File: tree.py

package info (click to toggle)
python-pattern 2.6%2Bgit20150109-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,672 kB
  • sloc: python: 53,865; xml: 11,965; ansic: 2,318; makefile: 94
file content (1713 lines) | stat: -rw-r--r-- 71,944 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
#### PATTERN | EN | PARSE TREE #####################################################################
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern

####################################################################################################
# Text and Sentence objects to traverse words and chunks in parsed text.
# from pattern.en import parsetree
# for sentence in parsetree("The cat sat on the mat."):
#     for chunk in sentence.chunks:
#         for word in chunk.words:
#             print(word.string, word.tag, word.lemma)

# Terminology:
# - part-of-speech: the role that a word plays in a sentence: noun (NN), verb (VB), adjective, ...
# -    sentence: a unit of language, with a subject (e.g., "the cat") and a predicate ("jumped").
# -       token: a word in a sentence with a part-of-speech tag (e.g., "jump/VB" or "jump/NN").
# -        word: a string of characters that expresses a meaningful concept (e.g., "cat").
# -       lemma: the canonical word form ("jumped" => "jump").
# -      lexeme: the set of word forms ("jump", "jumps", "jumping", ...)
# -       chunk: a phrase, group of words that express a single thought (e.g., "the cat").
# -     subject: the phrase that the sentence is about, usually a noun phrase.
# -   predicate: the remainder of the sentence tells us what the subject does (jump).
# -      object: the phrase that is affected by the action (the cat jumped [the mouse]").
# - preposition: temporal, spatial or logical relationship ("the cat jumped [on the table]").
# -      anchor: the chunk to which the preposition is attached:
#                "the cat eats its snackerel with vigor" => eat with vigor?
#                                                     OR => vigorous snackerel?

# The Text and Sentece classes are containers: 
# no parsing functionality should be added to it.

try:
    from itertools import chain
    from itertools import izip
except:
    izip = zip  # Python 3

try:
    from config import SLASH
    from config import WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA
    MBSP = True # Memory-Based Shallow Parser for Python.
except:
    SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA = \
        "&slash;", "word", "part-of-speech", "chunk", "preposition", "relation", "anchor", "lemma"
    MBSP = False

# B- marks the start of a chunk: the/DT/B-NP cat/NN/I-NP
# I- words are inside a chunk.
# O- words are outside a chunk (punctuation etc.).
IOB, BEGIN, INSIDE, OUTSIDE  = "IOB", "B", "I", "O"

# -SBJ marks subjects: the/DT/B-NP-SBJ cat/NN/I-NP-SBJ
# -OBJ marks objects.
ROLE = "role"

SLASH0 = SLASH[0]

### LIST FUNCTIONS #################################################################################

def find(function, iterable):
    """ Returns the first item in the list for which function(item) is True, None otherwise.
    """
    for x in iterable:
        if function(x) == True:
            return x

def intersects(iterable1, iterable2):
    """ Returns True if the given lists have at least one item in common.
    """
    return find(lambda x: x in iterable1, iterable2) is not None

def unique(iterable):
    """ Returns a list copy in which each item occurs only once (in-order).
    """
    seen = set()
    return [x for x in iterable if x not in seen and not seen.add(x)]

_zip = zip

def zip(*args, **kwargs):
    """ Returns a list of tuples, where the i-th tuple contains the i-th element 
        from each of the argument sequences or iterables (or default if too short).
    """
    args = [list(iterable) for iterable in args]
    n = max(map(len, args))
    v = kwargs.get("default", None)
    return _zip(*[i + [v] * (n - len(i)) for i in args])

def unzip(i, iterable):
    """ Returns the item at the given index from inside each tuple in the list.
    """
    return [x[i] for x in iterable]

class Map(list):
    """ A stored imap() on a list.
        The list is referenced instead of copied, and the items are mapped on-the-fly.
    """
    def __init__(self, function=lambda x: x, items=[]):
        self._f = function
        self._a = items
    @property
    def items(self):
        return self._a
    def __repr__(self):
        return repr(list(iter(self)))
    def __getitem__(self, i):
        return self._f(self._a[i])
    def __len__(self):
        return len(self._a)
    def __iter__(self):
        i = 0
        while i < len(self._a):
            yield self._f(self._a[i])
            i += 1

