File: search.py

package info (click to toggle)
python-pattern 2.6%2Bgit20150109-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,672 kB
  • sloc: python: 53,865; xml: 11,965; ansic: 2,318; makefile: 94
file content (1089 lines) | stat: -rw-r--r-- 44,939 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
#### PATTERN | TEXT | PATTERN MATCHING #############################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern

####################################################################################################

import re
import itertools

#--- TEXT, SENTENCE AND WORD -----------------------------------------------------------------------
# The search() and match() functions work on Text, Sentence and Word objects (see pattern.text.tree),
# i.e., the parse tree including part-of-speech tags and phrase chunk tags.

# The pattern.text.search Match object will contain matched Word objects, 
# emulated with the following classes if the original input was a plain string:

PUNCTUATION = ".,;:!?()[]{}`'\"@#$^&*+-|=~_"

RE_PUNCTUATION = "|".join(map(re.escape, PUNCTUATION))
RE_PUNCTUATION = re.compile("(%s)" % RE_PUNCTUATION)

class Text(list):

    def __init__(self, string="", token=["word"]):
        """ A list of sentences, where each sentence is separated by a period.
        """
        list.__init__(self, (Sentence(s + ".", token) for s in string.split(".")))
    
    @property
    def sentences(self):
        return self
        
    @property
    def words(self):
        return list(chain(*self))

class Sentence(list):
    
    def __init__(self, string="", token=["word"]):
        """ A list of words, where punctuation marks are split from words.
        """
        s = RE_PUNCTUATION.sub(" \\1 ", string) # Naive tokenization.
        s = re.sub(r"\s+", " ", s)
        s = re.sub(r" ' (d|m|s|ll|re|ve)", " '\\1", s)
        s = s.replace("n ' t", " n't")
        s = s.split(" ")
        list.__init__(self, (Word(self, w, index=i) for i, w in enumerate(s)))
        
    @property
    def string(self):
        return " ".join(w.string for w in self)

    @property
    def words(self):
        return self
    
    @property
    def chunks(self):
        return []

class Word(object):
    
    def __init__(self, sentence, string, tag=None, index=0):
        """ A word with a position in a sentence.
        """
        self.sentence, self.string, self.tag, self.index = sentence, string, tag, index
    
    def __repr__(self):
        return "Word(%s)" % repr(self.string)
    
    def _get_type(self):
        return self.tag
    def _set_type(self, v):
        self.tag = v
        
    type = property(_get_type, _set_type)
    
    @property
    def chunk(self): 
        return None
    
    @property
    def lemma(self):
        return None

#--- STRING MATCHING -------------------------------------------------------------------------------

WILDCARD = "*"
regexp = type(re.compile(r"."))

def _match(string, pattern):
    """ Returns True if the pattern matches the given word string.
        The pattern can include a wildcard (*front, back*, *both*, in*side),
        or it can be a compiled regular expression.
    """
    p = pattern
    try:
        if p[:1] == WILDCARD and (p[-1:] == WILDCARD and p[1:-1] in string or string.endswith(p[1:])):
            return True
        if p[-1:] == WILDCARD and not p[-2:-1] == "\\" and string.startswith(p[:-1]):
            return True
        if p == string:
            return True
        if WILDCARD in p[1:-1]:
            p = p.split(WILDCARD)
            return string.startswith(p[0]) and string.endswith(p[-1])
    except:
        # For performance, calling isinstance() last is 10% faster for plain strings.
        if isinstance(p, regexp):
            return p.search(string) is not None
    return False

#--- LIST FUNCTIONS --------------------------------------------------------------------------------
# Search patterns can contain optional constraints, 
# so we need to find all possible variations of a pattern.

def unique(iterable):
    """ Returns a list copy in which each item occurs only once (in-order).
    """
    seen = set()
    return [x for x in iterable if x not in seen and not seen.add(x)]

def find(function, iterable):
    """ Returns the first item in the list for which function(item) is True, None otherwise.
    """
    for x in iterable:
        if function(x) is True:
            return x

def combinations(iterable, n):
    # Backwards compatibility.
    return product(iterable, repeat=n)

def product(*args, **kwargs):
    """ Yields all permutations with replacement:
        list(product("cat", repeat=2)) => 
        [("c", "c"), 
         ("c", "a"), 
         ("c", "t"), 
         ("a", "c"), 
         ("a", "a"), 
         ("a", "t"), 
         ("t", "c"), 
         ("t", "a"), 
         ("t", "t")]
    """
    p = [[]]
    for iterable in map(tuple, args) * kwargs.get("repeat", 1):
        p = [x + [y] for x in p for y in iterable]
    for p in p:
        yield tuple(p)

try: from itertools import product
except:
    pass

def variations(iterable, optional=lambda x: False):
    """ Returns all possible variations of a sequence with optional items.
    """
    # For example: variations(["A?", "B?", "C"], optional=lambda s: s.endswith("?"))
    # defines a sequence where constraint A and B are optional:
    # [("A?", "B?", "C"), ("B?", "C"), ("A?", "C"), ("C")]
    iterable = tuple(iterable)
    # Create a boolean sequence where True means optional:
    # ("A?", "B?", "C") => [True, True, False]
    o = [optional(x) for x in iterable]
    # Find all permutations of the boolean sequence:
    # [True, False, True], [True, False, False], [False, False, True], [False, False, False].
    # Map to sequences of constraints whose index in the boolean sequence yields True.
    a = set()
    for p in product([False, True], repeat=sum(o)):
        p = list(p)
        v = [b and (b and p.pop(0)) for b in o]
        v = tuple(iterable[i] for i in range(len(v)) if not v[i])
        a.add(v)
    # Longest-first.
    return sorted(a, cmp=lambda x, y: len(y) - len(x))

