat", repeat=2)) =>
[("c", "c"),
("c", "a"),
("c", "t"),
("a", "c"),
("a", "a"),
("a", "t"),
("t", "c"),
("t", "a"),
("t", "t")]
"""
p = [[]]
for iterable in map(tuple, args) * kwargs.get("repeat", 1):
p = [x + [y] for x in p for y in iterable]
for p in p:
yield tuple(p)
try: from itertools import product
except:
pass
def variations(iterable, optional=lambda x: False):
""" Returns all possible variations of a sequence with optional items.
"""
# For example: variations(["A?", "B?", "C"], optional=lambda s: s.endswith("?"))
# defines a sequence where constraint A and B are optional:
# [("A?", "B?", "C"), ("B?", "C"), ("A?", "C"), ("C")]
iterable = tuple(iterable)
# Create a boolean sequence where True means optional:
# ("A?", "B?", "C") => [True, True, False]
o = [optional(x) for x in iterable]
# Find all permutations of the boolean sequence:
# [True, False, True], [True, False, False], [False, False, True], [False, False, False].
# Map to sequences of constraints whose index in the boolean sequence yields True.
a = set()
for p in product([False, True], repeat=sum(o)):
p = list(p)
v = [b and (b and p.pop(0)) for b in o]
v = tuple(iterable[i] for i in range(len(v)) if not v[i])
a.add(v)
# Longest-first.
return sorted(a, cmp=lambda x, y: len(y) - len(x))
#### TAXONOMY ######################################################################################
#--- ORDERED DICTIONARY ----------------------------------------------------------------------------
# A taxonomy is based on an ordered dictionary
# (i.e., if a taxonomy term has multiple parents, the most recent parent is the default).
class odict(dict):
def __init__(self, items=[]):
""" A dictionary with ordered keys (first-in last-out).
"""
dict.__init__(self)
self._o = [] # List of ordered keys.
if isinstance(items, dict):
items = reversed(items.items())
for k, v in items:
self.__setitem__(k, v)
@classmethod
def fromkeys(cls, keys=[], v=None):
return cls((k, v) for k in keys)
def push(self, kv):
""" Adds a new item from the given (key, value)-tuple.
If the key exists, pushes the updated item to the head of the dict.
"""
if kv[0] in self:
self.__delitem__(kv[0])
self.__setitem__(kv[0], kv[1])
append = push
def __iter__(self):
return reversed(self._o)
def __setitem__(self, k, v):
if k not in self:
self._o.append(k)
dict.__setitem__(self, k, v)
def __delitem__(self, k):
self._o.remove(k)
dict.__delitem__(self, k)
def update(self, d):
for k, v in reversed(d.items()):
self.__setitem__(k, v)
def setdefault(self, k, v=None):
if not k in self:
self.__setitem__(k, v)
return self[k]
def pop(self, k, *args, **kwargs):
if k in self:
self._o.remove(k)
return dict.pop(self, k, *args, **kwargs)
def popitem(self):
k=self._o[-1] if self._o else None; return (k, self.pop(k))
def clear(self):
self._o=[]; dict.clear(self)
def iterkeys(self):
return reversed(self._o)
def itervalues(self):
return itertools.imap(self.__getitem__, reversed(self._o))
def iteritems(self):
return iter(zip(self.iterkeys(), self.itervalues()))
def keys(self):
return list(self.iterkeys())
def values(self):
return list(self.itervalues())
def items(self):
return list(self.iteritems())
def copy(self):
return self.__class__(reversed(self.items()))
def __repr__(self):
return "{%s}" % ", ".join("%s: %s" % (repr(k), repr(v)) for k, v in self.items())
#--- TAXONOMY --------------------------------------------------------------------------------------
class Taxonomy(dict):
def __init__(self):
""" Hierarchical tree of words classified by semantic type.
For example: "rose" and "daffodil" can be classified as "flower":
>>> taxonomy.append("rose", type="flower")
>>> taxonomy.append("daffodil", type="flower")
>>> print(taxonomy.children("flower"))
Taxonomy terms can be used in a Pattern:
FLOWER will match "flower" as well as "rose" and "daffodil".
The taxonomy is case insensitive by default.