### SENTENCE #######################################################################################

# The output of parse() is a slash-formatted string (e.g., "the/DT cat/NN"),
# so slashes in words themselves are encoded as &slash;

encode_entities = lambda string: string.replace("/", SLASH)
decode_entities = lambda string: string.replace(SLASH, "/")

#--- WORD ------------------------------------------------------------------------------------------

class Word(object):

    def __init__(self, sentence, string, lemma=None, type=None, index=0):
        """ A word in the sentence.
            - lemma: base form of the word; "was" => "be".
            -  type: the part-of-speech tag; "NN" => a noun.
            - chunk: the chunk (or phrase) this word belongs to.
            - index: the index in the sentence.
        """
        if not isinstance(string, unicode):
            try: string = string.decode("utf-8") # ensure Unicode
            except: 
                pass
        self.sentence = sentence
        self.index    = index
        self.string   = string   # "was"
        self.lemma    = lemma    # "be"
        self.type     = type     # VB
        self.chunk    = None     # Chunk object this word belongs to (i.e., a VP).
        self.pnp      = None     # PNP chunk object this word belongs to.
                                 # word.chunk and word.pnp are set in chunk.append().
        self._custom_tags = None # Tags object, created on request.
    
    def copy(self, chunk=None, pnp=None):
        w = Word(
            self.sentence,
            self.string,
            self.lemma,
            self.type,
            self.index
        )
        w.chunk = chunk
        w.pnp = pnp
        if self._custom_tags:
            w._custom_tags = Tags(w, items=self._custom_tags)
        return w

    def _get_tag(self):
        return self.type    
    def _set_tag(self, v):
        self.type = v
        
    tag = pos = part_of_speech = property(_get_tag, _set_tag)

    @property
    def phrase(self):
        return self.chunk
    
    @property
    def prepositional_phrase(self):
        return self.pnp
        
    prepositional_noun_phrase = prepositional_phrase

    @property
    def tags(self):
        """ Yields a list of all the token tags as they appeared when the word was parsed.
            For example: ["was", "VBD", "B-VP", "O", "VP-1", "A1", "be"]
        """
        # See also. Sentence.__repr__().
        ch, I,O,B = self.chunk, INSIDE+"-", OUTSIDE, BEGIN+"-"
        tags = [OUTSIDE for i in range(len(self.sentence.token))]
        for i, tag in enumerate(self.sentence.token): # Default: [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA]
            if tag == WORD:
                tags[i] = encode_entities(self.string)
            elif tag == POS or tag == "pos" and self.type:
                tags[i] = self.type
            elif tag == CHUNK and ch and ch.type:
                tags[i] = (self == ch[0] and B or I) + ch.type
            elif tag == PNP and self.pnp:
                tags[i] = (self == self.pnp[0] and B or I) + "PNP"
            elif tag == REL and ch and len(ch.relations) > 0:
                tags[i] = ["-".join([str(x) for x in [ch.type]+list(reversed(r)) if x]) for r in ch.relations]
                tags[i] = "*".join(tags[i])
            elif tag == ANCHOR and ch:
                tags[i] = ch.anchor_id or OUTSIDE
            elif tag == LEMMA:
                tags[i] = encode_entities(self.lemma or "")
            elif tag in self.custom_tags:
                tags[i] = self.custom_tags.get(tag) or OUTSIDE
        return tags
    
    @property
    def custom_tags(self):
        if not self._custom_tags: self._custom_tags = Tags(self)
        return self._custom_tags

    def next(self, type=None):
        """ Returns the next word in the sentence with the given type.
        """
        i = self.index + 1
        s = self.sentence
        while i < len(s):
            if type in (s[i].type, None):
                return s[i]
            i += 1

    def previous(self, type=None):
        """ Returns the next previous word in the sentence with the given type.
        """
        i = self.index - 1
        s = self.sentence
        while i > 0:
            if type in (s[i].type, None):
                return s[i]
            i -= 1