#### TAXONOMY ######################################################################################

#--- ORDERED DICTIONARY ----------------------------------------------------------------------------
# A taxonomy is based on an ordered dictionary 
# (i.e., if a taxonomy term has multiple parents, the most recent parent is the default).

class odict(dict):

    def __init__(self, items=[]):
        """ A dictionary with ordered keys (first-in last-out).
        """
        dict.__init__(self)
        self._o = [] # List of ordered keys.
        if isinstance(items, dict):
            items = reversed(items.items())
        for k, v in items:
            self.__setitem__(k, v)
        
    @classmethod
    def fromkeys(cls, keys=[], v=None):
        return cls((k, v) for k in keys)
    
    def push(self, kv):
        """ Adds a new item from the given (key, value)-tuple.
            If the key exists, pushes the updated item to the head of the dict.
        """
        if kv[0] in self: 
            self.__delitem__(kv[0])
        self.__setitem__(kv[0], kv[1])
    append = push

    def __iter__(self):
        return reversed(self._o)

    def __setitem__(self, k, v):
        if k not in self:
            self._o.append(k)
        dict.__setitem__(self, k, v)
        
    def __delitem__(self, k):
        self._o.remove(k)
        dict.__delitem__(self, k)

    def update(self, d):
        for k, v in reversed(d.items()): 
            self.__setitem__(k, v)
        
    def setdefault(self, k, v=None):
        if not k in self: 
            self.__setitem__(k, v)
        return self[k]        

    def pop(self, k, *args, **kwargs):
        if k in self:
            self._o.remove(k)
        return dict.pop(self, k, *args, **kwargs)
        
    def popitem(self):
        k=self._o[-1] if self._o else None; return (k, self.pop(k))
        
    def clear(self):
        self._o=[]; dict.clear(self)

    def iterkeys(self):
        return reversed(self._o)
    def itervalues(self):
        return itertools.imap(self.__getitem__, reversed(self._o))
    def iteritems(self):
        return iter(zip(self.iterkeys(), self.itervalues()))

    def keys(self): 
        return list(self.iterkeys())
    def values(self):
        return list(self.itervalues())
    def items(self): 
        return list(self.iteritems())
    
    def copy(self):
        return self.__class__(reversed(self.items()))
    
    def __repr__(self):
        return "{%s}" % ", ".join("%s: %s" % (repr(k), repr(v)) for k, v in self.items())

#--- TAXONOMY --------------------------------------------------------------------------------------

class Taxonomy(dict):
    
    def __init__(self):
        """ Hierarchical tree of words classified by semantic type.
            For example: "rose" and "daffodil" can be classified as "flower":
            >>> taxonomy.append("rose", type="flower")
            >>> taxonomy.append("daffodil", type="flower")
            >>> print(taxonomy.children("flower"))
            Taxonomy terms can be used in a Pattern:
            FLOWER will match "flower" as well as "rose" and "daffodil".
            The taxonomy is case insensitive by default.
        """
        self.case_sensitive = False
        self._values = {}
        self.classifiers = []
        
    def _normalize(self, term):
        try: 
            return not self.case_sensitive and term.lower() or term
        except: # Not a string.
            return term

    def __contains__(self, term):
        # Check if the term is in the dictionary.
        # If the term is not in the dictionary, check the classifiers.
        term = self._normalize(term)
        if dict.__contains__(self, term):
            return True
        for classifier in self.classifiers:
            if classifier.parents(term) \
            or classifier.children(term):
                return True
        return False

    def append(self, term, type=None, value=None):
        """ Appends the given term to the taxonomy and tags it as the given type.
            Optionally, a disambiguation value can be supplied.
            For example: taxonomy.append("many", "quantity", "50-200")
        """
        term = self._normalize(term)
        type = self._normalize(type)
        self.setdefault(term, (odict(), odict()))[0].push((type, True))
        self.setdefault(type, (odict(), odict()))[1].push((term, True))
        self._values[term] = value
    
    def classify(self, term, **kwargs):
        """ Returns the (most recently added) semantic type for the given term ("many" => "quantity").
            If the term is not in the dictionary, try Taxonomy.classifiers.
        """
        term = self._normalize(term)
        if dict.__contains__(self, term):
            return self[term][0].keys()[-1]
        # If the term is not in the dictionary, check the classifiers.
        # Returns the first term in the list returned by a classifier.
        for classifier in self.classifiers:
            # **kwargs are useful if the classifier requests extra information,
            # for example the part-of-speech tag.
            v = classifier.parents(term, **kwargs)
            if v:
                return v[0]
            