"""
self.case_sensitive = False
self._values = {}
self.classifiers = []
def _normalize(self, term):
try:
return not self.case_sensitive and term.lower() or term
except: # Not a string.
return term
def __contains__(self, term):
# Check if the term is in the dictionary.
# If the term is not in the dictionary, check the classifiers.
term = self._normalize(term)
if dict.__contains__(self, term):
return True
for classifier in self.classifiers:
if classifier.parents(term) \
or classifier.children(term):
return True
return False
def append(self, term, type=None, value=None):
""" Appends the given term to the taxonomy and tags it as the given type.
Optionally, a disambiguation value can be supplied.
For example: taxonomy.append("many", "quantity", "50-200")
"""
term = self._normalize(term)
type = self._normalize(type)
self.setdefault(term, (odict(), odict()))[0].push((type, True))
self.setdefault(type, (odict(), odict()))[1].push((term, True))
self._values[term] = value
def classify(self, term, **kwargs):
""" Returns the (most recently added) semantic type for the given term ("many" => "quantity").
If the term is not in the dictionary, try Taxonomy.classifiers.
"""
term = self._normalize(term)
if dict.__contains__(self, term):
return self[term][0].keys()[-1]
# If the term is not in the dictionary, check the classifiers.
# Returns the first term in the list returned by a classifier.
for classifier in self.classifiers:
# **kwargs are useful if the classifier requests extra information,
# for example the part-of-speech tag.
v = classifier.parents(term, **kwargs)
if v:
return v[0]
def parents(self, term, recursive=False, **kwargs):
""" Returns a list of all semantic types for the given term.
If recursive=True, traverses parents up to the root.
"""
def dfs(term, recursive=False, visited={}, **kwargs):
if term in visited: # Break on cyclic relations.
return []
visited[term], a = True, []
if dict.__contains__(self, term):
a = self[term][0].keys()
for classifier in self.classifiers:
a.extend(classifier.parents(term, **kwargs) or [])
if recursive:
for w in a: a += dfs(w, recursive, visited, **kwargs)
return a
return unique(dfs(self._normalize(term), recursive, {}, **kwargs))
def children(self, term, recursive=False, **kwargs):
""" Returns all terms of the given semantic type: "quantity" => ["many", "lot", "few", ...]
If recursive=True, traverses children down to the leaves.
"""
def dfs(term, recursive=False, visited={}, **kwargs):
if term in visited: # Break on cyclic relations.
return []
visited[term], a = True, []
if dict.__contains__(self, term):
a = self[term][1].keys()
for classifier in self.classifiers:
a.extend(classifier.children(term, **kwargs) or [])
if recursive:
for w in a: a += dfs(w, recursive, visited, **kwargs)
return a
return unique(dfs(self._normalize(term), recursive, {}, **kwargs))
def value(self, term, **kwargs):
""" Returns the value of the given term ("many" => "50-200")
"""
term = self._normalize(term)
if term in self._values:
return self._values[term]
for classifier in self.classifiers:
v = classifier.value(term, **kwargs)
if v is not None:
return v
def remove(self, term):
if dict.__contains__(self, term):
for w in self.parents(term):
self[w][1].pop(term)
dict.pop(self, term)
# Global taxonomy:
TAXONOMY = taxonomy = Taxonomy()
#taxonomy.append("rose", type="flower")
#taxonomy.append("daffodil", type="flower")
#taxonomy.append("flower", type="plant")
#print(taxonomy.classify("rose"))
#print(taxonomy.children("plant", recursive=True))
#c = Classifier(parents=lambda term: term.endswith("ness") and ["quality"] or [])
#taxonomy.classifiers.append(c)
#print(taxonomy.classify("roughness"))
#--- TAXONOMY CLASSIFIER ---------------------------------------------------------------------------
class Classifier(object):
def __init__(self, parents=lambda term: [], children=lambda term: [], value=lambda term: None):
""" A classifier uses a rule-based approach to enrich the taxonomy, for example:
c = Classifier(parents=lambda term: term.endswith("ness") and ["quality"] or [])
taxonomy.classifiers.append(c)
This tags any word ending in -ness as "quality".
This is much shorter than manually adding "roughness", "sharpness", ...
Other examples of useful classifiers: calling en.wordnet.Synset.hyponyms() or en.number().