    # User-defined tags are available as Word.[tag] attributes.
    def __getattr__(self, tag):
        d = self.__dict__.get("_custom_tags", None)
        if d and tag in d:
            return d[tag]
        raise AttributeError("Word instance has no attribute '%s'" % tag)

    # Word.string and unicode(Word) are Unicode strings.
    # repr(Word) is a Python string (with Unicode characters encoded).
    def __unicode__(self):
        return self.string
    def __repr__(self):
        return "Word(%s)" % repr("%s/%s" % (
            encode_entities(self.string),
            self.type is not None and self.type or OUTSIDE))

    def __eq__(self, word):
        return id(self) == id(word)
    def __ne__(self, word):
        return id(self) != id(word)

class Tags(dict):
    
    def __init__(self, word, items=[]):
        """ A dictionary of custom word tags.
            A word may be annotated with its part-of-speech tag (e.g., "cat/NN"), 
            phrase tag (e.g., "cat/NN/NP"), the prepositional noun phrase it is part of etc.
            An example of an extra custom slot is its semantic type, 
            e.g., gene type, topic, and so on: "cat/NN/NP/genus_felis"
        """
        if items:
            dict.__init__(self, items)
        self.word = word
    
    def __setitem__(self, k, v):
        # Ensure that the custom tag is also in Word.sentence.token,
        # so that it is not forgotten when exporting or importing XML.
        dict.__setitem__(self, k, v)
        if k not in reversed(self.word.sentence.token): 
            self.word.sentence.token.append(k)
            
    def setdefault(self, k, v):
        if k not in self: 
            self.__setitem__(k, v); return self[k]

#--- CHUNK -----------------------------------------------------------------------------------------

class Chunk(object):
    
    def __init__(self, sentence, words=[], type=None, role=None, relation=None):
        """ A list of words that make up a phrase in the sentence.
            - type: the phrase tag; "NP" => a noun phrase (e.g., "the black cat").
            - role: the function of the phrase; "SBJ" => sentence subject.
            - relation: an id shared with other phrases, linking subject to object in the sentence.
        """
        # A chunk can have multiple roles or relations in the sentence,
        # so role and relation can also be given as lists.
        b1 = isinstance(relation, (list, tuple))
        b2 = isinstance(role, (list, tuple))
        if not b1 and not b2:
            r = [(relation, role)]
        elif b1 and b2:
            r = zip(relation, role)
        elif b1:
            r = zip(relation, [role] * len(relation))
        elif b2:
            r = zip([relation] * len(role), role)
        r = [(a, b) for a, b in r if a is not None or b is not None]
        self.sentence      = sentence
        self.words         = []
        self.type          = type  # NP, VP, ADJP ...
        self.relations     = r     # NP-SBJ-1 => [(1, SBJ)]
        self.pnp           = None  # PNP chunk object this chunk belongs to.
        self.anchor        = None  # PNP chunk's anchor.
        self.attachments   = []    # PNP chunks attached to this anchor.
        self._conjunctions = None  # Conjunctions object, created on request.
        self._modifiers    = None
        self.extend(words)

    def extend(self, words):
        for w in words: 
            self.append(w)
    
    def append(self, word):
        self.words.append(word)
        word.chunk = self
        
    def __getitem__(self, index):
        return self.words[index]
    def __len__(self):
        return len(self.words)
    def __iter__(self):
        return self.words.__iter__()

    def _get_tag(self):
        return self.type
    def _set_tag(self, v):
        self.type = v
        
    tag = pos = part_of_speech = property(_get_tag, _set_tag)

    @property
    def start(self):
        return self.words[0].index
    @property
    def stop(self):
        return self.words[-1].index + 1
    @property
    def range(self):
        return range(self.start, self.stop)
    @property
    def span(self):
        return (self.start, self.stop)

    @property
    def lemmata(self):
        return [word.lemma for word in self.words]

    @property
    def tagged(self):
        return [(word.string, word.type) for word in self.words]
    