    def parents(self, term, recursive=False, **kwargs):
        """ Returns a list of all semantic types for the given term.
            If recursive=True, traverses parents up to the root.
        """
        def dfs(term, recursive=False, visited={}, **kwargs):
            if term in visited: # Break on cyclic relations.
                return []
            visited[term], a = True, []
            if dict.__contains__(self, term):
                a = self[term][0].keys()
            for classifier in self.classifiers:
                a.extend(classifier.parents(term, **kwargs) or [])
            if recursive:
                for w in a: a += dfs(w, recursive, visited, **kwargs)
            return a
        return unique(dfs(self._normalize(term), recursive, {}, **kwargs))
    
    def children(self, term, recursive=False, **kwargs):
        """ Returns all terms of the given semantic type: "quantity" => ["many", "lot", "few", ...]
            If recursive=True, traverses children down to the leaves.
        """
        def dfs(term, recursive=False, visited={}, **kwargs):
            if term in visited: # Break on cyclic relations.
                return []
            visited[term], a = True, []
            if dict.__contains__(self, term):
                a = self[term][1].keys()
            for classifier in self.classifiers:
                a.extend(classifier.children(term, **kwargs) or [])
            if recursive:
                for w in a: a += dfs(w, recursive, visited, **kwargs)
            return a
        return unique(dfs(self._normalize(term), recursive, {}, **kwargs))
    
    def value(self, term, **kwargs):
        """ Returns the value of the given term ("many" => "50-200")
        """
        term = self._normalize(term)
        if term in self._values:
            return self._values[term]
        for classifier in self.classifiers:
            v = classifier.value(term, **kwargs)
            if v is not None:
                return v
        
    def remove(self, term):
        if dict.__contains__(self, term):
            for w in self.parents(term):
                self[w][1].pop(term)
            dict.pop(self, term) 

# Global taxonomy:
TAXONOMY = taxonomy = Taxonomy()

#taxonomy.append("rose", type="flower")
#taxonomy.append("daffodil", type="flower")
#taxonomy.append("flower", type="plant")
#print(taxonomy.classify("rose"))
#print(taxonomy.children("plant", recursive=True))

#c = Classifier(parents=lambda term: term.endswith("ness") and ["quality"] or [])
#taxonomy.classifiers.append(c)
#print(taxonomy.classify("roughness"))

#--- TAXONOMY CLASSIFIER ---------------------------------------------------------------------------

class Classifier(object):
    
    def __init__(self, parents=lambda term: [], children=lambda term: [], value=lambda term: None):
        """ A classifier uses a rule-based approach to enrich the taxonomy, for example:
            c = Classifier(parents=lambda term: term.endswith("ness") and ["quality"] or [])
            taxonomy.classifiers.append(c)
            This tags any word ending in -ness as "quality".
            This is much shorter than manually adding "roughness", "sharpness", ...
            Other examples of useful classifiers: calling en.wordnet.Synset.hyponyms() or en.number().
        """
        self.parents  = parents
        self.children = children
        self.value    = value

# Classifier(parents=lambda word: word.endswith("ness") and ["quality"] or [])
# Classifier(parents=lambda word, chunk=None: chunk=="VP" and [ACTION] or [])

class WordNetClassifier(Classifier):
    
    def __init__(self, wordnet=None):
        if wordnet is None:
            try: from pattern.en import wordnet
            except:
                try: from en import wordnet
                except:
                    pass
        Classifier.__init__(self, self._parents, self._children)
        self.wordnet = wordnet

    def _children(self, word, pos="NN"):
        try: 
            return [w.synonyms[0] for w in self.wordnet.synsets(word, pos[:2])[0].hyponyms()]
        except:
            pass
        
    def _parents(self, word, pos="NN"):
        try: 
            return [w.synonyms[0] for w in self.wordnet.synsets(word, pos[:2])[0].hypernyms()]
        except:
            pass

#from en import wordnet
#taxonomy.classifiers.append(WordNetClassifier(wordnet))
#print(taxonomy.parents("ponder", pos="VB"))
#print(taxonomy.children("computer"))

#### PATTERN #######################################################################################

#--- PATTERN CONSTRAINT ----------------------------------------------------------------------------

# Allowed chunk, role and part-of-speech tags (Penn Treebank II):
CHUNKS = dict.fromkeys(["NP", "PP", "VP", "ADVP", "ADJP", "SBAR", "PRT", "INTJ"], True)
ROLES  = dict.fromkeys(["SBJ", "OBJ", "PRD", "TMP", "CLR", "LOC", "DIR", "EXT", "PRP"], True)
TAGS   = dict.fromkeys(["CC", "CD", "CJ", "DT", "EX", "FW", "IN", "JJ", "JJR", "JJS", "JJ*", 
                        "LS", "MD", "NN", "NNS", "NNP", "NNPS", "NN*", "NO", "PDT", "PR", 
                        "PRP", "PRP$", "PR*", "PRP*", "PT", "RB", "RBR", "RBS", "RB*", "RP", 
                        "SYM", "TO", "UH", "VB", "VBZ", "VBP", "VBD", "VBN", "VBG", "VB*", 
                        "WDT", "WP*", "WRB", "X", ".", ",", ":", "(", ")"], True)