"""
self.parents = parents
self.children = children
self.value = value
# Classifier(parents=lambda word: word.endswith("ness") and ["quality"] or [])
# Classifier(parents=lambda word, chunk=None: chunk=="VP" and [ACTION] or [])
class WordNetClassifier(Classifier):
def __init__(self, wordnet=None):
if wordnet is None:
try: from pattern.en import wordnet
except:
try: from en import wordnet
except:
pass
Classifier.__init__(self, self._parents, self._children)
self.wordnet = wordnet
def _children(self, word, pos="NN"):
try:
return [w.synonyms[0] for w in self.wordnet.synsets(word, pos[:2])[0].hyponyms()]
except:
pass
def _parents(self, word, pos="NN"):
try:
return [w.synonyms[0] for w in self.wordnet.synsets(word, pos[:2])[0].hypernyms()]
except:
pass
#from en import wordnet
#taxonomy.classifiers.append(WordNetClassifier(wordnet))
#print(taxonomy.parents("ponder", pos="VB"))
#print(taxonomy.children("computer"))
#### PATTERN #######################################################################################
#--- PATTERN CONSTRAINT ----------------------------------------------------------------------------
# Allowed chunk, role and part-of-speech tags (Penn Treebank II):
CHUNKS = dict.fromkeys(["NP", "PP", "VP", "ADVP", "ADJP", "SBAR", "PRT", "INTJ"], True)
ROLES = dict.fromkeys(["SBJ", "OBJ", "PRD", "TMP", "CLR", "LOC", "DIR", "EXT", "PRP"], True)
TAGS = dict.fromkeys(["CC", "CD", "CJ", "DT", "EX", "FW", "IN", "JJ", "JJR", "JJS", "JJ*",
"LS", "MD", "NN", "NNS", "NNP", "NNPS", "NN*", "NO", "PDT", "PR",
"PRP", "PRP$", "PR*", "PRP*", "PT", "RB", "RBR", "RBS", "RB*", "RP",
"SYM", "TO", "UH", "VB", "VBZ", "VBP", "VBD", "VBN", "VBG", "VB*",
"WDT", "WP*", "WRB", "X", ".", ",", ":", "(", ")"], True)
ALPHA = re.compile("[a-zA-Z]")
has_alpha = lambda string: ALPHA.match(string) is not None
class Constraint(object):
def __init__(self, words=[], tags=[], chunks=[], roles=[], taxa=[], optional=False, multiple=False, first=False, taxonomy=TAXONOMY, exclude=None, custom=None):
""" A range of words, tags and taxonomy terms that matches certain words in a sentence.
For example:
Constraint.fromstring("with|of") matches either "with" or "of".
Constraint.fromstring("(JJ)") optionally matches an adjective.
Constraint.fromstring("NP|SBJ") matches subject noun phrases.
Constraint.fromstring("QUANTITY|QUALITY") matches quantity-type and quality-type taxa.
"""
self.index = 0
self.words = list(words) # Allowed words/lemmata (of, with, ...)
self.tags = list(tags) # Allowed parts-of-speech (NN, JJ, ...)
self.chunks = list(chunks) # Allowed chunk types (NP, VP, ...)
self.roles = list(roles) # Allowed chunk roles (SBJ, OBJ, ...)
self.taxa = list(taxa) # Allowed word categories.
self.taxonomy = taxonomy
self.optional = optional
self.multiple = multiple
self.first = first
self.exclude = exclude # Constraint of words that are *not* allowed, or None.
self.custom = custom # Custom function(Word) returns True if word matches constraint.
@classmethod
def fromstring(cls, s, **kwargs):
""" Returns a new Constraint from the given string.
Uppercase words indicate either a tag ("NN", "JJ", "VP")
or a taxonomy term (e.g., "PRODUCT", "PERSON").
Syntax:
( defines an optional constraint, e.g., "(JJ)".
[ defines a constraint with spaces, e.g., "[Mac OS X | Windows Vista]".
_ is converted to spaces, e.g., "Windows_Vista".
| separates different options, e.g., "ADJP|ADVP".
! can be used as a word prefix to disallow it.
* can be used as a wildcard character, e.g., "soft*|JJ*".
? as a suffix defines a constraint that is optional, e.g., "JJ?".
+ as a suffix defines a constraint that can span multiple words, e.g., "JJ+".
^ as a prefix defines a constraint that can only match the first word.
These characters need to be escaped if used as content: "\(".