    @property
    def head(self):
        """ Yields the head of the chunk (usually, the last word in the chunk).
        """
        if self.type == "NP" and any(w.type.startswith("NNP") for w in self):
            w = find(lambda w: w.type.startswith("NNP"), reversed(self))
        elif self.type == "NP":  # "the cat" => "cat"
            w = find(lambda w: w.type.startswith("NN"), reversed(self))
        elif self.type == "VP":  # "is watching" => "watching"
            w = find(lambda w: w.type.startswith("VB"), reversed(self))
        elif self.type == "PP":  # "from up on" => "from"
            w = find(lambda w: w.type.startswith(("IN", "PP")), self)
        elif self.type == "PNP": # "from up on the roof" => "roof"
            w = find(lambda w: w.type.startswith("NN"), reversed(self))
        else:
            w = None
        if w is None:
            w = self[-1]
        return w

    @property
    def relation(self):
        """ Yields the first relation id of the chunk.
        """
        # [(2,OBJ), (3,OBJ)])] => 2
        return len(self.relations) > 0 and self.relations[0][0] or None
        
    @property
    def role(self):
        """ Yields the first role of the chunk (SBJ, OBJ, ...).
        """
        # [(1,SBJ), (1,OBJ)])] => SBJ
        return len(self.relations) > 0 and self.relations[0][1] or None

    @property
    def subject(self):
        ch = self.sentence.relations["SBJ"].get(self.relation, None)
        if ch != self: 
            return ch
    @property
    def object(self):
        ch = self.sentence.relations["OBJ"].get(self.relation, None)
        if ch != self: 
            return ch
    @property
    def verb(self):
        ch = self.sentence.relations["VP"].get(self.relation, None)
        if ch != self: 
            return ch
    @property
    def related(self):
        """ Yields a list of all chunks in the sentence with the same relation id.
        """
        return [ch for ch in self.sentence.chunks 
                    if ch != self and intersects(unzip(0, ch.relations), unzip(0, self.relations))]

    @property
    def prepositional_phrase(self):
        return self.pnp
        
    prepositional_noun_phrase = prepositional_phrase

    @property
    def anchor_id(self):
        """ Yields the anchor tag as parsed from the original token.
            Chunks that are anchors have a tag with an "A" prefix (e.g., "A1").
            Chunks that are PNP attachmens (or chunks inside a PNP) have "P" (e.g., "P1").
            Chunks inside a PNP can be both anchor and attachment (e.g., "P1-A2"),
            as in: "clawed/A1 at/P1 mice/P1-A2 in/P2 the/P2 wall/P2"
        """
        id = ""
        f = lambda ch: filter(lambda k: self.sentence._anchors[k] == ch, self.sentence._anchors)
        if self.pnp and self.pnp.anchor:
            id += "-" + "-".join(f(self.pnp))
        if self.anchor:
            id += "-" + "-".join(f(self))
        if self.attachments:
            id += "-" + "-".join(f(self))
        return id.strip("-") or None

    @property
    def conjunctions(self):
        if not self._conjunctions: self._conjunctions = Conjunctions(self)
        return self._conjunctions

    @property
    def modifiers(self):
        """ For verb phrases (VP), yields a list of the nearest adjectives and adverbs.
        """
        if self._modifiers is None:
            # Iterate over all the chunks and attach modifiers to their VP-anchor.
            is_modifier = lambda ch: ch.type in ("ADJP", "ADVP") and ch.relation is None
            for chunk in self.sentence.chunks:
                chunk._modifiers = []
            for chunk in filter(is_modifier, self.sentence.chunks):
                anchor = chunk.nearest("VP")
                if anchor: anchor._modifiers.append(chunk)
        return self._modifiers

    def nearest(self, type="VP"):
        """ Returns the nearest chunk in the sentence with the given type.
            This can be used (for example) to find adverbs and adjectives related to verbs,
            as in: "the cat is ravenous" => is what? => "ravenous".
        """
        candidate, d = None, len(self.sentence.chunks)
        if isinstance(self, PNPChunk):
            i = self.sentence.chunks.index(self.chunks[0])
        else:
            i = self.sentence.chunks.index(self)
        for j, chunk in enumerate(self.sentence.chunks):
            if chunk.type.startswith(type) and abs(i-j) < d:
                candidate, d = chunk, abs(i-j)
        return candidate
        
    def next(self, type=None):
        """ Returns the next chunk in the sentence with the given type.
        """
        i = self.stop
        s = self.sentence
        while i < len(s):
            if s[i].chunk is not None and type in (s[i].chunk.type, None):
                return s[i].chunk
            i += 1

    def previous(self, type=None):
        """ Returns the next previous chunk in the sentence with the given type.
        """
        i = self.start - 1
        s = self.sentence
        while i > 0:
            if s[i].chunk is not None and type in (s[i].chunk.type, None):
                return s[i].chunk
            i -= 1