ALPHA = re.compile("[a-zA-Z]")
has_alpha = lambda string: ALPHA.match(string) is not None

class Constraint(object):
    
    def __init__(self, words=[], tags=[], chunks=[], roles=[], taxa=[], optional=False, multiple=False, first=False, taxonomy=TAXONOMY, exclude=None, custom=None):
        """ A range of words, tags and taxonomy terms that matches certain words in a sentence.        
            For example: 
            Constraint.fromstring("with|of") matches either "with" or "of".
            Constraint.fromstring("(JJ)") optionally matches an adjective.
            Constraint.fromstring("NP|SBJ") matches subject noun phrases.
            Constraint.fromstring("QUANTITY|QUALITY") matches quantity-type and quality-type taxa.
        """
        self.index    = 0
        self.words    = list(words)  # Allowed words/lemmata (of, with, ...)
        self.tags     = list(tags)   # Allowed parts-of-speech (NN, JJ, ...)
        self.chunks   = list(chunks) # Allowed chunk types (NP, VP, ...)
        self.roles    = list(roles)  # Allowed chunk roles (SBJ, OBJ, ...)
        self.taxa     = list(taxa)   # Allowed word categories.
        self.taxonomy = taxonomy
        self.optional = optional
        self.multiple = multiple
        self.first    = first
        self.exclude  = exclude      # Constraint of words that are *not* allowed, or None.
        self.custom   = custom       # Custom function(Word) returns True if word matches constraint.
        
    @classmethod
    def fromstring(cls, s, **kwargs):
        """ Returns a new Constraint from the given string.
            Uppercase words indicate either a tag ("NN", "JJ", "VP")
            or a taxonomy term (e.g., "PRODUCT", "PERSON").
            Syntax:
            ( defines an optional constraint, e.g., "(JJ)".
            [ defines a constraint with spaces, e.g., "[Mac OS X | Windows Vista]".
            _ is converted to spaces, e.g., "Windows_Vista".
            | separates different options, e.g., "ADJP|ADVP".
            ! can be used as a word prefix to disallow it.
            * can be used as a wildcard character, e.g., "soft*|JJ*".
            ? as a suffix defines a constraint that is optional, e.g., "JJ?".
            + as a suffix defines a constraint that can span multiple words, e.g., "JJ+".
            ^ as a prefix defines a constraint that can only match the first word.
            These characters need to be escaped if used as content: "\(".
        """
        C = cls(**kwargs)
        s = s.strip()
        s = s.strip("{}")
        s = s.strip()
        for i in range(3):
            # Wrapping order of control characters is ignored:
            # (NN+) == (NN)+ == NN?+ == NN+? == [NN+?] == [NN]+?
            if s.startswith("^"):
                s = s[1:  ]; C.first = True
            if s.endswith("+") and not s.endswith("\+"):
                s = s[0:-1]; C.multiple = True
            if s.endswith("?") and not s.endswith("\?"):
                s = s[0:-1]; C.optional = True
            if s.startswith("(") and s.endswith(")"):
                s = s[1:-1]; C.optional = True
            if s.startswith("[") and s.endswith("]"):
                s = s[1:-1]
        s = re.sub(r"^\\\^", "^", s)
        s = re.sub(r"\\\+$", "+", s)
        s = s.replace("\_", "&uscore;")
        s = s.replace("_"," ")
        s = s.replace("&uscore;", "_")
        s = s.replace("&lparen;", "(")
        s = s.replace("&rparen;", ")")
        s = s.replace("&lbrack;", "[")
        s = s.replace("&rbrack;", "]")
        s = s.replace("&lcurly;", "{")
        s = s.replace("&rcurly;", "}")
        s = s.replace("\(", "(")
        s = s.replace("\)", ")") 
        s = s.replace("\[", "[")
        s = s.replace("\]", "]") 
        s = s.replace("\{", "{")
        s = s.replace("\}", "}") 
        s = s.replace("\*", "*")
        s = s.replace("\?", "?")    
        s = s.replace("\+", "+")
        s = s.replace("\^", "^")
        s = s.replace("\|", "&vdash;")
        s = s.split("|")
        s = [v.replace("&vdash;", "|").strip() for v in s]
        for v in s:
            C._append(v)
        return C
        
    def _append(self, v):
        if v.startswith("!") and self.exclude is None:
            self.exclude = Constraint()
        if v.startswith("!"):
            self.exclude._append(v[1:]); return
        if "!" in v:
            v = v.replace("\!", "!")
        if v != v.upper():
            self.words.append(v.lower())
        elif v in TAGS:
            self.tags.append(v)
        elif v in CHUNKS:
            self.chunks.append(v)
        elif v in ROLES:
            self.roles.append(v)
        elif v in self.taxonomy or has_alpha(v):
            self.taxa.append(v.lower())
        else:
            # Uppercase words indicate tags or taxonomy terms.
            # However, this also matches "*" or "?" or "0.25".
            # Unless such punctuation is defined in the taxonomy, it is added to Range.words.
            self.words.append(v.lower())
    