"""
C = cls(**kwargs)
s = s.strip()
s = s.strip("{}")
s = s.strip()
for i in range(3):
# Wrapping order of control characters is ignored:
# (NN+) == (NN)+ == NN?+ == NN+? == [NN+?] == [NN]+?
if s.startswith("^"):
s = s[1: ]; C.first = True
if s.endswith("+") and not s.endswith("\+"):
s = s[0:-1]; C.multiple = True
if s.endswith("?") and not s.endswith("\?"):
s = s[0:-1]; C.optional = True
if s.startswith("(") and s.endswith(")"):
s = s[1:-1]; C.optional = True
if s.startswith("[") and s.endswith("]"):
s = s[1:-1]
s = re.sub(r"^\\\^", "^", s)
s = re.sub(r"\\\+$", "+", s)
s = s.replace("\_", "&uscore;")
s = s.replace("_"," ")
s = s.replace("&uscore;", "_")
s = s.replace("&lparen;", "(")
s = s.replace("&rparen;", ")")
s = s.replace("[", "[")
s = s.replace("]", "]")
s = s.replace("&lcurly;", "{")
s = s.replace("&rcurly;", "}")
s = s.replace("\(", "(")
s = s.replace("\)", ")")
s = s.replace("\[", "[")
s = s.replace("\]", "]")
s = s.replace("\{", "{")
s = s.replace("\}", "}")
s = s.replace("\*", "*")
s = s.replace("\?", "?")
s = s.replace("\+", "+")
s = s.replace("\^", "^")
s = s.replace("\|", "⊢")
s = s.split("|")
s = [v.replace("⊢", "|").strip() for v in s]
for v in s:
C._append(v)
return C
def _append(self, v):
if v.startswith("!") and self.exclude is None:
self.exclude = Constraint()
if v.startswith("!"):
self.exclude._append(v[1:]); return
if "!" in v:
v = v.replace("\!", "!")
if v != v.upper():
self.words.append(v.lower())
elif v in TAGS:
self.tags.append(v)
elif v in CHUNKS:
self.chunks.append(v)
elif v in ROLES:
self.roles.append(v)
elif v in self.taxonomy or has_alpha(v):
self.taxa.append(v.lower())
else:
# Uppercase words indicate tags or taxonomy terms.
# However, this also matches "*" or "?" or "0.25".
# Unless such punctuation is defined in the taxonomy, it is added to Range.words.
self.words.append(v.lower())
def match(self, word):
""" Return True if the given Word is part of the constraint:
- the word (or lemma) occurs in Constraint.words, OR
- the word (or lemma) occurs in Constraint.taxa taxonomy tree, AND
- the word and/or chunk tags match those defined in the constraint.
Individual terms in Constraint.words or the taxonomy can contain wildcards (*).
Some part-of-speech-tags can also contain wildcards: NN*, VB*, JJ*, RB*, PR*.
If the given word contains spaces (e.g., proper noun),
the entire chunk will also be compared.
For example: Constraint(words=["Mac OS X*"])
matches the word "Mac" if the word occurs in a Chunk("Mac OS X 10.5").
"""
# If the constraint has a custom function it must return True.
if self.custom is not None and self.custom(word) is False:
return False
# If the constraint can only match the first word, Word.index must be 0.
if self.first and word.index > 0:
return False
# If the constraint defines excluded options, Word can not match any of these.
if self.exclude and self.exclude.match(word):
return False
# If the constraint defines allowed tags, Word.tag needs to match one of these.
if self.tags:
if find(lambda w: _match(word.tag, w), self.tags) is None:
return False
# If the constraint defines allowed chunks, Word.chunk.tag needs to match one of these.
if self.chunks:
ch = word.chunk and word.chunk.tag or None
if find(lambda w: _match(ch, w), self.chunks) is None:
return False
# If the constraint defines allowed role, Word.chunk.tag needs to match one of these.
if self.roles:
R = word.chunk and [r2 for r1, r2 in word.chunk.relations] or []
if find(lambda w: w in R, self.roles) is None:
return False
# If the constraint defines allowed words,
# Word.string.lower() OR Word.lemma needs to match one of these.
b = True # b==True when word in constraint (or Constraints.words=[]).