    # Chunk.string and unicode(Chunk) are Unicode strings.
    # repr(Chunk) is a Python string (with Unicode characters encoded).
    @property
    def string(self):
        return u" ".join(word.string for word in self.words)
    def __unicode__(self):
        return self.string
    def __repr__(self):
        return "Chunk(%s)" %  repr("%s/%s%s%s") % (
                self.string,
                self.type is not None and self.type or OUTSIDE, 
                self.role is not None and ("-" + self.role) or "",
            self.relation is not None and ("-" + str(self.relation)) or "")
    
    def __eq__(self, chunk):
        return id(self) == id(chunk)
    def __ne__(self, chunk):
        return id(self) != id(chunk)

# Chinks are non-chunks,
# see also the chunked() function:
class Chink(Chunk):
    def __repr__(self):
        return Chunk.__repr__(self).replace("Chunk(", "Chink(", 1)

#--- PNP CHUNK -------------------------------------------------------------------------------------

class PNPChunk(Chunk):

    def __init__(self, *args, **kwargs):
        """ A chunk of chunks that make up a prepositional noun phrase (i.e., PP + NP).
            When the output of the parser includes PP-attachment,
            PNPChunck.anchor will yield the chunk that is clarified by the preposition.
            For example: "the cat went [for the mouse] [with its claws]":
            - [went] what? => for the mouse,
            - [went] how? => with its claws.
        """
        self.anchor = None # The anchor chunk (e.g., "for the mouse" => "went").
        self.chunks = []   # List of chunks in the prepositional noun phrase.
        Chunk.__init__(self, *args, **kwargs)

    def append(self, word):
        self.words.append(word)
        word.pnp = self
        if word.chunk is not None:
            word.chunk.pnp = self
            if word.chunk not in self.chunks:
                self.chunks.append(word.chunk)

    @property
    def preposition(self):
        """ Yields the first chunk in the prepositional noun phrase, usually a PP-chunk.
            PP-chunks contain words such as "for", "with", "in", ...
        """
        return self.chunks[0]
        
    pp = preposition

    @property
    def phrases(self):
        return self.chunks

    def guess_anchor(self):
        """ Returns an anchor chunk for this prepositional noun phrase (without a PP-attacher).
            Often, the nearest verb phrase is a good candidate.
        """
        return self.nearest("VP")

#--- CONJUNCTION -----------------------------------------------------------------------------------

CONJUNCT = AND = "AND"
DISJUNCT = OR  = "OR"

class Conjunctions(list):
    
    def __init__(self, chunk):
        """ Chunk.conjunctions is a list of other chunks participating in a conjunction.
            Each item in the list is a (chunk, conjunction)-tuple, with conjunction either AND or OR.
        """
        self.anchor = chunk

    def append(self, chunk, type=CONJUNCT):
        list.append(self, (chunk, type))

#--- SENTENCE --------------------------------------------------------------------------------------

_UID = 0
def _uid():
    global _UID; _UID+=1; return _UID

def _is_tokenstring(string):
    # The class mbsp.TokenString stores the format of tags for each token.
    # Since it comes directly from MBSP.parse(), this format is always correct,
    # regardless of the given token format parameter for Sentence() or Text().
    return isinstance(string, unicode) and hasattr(string, "tags")

class Sentence(object):