    def match(self, word):
        """ Return True if the given Word is part of the constraint:
            - the word (or lemma) occurs in Constraint.words, OR
            - the word (or lemma) occurs in Constraint.taxa taxonomy tree, AND
            - the word and/or chunk tags match those defined in the constraint.
            Individual terms in Constraint.words or the taxonomy can contain wildcards (*).
            Some part-of-speech-tags can also contain wildcards: NN*, VB*, JJ*, RB*, PR*.
            If the given word contains spaces (e.g., proper noun),
            the entire chunk will also be compared.
            For example: Constraint(words=["Mac OS X*"]) 
            matches the word "Mac" if the word occurs in a Chunk("Mac OS X 10.5").
        """
        # If the constraint has a custom function it must return True.
        if self.custom is not None and self.custom(word) is False:
            return False
        # If the constraint can only match the first word, Word.index must be 0.
        if self.first and word.index > 0:
            return False
        # If the constraint defines excluded options, Word can not match any of these.
        if self.exclude and self.exclude.match(word):
            return False
        # If the constraint defines allowed tags, Word.tag needs to match one of these.
        if self.tags:
            if find(lambda w: _match(word.tag, w), self.tags) is None:
                return False
        # If the constraint defines allowed chunks, Word.chunk.tag needs to match one of these.
        if self.chunks:
            ch = word.chunk and word.chunk.tag or None
            if find(lambda w: _match(ch, w), self.chunks) is None:
                return False
        # If the constraint defines allowed role, Word.chunk.tag needs to match one of these.
        if self.roles:
            R = word.chunk and [r2 for r1, r2 in word.chunk.relations] or []
            if find(lambda w: w in R, self.roles) is None:
                return False
        # If the constraint defines allowed words,
        # Word.string.lower() OR Word.lemma needs to match one of these.
        b = True # b==True when word in constraint (or Constraints.words=[]).
        if len(self.words) + len(self.taxa) > 0:
            s1 = word.string.lower()
            s2 = word.lemma
            b = False
            for w in itertools.chain(self.words, self.taxa):
                # If the constraint has a word with spaces (e.g., a proper noun),
                # compare it to the entire chunk.
                try:
                    if " " in w and (s1 in w or s2 and s2 in w or "*" in w):
                        s1 = word.chunk and word.chunk.string.lower() or s1
                        s2 = word.chunk and " ".join(x or ""  for x in word.chunk.lemmata) or s2
                except Exception as e:
                    s1 = s1
                    s2 = None
                # Compare the word to the allowed words (which can contain wildcards).
                if _match(s1, w):
                    b=True; break
                # Compare the word lemma to the allowed words, e.g.,
                # if "was" is not in the constraint, perhaps "be" is, which is a good match.
                if s2 and _match(s2, w):
                    b=True; break
                    
        # If the constraint defines allowed taxonomy terms,
        # and the given word did not match an allowed word, traverse the taxonomy.
        # The search goes up from the given word to its parents in the taxonomy.
        # This is faster than traversing all the children of terms in Constraint.taxa.
        # The drawback is that:
        # 1) Wildcards in the taxonomy are not detected (use classifiers instead),
        # 2) Classifier.children() has no effect, only Classifier.parent().
        if self.taxa and (not self.words or (self.words and not b)):
            for s in (
              word.string, # "ants"
              word.lemma,  # "ant"
              word.chunk and word.chunk.string or None, # "army ants"
              word.chunk and " ".join([x or "" for x in word.chunk.lemmata]) or None): # "army ant"
                if s is not None:
                    if self.taxonomy.case_sensitive is False:
                        s = s.lower()
                    # Compare ancestors of the word to each term in Constraint.taxa.
                    for p in self.taxonomy.parents(s, recursive=True):
                        if find(lambda s: p==s, self.taxa): # No wildcards.
                            return True
        return b
    
    def __repr__(self):
        s = []
        for k,v in (
          ( "words", self.words),
          (  "tags", self.tags),
          ("chunks", self.chunks),
          ( "roles", self.roles),
          (  "taxa", self.taxa)):
            if v: s.append("%s=%s" % (k, repr(v)))
        return "Constraint(%s)" % ", ".join(s)
            
    @property
    def string(self):
        a = self.words + self.tags + self.chunks + self.roles + [w.upper() for w in self.taxa]
        a = (escape(s) for s in a)
        a = (s.replace("\\*", "*") for s in a)
        a = [s.replace(" ", "_") for s in a]
        if self.exclude:
            a.extend("!"+s for s in self.exclude.string[1:-1].split("|"))
        return (self.optional and "%s(%s)%s" or "%s[%s]%s") % (
            self.first and "^" or "", "|".join(a), self.multiple and "+" or "")