if len(self.words) + len(self.taxa) > 0:
s1 = word.string.lower()
s2 = word.lemma
b = False
for w in itertools.chain(self.words, self.taxa):
# If the constraint has a word with spaces (e.g., a proper noun),
# compare it to the entire chunk.
try:
if " " in w and (s1 in w or s2 and s2 in w or "*" in w):
s1 = word.chunk and word.chunk.string.lower() or s1
s2 = word.chunk and " ".join(x or "" for x in word.chunk.lemmata) or s2
except Exception as e:
s1 = s1
s2 = None
# Compare the word to the allowed words (which can contain wildcards).
if _match(s1, w):
b=True; break
# Compare the word lemma to the allowed words, e.g.,
# if "was" is not in the constraint, perhaps "be" is, which is a good match.
if s2 and _match(s2, w):
b=True; break
# If the constraint defines allowed taxonomy terms,
# and the given word did not match an allowed word, traverse the taxonomy.
# The search goes up from the given word to its parents in the taxonomy.
# This is faster than traversing all the children of terms in Constraint.taxa.
# The drawback is that:
# 1) Wildcards in the taxonomy are not detected (use classifiers instead),
# 2) Classifier.children() has no effect, only Classifier.parent().
if self.taxa and (not self.words or (self.words and not b)):
for s in (
word.string, # "ants"
word.lemma, # "ant"
word.chunk and word.chunk.string or None, # "army ants"
word.chunk and " ".join([x or "" for x in word.chunk.lemmata]) or None): # "army ant"
if s is not None:
if self.taxonomy.case_sensitive is False:
s = s.lower()
# Compare ancestors of the word to each term in Constraint.taxa.
for p in self.taxonomy.parents(s, recursive=True):
if find(lambda s: p==s, self.taxa): # No wildcards.
return True
return b
def __repr__(self):
s = []
for k,v in (
( "words", self.words),
( "tags", self.tags),
("chunks", self.chunks),
( "roles", self.roles),
( "taxa", self.taxa)):
if v: s.append("%s=%s" % (k, repr(v)))
return "Constraint(%s)" % ", ".join(s)
@property
def string(self):
a = self.words + self.tags + self.chunks + self.roles + [w.upper() for w in self.taxa]
a = (escape(s) for s in a)
a = (s.replace("\\*", "*") for s in a)
a = [s.replace(" ", "_") for s in a]
if self.exclude:
a.extend("!"+s for s in self.exclude.string[1:-1].split("|"))
return (self.optional and "%s(%s)%s" or "%s[%s]%s") % (
self.first and "^" or "", "|".join(a), self.multiple and "+" or "")
#--- PATTERN ---------------------------------------------------------------------------------------
STRICT = "strict"
GREEDY = "greedy"
class Pattern(object):
def __init__(self, sequence=[], *args, **kwargs):
""" A sequence of constraints that matches certain phrases in a sentence.
The given list of Constraint objects can contain nested lists (groups).
"""
# Parse nested lists and tuples from the sequence into groups.
# [DT [JJ NN]] => Match.group(1) will yield the JJ NN sequences.
def _ungroup(sequence, groups=None):
for v in sequence:
if isinstance(v, (list, tuple)):
if groups is not None:
groups.append(list(_ungroup(v, groups=None)))
for v in _ungroup(v, groups):
yield v
else:
yield v
self.groups = []
self.sequence = list(_ungroup(sequence, groups=self.groups))
# Assign Constraint.index:
i = 0
for constraint in self.sequence:
constraint.index = i; i+=1
# There are two search modes: STRICT and GREEDY.
# - In STRICT, "rabbit" matches only the string "rabbit".
# - In GREEDY, "rabbit|NN" matches the string "rabbit" tagged "NN".
# - In GREEDY, "rabbit" matches "the big white rabbit" (the entire chunk is a match).
# - Pattern.greedy(chunk, constraint) determines (True/False) if a chunk is a match.
self.strict = kwargs.get("strict", STRICT in args and not GREEDY in args)
self.greedy = kwargs.get("greedy", lambda chunk, constraint: True)
def __iter__(self):
return iter(self.sequence)
def __len__(self):
return len(self.sequence)
def __getitem__(self, i):
return self.sequence[i]
@classmethod
def fromstring(cls, s, *args, **kwargs):
""" Returns a new Pattern from the given string.
Constraints are separated by a space.
If a constraint contains a space, it must be wrapped in [].
"""
s = s.replace("\(", "&lparen;")
s = s.replace("\)", "&rparen;")
s = s.replace("\[", "[")
s = s.replace("\]", "]")
s = s.replace("\{", "&lcurly;")
s = s.replace("\}", "&rcurly;")
p = []
i = 0
for m in re.finditer(r"\[.*?\]|\(.*?\)", s):
# Spaces in a range encapsulated in square brackets are encoded.
# "[Windows Vista]" is one range, don't split on space.
p.append(s[i:m.start()])
p.append(s[m.start():m.end()].replace(" ", "&space;")); i=m.end()
p.append(s[i:])
s = "".join(p)
s = s.replace("][", "] [")
s = s.replace(")(", ") (")
s = s.replace("\|", "⊢")
s = re.sub(r"\s+\|\s+", "|", s)
s = re.sub(r"\s+", " ", s)
s = re.sub(r"\{\s+", "{", s)
s = re.sub(r"\s+\}", "}", s)
s = s.split(" ")
s = [v.replace("&space;"," ") for v in s]
P = cls([], *args, **kwargs)
G, O, i = [], [], 0
for s in s:
constraint = Constraint.fromstring(s.strip("{}"), taxonomy=kwargs.get("taxonomy", TAXONOMY))
constraint.index = len(P.sequence)
P.sequence.append(constraint)
# Push a new group on the stack if string starts with "{".
# Parse constraint from string, add it to all open groups.
# Pop latest group from stack if string ends with "}".
# Insert groups in opened-first order (i).
while s.startswith("{"):
s = s[1:]
G.append((i, [])); i+=1
O.append([])
for g in G:
g[1].append(constraint)
while s.endswith("}"):
s = s[:-1]
if G: O[G[-1][0]] = G[-1][1]; G.pop()
P.groups = [g for g in O if g]
return P
def scan(self, string):
""" Returns True if search(Sentence(string)) may yield matches.
If is often faster to scan prior to creating a Sentence and searching it.
"""
# In the following example, first scan the string for "good" and "bad":
# p = Pattern.fromstring("good|bad NN")
# for s in open("parsed.txt"):
# if p.scan(s):
# s = Sentence(s)
# m = p.search(s)
# if m:
# print(m)
w = (constraint.words for constraint in self.sequence if not constraint.optional)
w = itertools.chain(*w)
w = [w.strip(WILDCARD) for w in w if WILDCARD not in w[1:-1]]
if w and not any(w in string.lower() for w in w):
return False
return True
def search(self, sentence):
""" Returns a list of all matches found in the given sentence.
"""
if sentence.__class__.__name__ == "Sentence":
pass
elif isinstance(sentence, list) or sentence.__class__.__name__ == "Text":
a=[]; [a.extend(self.search(s)) for s in sentence]; return a
elif isinstance(sentence, basestring):
sentence = Sentence(sentence)
elif isinstance(sentence, Match) and len(sentence) > 0:
sentence = sentence[0].sentence.slice(sentence[0].index, sentence[-1].index + 1)
a = []
v = self._variations()
u = {}
m = self.match(sentence, _v=v)
while m:
a.append(m)
m = self.match(sentence, start=m.words[-1].index+1, _v=v, _u=u)
return a
def match(self, sentence, start=0, _v=None, _u=None):
""" Returns the first match found in the given sentence, or None.
"""
if sentence.__class__.__name__ == "Sentence":
pass
elif isinstance(sentence, list) or sentence.__class__.__name__ == "Text":
return find(lambda m: m is not None, (self.match(s, start, _v) for s in sentence))
elif isinstance(sentence, basestring):
sentence = Sentence(sentence)
elif isinstance(sentence, Match) and len(sentence) > 0:
sentence = sentence[0].sentence.slice(sentence[0].index, sentence[-1].index + 1)
# Variations (_v) further down the list may match words more to the front.
# We need to check all of them. Unmatched variations are blacklisted (_u).
# Pattern.search() calls Pattern.match() with a persistent blacklist (1.5x faster).
a = []
for sequence in (_v is not None and _v or self._variations()):
if _u is not None and id(sequence) in _u:
continue
m = self._match(sequence, sentence, start)
if m is not None:
a.append((m.words[0].index, len(m.words), m))
if m is not None and m.words[0].index == start:
return m
if m is None and _u is not None:
_u[id(sequence)] = False
# Return the leftmost-longest.
if len(a) > 0:
return sorted(a)[0][-1]
def _variations(self):
v = variations(self.sequence, optional=lambda constraint: constraint.optional)
v = sorted(v, key=len, reverse=True)
return v
def _match(self, sequence, sentence, start=0, i=0, w0=None, map=None, d=0):