#--- PATTERN ---------------------------------------------------------------------------------------

STRICT = "strict"
GREEDY = "greedy"

class Pattern(object):
    
    def __init__(self, sequence=[], *args, **kwargs):
        """ A sequence of constraints that matches certain phrases in a sentence.
            The given list of Constraint objects can contain nested lists (groups).
        """
        # Parse nested lists and tuples from the sequence into groups.
        # [DT [JJ NN]] => Match.group(1) will yield the JJ NN sequences.
        def _ungroup(sequence, groups=None):
            for v in sequence:
                if isinstance(v, (list, tuple)):
                    if groups is not None:
                        groups.append(list(_ungroup(v, groups=None)))
                    for v in _ungroup(v, groups):
                        yield v
                else: 
                    yield v
        self.groups = []
        self.sequence = list(_ungroup(sequence, groups=self.groups))
        # Assign Constraint.index:
        i = 0
        for constraint in self.sequence:
            constraint.index = i; i+=1
        # There are two search modes: STRICT and GREEDY.
        # - In STRICT, "rabbit" matches only the string "rabbit".
        # - In GREEDY, "rabbit|NN" matches the string "rabbit" tagged "NN".
        # - In GREEDY, "rabbit" matches "the big white rabbit" (the entire chunk is a match).
        # - Pattern.greedy(chunk, constraint) determines (True/False) if a chunk is a match.
        self.strict = kwargs.get("strict", STRICT in args and not GREEDY in args)
        self.greedy = kwargs.get("greedy", lambda chunk, constraint: True)

    def __iter__(self):
        return iter(self.sequence)
    def __len__(self):
        return len(self.sequence)
    def __getitem__(self, i):
        return self.sequence[i]
        
    @classmethod
    def fromstring(cls, s, *args, **kwargs):
        """ Returns a new Pattern from the given string.
            Constraints are separated by a space.
            If a constraint contains a space, it must be wrapped in [].
        """
        s = s.replace("\(", "&lparen;")
        s = s.replace("\)", "&rparen;")
        s = s.replace("\[", "&lbrack;")
        s = s.replace("\]", "&rbrack;")
        s = s.replace("\{", "&lcurly;")
        s = s.replace("\}", "&rcurly;")
        p = []
        i = 0
        for m in re.finditer(r"\[.*?\]|\(.*?\)", s):
            # Spaces in a range encapsulated in square brackets are encoded.
            # "[Windows Vista]" is one range, don't split on space.
            p.append(s[i:m.start()])
            p.append(s[m.start():m.end()].replace(" ", "&space;")); i=m.end()
        p.append(s[i:])
        s = "".join(p) 
        s = s.replace("][", "] [")
        s = s.replace(")(", ") (")
        s = s.replace("\|", "&vdash;")
        s = re.sub(r"\s+\|\s+", "|", s)  
        s = re.sub(r"\s+", " ", s)
        s = re.sub(r"\{\s+", "{", s)
        s = re.sub(r"\s+\}", "}", s)
        s = s.split(" ")
        s = [v.replace("&space;"," ") for v in s]
        P = cls([], *args, **kwargs)
        G, O, i = [], [], 0
        for s in s:
            constraint = Constraint.fromstring(s.strip("{}"), taxonomy=kwargs.get("taxonomy", TAXONOMY))
            constraint.index = len(P.sequence)
            P.sequence.append(constraint)
            # Push a new group on the stack if string starts with "{".
            # Parse constraint from string, add it to all open groups.
            # Pop latest group from stack if string ends with "}".
            # Insert groups in opened-first order (i).
            while s.startswith("{"):
                s = s[1:]
                G.append((i, [])); i+=1
                O.append([])
            for g in G:
                g[1].append(constraint)
            while s.endswith("}"):
                s = s[:-1]
                if G: O[G[-1][0]] = G[-1][1]; G.pop()
        P.groups = [g for g in O if g]
        return P
        
    def scan(self, string):
        """ Returns True if search(Sentence(string)) may yield matches.
            If is often faster to scan prior to creating a Sentence and searching it.
        """
        # In the following example, first scan the string for "good" and "bad":
        # p = Pattern.fromstring("good|bad NN")
        # for s in open("parsed.txt"):
        #     if p.scan(s):
        #         s = Sentence(s)
        #         m = p.search(s)
        #         if m:
        #             print(m)
        w = (constraint.words for constraint in self.sequence if not constraint.optional)
        w = itertools.chain(*w)
        w = [w.strip(WILDCARD) for w in w if WILDCARD not in w[1:-1]]
        if w and not any(w in string.lower() for w in w):
            return False
        return True

    def search(self, sentence):
        """ Returns a list of all matches found in the given sentence.
        """
        if sentence.__class__.__name__ == "Sentence":
            pass
        elif isinstance(sentence, list) or sentence.__class__.__name__ == "Text":
            a=[]; [a.extend(self.search(s)) for s in sentence]; return a
        elif isinstance(sentence, basestring):
            sentence = Sentence(sentence)
        elif isinstance(sentence, Match) and len(sentence) > 0:
            sentence = sentence[0].sentence.slice(sentence[0].index, sentence[-1].index + 1)
        a = []
        v = self._variations()
        u = {}
        m = self.match(sentence, _v=v)
        while m:
            a.append(m)
            m = self.match(sentence, start=m.words[-1].index+1, _v=v, _u=u)
        return a
    