# Backtracking tree search.
# Finds the first match in the sentence of the given sequence of constraints.
# start : the current word index.
# i : the current constraint index.
# w0 : the first word that matches a constraint.
# map : a dictionary of (Word index, Constraint) items.
# d : recursion depth.
# XXX - We can probably rewrite all of this using (faster) regular expressions.
if map is None:
map = {}
n = len(sequence)
# --- MATCH ----------
if i == n:
if w0 is not None:
w1 = sentence.words[start-1]
# Greedy algorithm:
# - "cat" matches "the big cat" if "cat" is head of the chunk.
# - "Tom" matches "Tom the cat" if "Tom" is head of the chunk.
# - This behavior is ignored with POS-tag constraints:
# "Tom|NN" can only match single words, not chunks.
# - This is also True for negated POS-tags (e.g., !NN).
w01 = [w0, w1]
for j in (0, -1):
constraint, w = sequence[j], w01[j]
if self.strict is False and w.chunk is not None:
if not constraint.tags:
if not constraint.exclude or not constraint.exclude.tags:
if constraint.match(w.chunk.head):
w01[j] = w.chunk.words[j]
if constraint.exclude and constraint.exclude.match(w.chunk.head):
return None
if self.greedy(w.chunk, constraint) is False: # User-defined.
return None
w0, w1 = w01
# Update map for optional chunk words (see below).
words = sentence.words[w0.index:w1.index+1]
for w in words:
if w.index not in map and w.chunk:
wx = find(lambda w: w.index in map, reversed(w.chunk.words))
if wx:
map[w.index] = map[wx.index]
# Return matched word range, we'll need the map to build Match.constituents().
return Match(self, words, map)
return None
# --- RECURSION --------
constraint = sequence[i]
for w in sentence.words[start:]:
#print(" "*d, "match?", w, sequence[i].string) # DEBUG
if i < n and constraint.match(w):
#print(" "*d, "match!", w, sequence[i].string) # DEBUG
map[w.index] = constraint
if constraint.multiple:
# Next word vs. same constraint if Constraint.multiple=True.
m = self._match(sequence, sentence, w.index+1, i, w0 or w, map, d+1)
if m:
return m
# Next word vs. next constraint.
m = self._match(sequence, sentence, w.index+1, i+1, w0 or w, map, d+1)
if m:
return m
# Chunk words other than the head are optional:
# - Pattern.fromstring("cat") matches "cat" but also "the big cat" (overspecification).
# - Pattern.fromstring("cat|NN") does not match "the big cat" (explicit POS-tag).
if w0 and not constraint.tags:
if not constraint.exclude and not self.strict and w.chunk and w.chunk.head != w:
continue
break
# Part-of-speech tags match one single word.
if w0 and constraint.tags:
break
if w0 and constraint.exclude and constraint.exclude.tags:
break
@property
def string(self):
return " ".join(constraint.string for constraint in self.sequence)
_cache = {}
_CACHE_SIZE = 100 # Number of dynamic Pattern objects to keep in cache.
def compile(pattern, *args, **kwargs):
""" Returns a Pattern from the given string or regular expression.
Recently compiled patterns are kept in cache
(if they do not use taxonomies, which are mutable dicts).
"""
id, p = repr(pattern) + repr(args), pattern
if id in _cache and not kwargs:
return _cache[id]
if isinstance(pattern, basestring):
p = Pattern.fromstring(pattern, *args, **kwargs)
if isinstance(pattern, regexp):
p = Pattern([Constraint(words=[pattern], taxonomy=kwargs.get("taxonomy", TAXONOMY))], *args, **kwargs)
if len(_cache) > _CACHE_SIZE:
_cache.clear()
if isinstance(p, Pattern) and not kwargs:
_cache[id] = p
if isinstance(p, Pattern):
return p
else:
raise TypeError("can't compile '%s' object" % pattern.__class__.__name__)
def scan(pattern, string, *args, **kwargs):
""" Returns True if pattern.search(Sentence(string)) may yield matches.
If is often faster to scan prior to creating a Sentence and searching it.