    def match(self, sentence, start=0, _v=None, _u=None):
        """ Returns the first match found in the given sentence, or None.
        """
        if sentence.__class__.__name__ == "Sentence":
            pass
        elif isinstance(sentence, list) or sentence.__class__.__name__ == "Text":
            return find(lambda m: m is not None, (self.match(s, start, _v) for s in sentence))
        elif isinstance(sentence, basestring):
            sentence = Sentence(sentence)
        elif isinstance(sentence, Match) and len(sentence) > 0:
            sentence = sentence[0].sentence.slice(sentence[0].index, sentence[-1].index + 1)
        # Variations (_v) further down the list may match words more to the front.
        # We need to check all of them. Unmatched variations are blacklisted (_u).
        # Pattern.search() calls Pattern.match() with a persistent blacklist (1.5x faster).
        a = []
        for sequence in (_v is not None and _v or self._variations()):
            if _u is not None and id(sequence) in _u:
                continue
            m = self._match(sequence, sentence, start)
            if m is not None:
                a.append((m.words[0].index, len(m.words), m))
            if m is not None and m.words[0].index == start:
                return m
            if m is None and _u is not None:
                _u[id(sequence)] = False
        # Return the leftmost-longest.
        if len(a) > 0:
            return sorted(a)[0][-1]

    def _variations(self):
        v = variations(self.sequence, optional=lambda constraint: constraint.optional)
        v = sorted(v, key=len, reverse=True)
        return v
                
    def _match(self, sequence, sentence, start=0, i=0, w0=None, map=None, d=0):
        # Backtracking tree search.
        # Finds the first match in the sentence of the given sequence of constraints.
        # start : the current word index.
        #     i : the current constraint index.
        #    w0 : the first word that matches a constraint.
        #   map : a dictionary of (Word index, Constraint) items.
        #     d : recursion depth.
        
        # XXX - We can probably rewrite all of this using (faster) regular expressions.
        
        if map is None:
            map = {}
        
        n = len(sequence)
        
        # --- MATCH ----------
        if i == n:
            if w0 is not None:
                w1 = sentence.words[start-1]
                # Greedy algorithm: 
                # - "cat" matches "the big cat" if "cat" is head of the chunk.
                # - "Tom" matches "Tom the cat" if "Tom" is head of the chunk.
                # - This behavior is ignored with POS-tag constraints:
                #   "Tom|NN" can only match single words, not chunks.
                # - This is also True for negated POS-tags (e.g., !NN).
                w01 = [w0, w1]
                for j in (0, -1):
                    constraint, w = sequence[j], w01[j]
                    if self.strict is False and w.chunk is not None:
                        if not constraint.tags:
                            if not constraint.exclude or not constraint.exclude.tags:
                                if constraint.match(w.chunk.head):
                                    w01[j] = w.chunk.words[j]
                                if constraint.exclude and constraint.exclude.match(w.chunk.head):
                                    return None
                                if self.greedy(w.chunk, constraint) is False: # User-defined.
                                    return None
                w0, w1 = w01
                # Update map for optional chunk words (see below).
                words = sentence.words[w0.index:w1.index+1]
                for w in words:
                    if w.index not in map and w.chunk:
                        wx = find(lambda w: w.index in map, reversed(w.chunk.words))
                        if wx: 
                            map[w.index] = map[wx.index]
                # Return matched word range, we'll need the map to build Match.constituents().
                return Match(self, words, map)
            return None

        # --- RECURSION --------
        constraint = sequence[i]
        for w in sentence.words[start:]:
            #print(" "*d, "match?", w, sequence[i].string) # DEBUG
            if i < n and constraint.match(w):
                #print(" "*d, "match!", w, sequence[i].string) # DEBUG
                map[w.index] = constraint
                if constraint.multiple:
                    # Next word vs. same constraint if Constraint.multiple=True.
                    m = self._match(sequence, sentence, w.index+1, i, w0 or w, map, d+1)
                    if m: 
                        return m
                # Next word vs. next constraint.
                m = self._match(sequence, sentence, w.index+1, i+1, w0 or w, map, d+1)
                if m: 
                    return m
            # Chunk words other than the head are optional:
            # - Pattern.fromstring("cat") matches "cat" but also "the big cat" (overspecification).
            # - Pattern.fromstring("cat|NN") does not match "the big cat" (explicit POS-tag).
            if w0 and not constraint.tags:
                if not constraint.exclude and not self.strict and w.chunk and w.chunk.head != w:
                    continue
                break
            # Part-of-speech tags match one single word.
            if w0 and constraint.tags:
                break
            if w0 and constraint.exclude and constraint.exclude.tags:
                break
                
    @property
    def string(self):
        return " ".join(constraint.string for constraint in self.sequence)