"""
return compile(pattern, *args, **kwargs).scan(string)
def match(pattern, sentence, *args, **kwargs):
""" Returns the first match found in the given sentence, or None.
"""
return compile(pattern, *args, **kwargs).match(sentence)
def search(pattern, sentence, *args, **kwargs):
""" Returns a list of all matches found in the given sentence.
"""
return compile(pattern, *args, **kwargs).search(sentence)
def escape(string):
""" Returns the string with control characters for Pattern syntax escaped.
For example: "hello!" => "hello\!".
"""
for ch in ("{","}","[","]","(",")","_","|","!","*","+","^"):
string = string.replace(ch, "\\"+ch)
return string
#--- PATTERN MATCH ---------------------------------------------------------------------------------
class Match(object):
def __init__(self, pattern, words=[], map={}):
""" Search result returned from Pattern.match(sentence),
containing a sequence of Word objects.
"""
self.pattern = pattern
self.words = words
self._map1 = dict() # Word index to Constraint.
self._map2 = dict() # Constraint index to list of Word indices.
for w in self.words:
self._map1[w.index] = map[w.index]
for k,v in self._map1.items():
self._map2.setdefault(self.pattern.sequence.index(v),[]).append(k)
for k,v in self._map2.items():
v.sort()
def __len__(self):
return len(self.words)
def __iter__(self):
return iter(self.words)
def __getitem__(self, i):
return self.words.__getitem__(i)
@property
def start(self):
return self.words and self.words[0].index or None
@property
def stop(self):
return self.words and self.words[-1].index+1 or None
def constraint(self, word):
""" Returns the constraint that matches the given Word, or None.
"""
if word.index in self._map1:
return self._map1[word.index]
def constraints(self, chunk):
""" Returns a list of constraints that match the given Chunk.
"""
a = [self._map1[w.index] for w in chunk.words if w.index in self._map1]
b = []; [b.append(constraint) for constraint in a if constraint not in b]
return b
def constituents(self, constraint=None):
""" Returns a list of Word and Chunk objects,
where words have been grouped into their chunks whenever possible.
Optionally, returns only chunks/words that match given constraint(s), or constraint index.
"""
# Select only words that match the given constraint.
# Note: this will only work with constraints from Match.pattern.sequence.
W = self.words
n = len(self.pattern.sequence)
if isinstance(constraint, (int, Constraint)):
if isinstance(constraint, int):
i = constraint
i = i<0 and i%n or i
else:
i = self.pattern.sequence.index(constraint)
W = self._map2.get(i,[])
W = [self.words[i-self.words[0].index] for i in W]
if isinstance(constraint, (list, tuple)):
W = []; [W.extend(self._map2.get(j<0 and j%n or j,[])) for j in constraint]
W = [self.words[i-self.words[0].index] for i in W]
W = unique(W)
a = []
i = 0
while i < len(W):
w = W[i]
if w.chunk and W[i:i+len(w.chunk)] == w.chunk.words:
i += len(w.chunk) - 1
a.append(w.chunk)
else:
a.append(w)
i += 1
return a
def group(self, index, chunked=False):
""" Returns a list of Word objects that match the given group.
With chunked=True, returns a list of Word + Chunk objects - see Match.constituents().
A group consists of consecutive constraints wrapped in { }, e.g.,
search("{JJ JJ} NN", Sentence(parse("big black cat"))).group(1) => big black.
"""
if index < 0 or index > len(self.pattern.groups):
raise IndexError("no such group")
if index > 0 and index <= len(self.pattern.groups):
g = self.pattern.groups[index-1]
if index == 0:
g = self.pattern.sequence
if chunked is True:
return Group(self, self.constituents(constraint=[self.pattern.sequence.index(x) for x in g]))
return Group(self, [w for w in self.words if self.constraint(w) in g])
@property
def string(self):
return " ".join(w.string for w in self.words)
def __repr__(self):
return "Match(words=%s)" % repr(self.words)
#--- PATTERN MATCH GROUP ---------------------------------------------------------------------------
class Group(list):
def __init__(self, match, words):
list.__init__(self, words)
self.match = match
@property
def words(self):
return list(self)
@property
def start(self):
return self and self[0].index or None
@property
def stop(self):
return self and self[-1].index+1 or None
@property
def string(self):
return " ".join(w.string for w in self)
|