_cache = {}
_CACHE_SIZE = 100 # Number of dynamic Pattern objects to keep in cache.
def compile(pattern, *args, **kwargs):
    """ Returns a Pattern from the given string or regular expression.
        Recently compiled patterns are kept in cache
        (if they do not use taxonomies, which are mutable dicts).
    """
    id, p = repr(pattern) + repr(args), pattern
    if id in _cache and not kwargs:
        return _cache[id]
    if isinstance(pattern, basestring):
        p = Pattern.fromstring(pattern, *args, **kwargs)
    if isinstance(pattern, regexp):
        p = Pattern([Constraint(words=[pattern], taxonomy=kwargs.get("taxonomy", TAXONOMY))], *args, **kwargs)
    if len(_cache) > _CACHE_SIZE:
        _cache.clear()
    if isinstance(p, Pattern) and not kwargs:
        _cache[id] = p
    if isinstance(p, Pattern):
        return p
    else:
        raise TypeError("can't compile '%s' object" % pattern.__class__.__name__)

def scan(pattern, string, *args, **kwargs):
    """ Returns True if pattern.search(Sentence(string)) may yield matches.
        If is often faster to scan prior to creating a Sentence and searching it.
    """
    return compile(pattern, *args, **kwargs).scan(string) 

def match(pattern, sentence, *args, **kwargs):
    """ Returns the first match found in the given sentence, or None.
    """
    return compile(pattern, *args, **kwargs).match(sentence) 

def search(pattern, sentence, *args, **kwargs):
    """ Returns a list of all matches found in the given sentence.
    """
    return compile(pattern, *args, **kwargs).search(sentence)

def escape(string):
    """ Returns the string with control characters for Pattern syntax escaped.
        For example: "hello!" => "hello\!".
    """
    for ch in ("{","}","[","]","(",")","_","|","!","*","+","^"):
        string = string.replace(ch, "\\"+ch)
    return string

#--- PATTERN MATCH ---------------------------------------------------------------------------------

class Match(object):
    
    def __init__(self, pattern, words=[], map={}):
        """ Search result returned from Pattern.match(sentence),
            containing a sequence of Word objects.
        """
        self.pattern = pattern
        self.words = words
        self._map1 = dict() # Word index to Constraint.
        self._map2 = dict() # Constraint index to list of Word indices.
        for w in self.words:
            self._map1[w.index] = map[w.index]
        for k,v in self._map1.items():
            self._map2.setdefault(self.pattern.sequence.index(v),[]).append(k)
        for k,v in self._map2.items():
            v.sort()

    def __len__(self):
        return len(self.words)
    def __iter__(self):
        return iter(self.words)
    def __getitem__(self, i):
        return self.words.__getitem__(i)

    @property
    def start(self):
        return self.words and self.words[0].index or None
    @property
    def stop(self):
        return self.words and self.words[-1].index+1 or None

    def constraint(self, word):
        """ Returns the constraint that matches the given Word, or None.
        """
        if word.index in self._map1:
            return self._map1[word.index]
    
    def constraints(self, chunk):
        """ Returns a list of constraints that match the given Chunk.
        """
        a = [self._map1[w.index] for w in chunk.words if w.index in self._map1]
        b = []; [b.append(constraint) for constraint in a if constraint not in b]
        return b

    def constituents(self, constraint=None):
        """ Returns a list of Word and Chunk objects, 
            where words have been grouped into their chunks whenever possible.
            Optionally, returns only chunks/words that match given constraint(s), or constraint index.
        """
        # Select only words that match the given constraint.
        # Note: this will only work with constraints from Match.pattern.sequence.
        W = self.words
        n = len(self.pattern.sequence)
        if isinstance(constraint, (int, Constraint)):
            if isinstance(constraint, int):
                i = constraint 
                i = i<0 and i%n or i
            else:
                i = self.pattern.sequence.index(constraint)
            W = self._map2.get(i,[])
            W = [self.words[i-self.words[0].index] for i in W]            
        if isinstance(constraint, (list, tuple)):
            W = []; [W.extend(self._map2.get(j<0 and j%n or j,[])) for j in constraint]
            W = [self.words[i-self.words[0].index] for i in W]
            W = unique(W)
        a = []
        i = 0
        while i < len(W):
            w = W[i]
            if w.chunk and W[i:i+len(w.chunk)] == w.chunk.words:
                i += len(w.chunk) - 1
                a.append(w.chunk)
            else:
                a.append(w)
            i += 1
        return a
        
    def group(self, index, chunked=False):
        """ Returns a list of Word objects that match the given group.
            With chunked=True, returns a list of Word + Chunk objects - see Match.constituents().
            A group consists of consecutive constraints wrapped in { }, e.g.,
            search("{JJ JJ} NN", Sentence(parse("big black cat"))).group(1) => big black.
        """
        if index < 0 or index > len(self.pattern.groups):
            raise IndexError("no such group")
        if index > 0 and index <= len(self.pattern.groups):
            g = self.pattern.groups[index-1]
        if index == 0:
            g = self.pattern.sequence
        if chunked is True:
            return Group(self, self.constituents(constraint=[self.pattern.sequence.index(x) for x in g]))
        return Group(self, [w for w in self.words if self.constraint(w) in g])
    
    @property
    def string(self):
        return " ".join(w.string for w in self.words)
    
    def __repr__(self):
        return "Match(words=%s)" % repr(self.words)

#--- PATTERN MATCH GROUP ---------------------------------------------------------------------------

class Group(list):

    def __init__(self, match, words):
        list.__init__(self, words)
        self.match = match

    @property
    def words(self):
        return list(self)

    @property
    def start(self):
        return self and self[0].index or None
    @property
    def stop(self):
        return self and self[-1].index+1 or None
    
    @property
    def string(self):
        return " ".join(w.string for w in self)