    def __init__(self, string="", token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA], language="en"):
        """ A nested tree of sentence words, chunks and prepositions.
            The input is a tagged string from parse(). 
            The order in which token tags appear can be specified.
        """
        # Extract token format from TokenString or TaggedString if possible.
        if _is_tokenstring(string):
            token, language = string.tags, getattr(string, "language", language)
        # Convert to Unicode.
        if not isinstance(string, unicode):
            for encoding in (("utf-8",), ("windows-1252",), ("utf-8", "ignore")):
                try: string = string.decode(*encoding)
                except:
                    pass
        self.parent      = None # A Slice refers to the Sentence it is part of.
        self.text        = None # A Sentence refers to the Text it is part of.
        self.language    = language
        self.id          = _uid()
        self.token       = list(token)
        self.words       = []
        self.chunks      = [] # Words grouped into chunks.
        self.pnp         = [] # Words grouped into PNP chunks.
        self._anchors    = {} # Anchor tags related to anchor chunks or attached PNP's.
        self._relation   = None # Helper variable: the last chunk's relation and role.
        self._attachment = None # Helper variable: the last attachment tag (e.g., "P1") parsed in _do_pnp().
        self._previous   = None # Helper variable: the last token parsed in parse_token().
        self.relations   = {"SBJ":{}, "OBJ":{}, "VP":{}}
        # Split the slash-formatted token into the separate tags in the given order.
        # Append Word and Chunk objects according to the token's tags.        
        for chars in string.split(" "):
            if chars:
                self.append(*self.parse_token(chars, token))

    @property
    def word(self):
        return self.words

    @property
    def lemmata(self):
        return Map(lambda w: w.lemma, self.words)
        #return [word.lemma for word in self.words]
        
    lemma = lemmata

    @property
    def parts_of_speech(self):
        return Map(lambda w: w.type, self.words)
        #return [word.type for word in self.words]
        
    pos = parts_of_speech

    @property
    def tagged(self):
        return [(word.string, word.type) for word in self]
        
    @property
    def phrases(self):
        return self.chunks
        
    chunk = phrases

    @property
    def prepositional_phrases(self):
        return self.pnp
        
    prepositional_noun_phrases = prepositional_phrases

    @property
    def start(self):
        return 0
    @property
    def stop(self):
        return self.start + len(self.words)

    @property
    def nouns(self):
        return [word for word in self if word.type.startswith("NN")]
    @property
    def verbs(self):
        return [word for word in self if word.type.startswith("VB")]
    @property
    def adjectives(self):
        return [word for word in self if word.type.startswith("JJ")]

    @property
    def subjects(self):
        return self.relations["SBJ"].values()
    @property
    def objects(self):
        return self.relations["OBJ"].values()
    @property
    def verbs(self):
        return self.relations["VP"].values()
        
    @property
    def anchors(self):
        return [chunk for chunk in self.chunks if len(chunk.attachments) > 0]

    @property
    def is_question(self):
        return len(self) > 0 and str(self[-1]) == "?"
    @property
    def is_exclamation(self):
        return len(self) > 0 and str(self[-1]) == "!"

    def __getitem__(self, index):
        return self.words[index]
    def __len__(self):
        return len(self.words)
    def __iter__(self):
        return self.words.__iter__()
    
    def append(self, word, lemma=None, type=None, chunk=None, role=None, relation=None, pnp=None, anchor=None, iob=None, custom={}):
        """ Appends the next word to the sentence / chunk / preposition.
            For example: Sentence.append("clawed", "claw", "VB", "VP", role=None, relation=1)
            - word     : the current word,
            - lemma    : the canonical form of the word,
            - type     : part-of-speech tag for the word (NN, JJ, ...),
            - chunk    : part-of-speech tag for the chunk this word is part of (NP, VP, ...),
            - role     : the chunk's grammatical role (SBJ, OBJ, ...),
            - relation : an id shared by other related chunks (e.g., SBJ-1 <=> VP-1),
            - pnp      : PNP if this word is in a prepositional noun phrase (B- prefix optional),
            - iob      : BEGIN if the word marks the start of a new chunk,
                         INSIDE (optional) if the word is part of the previous chunk,
            - custom   : a dictionary of (tag, value)-items for user-defined word tags.
        """
        self._do_word(word, lemma, type)            # Append Word object.
        self._do_chunk(chunk, role, relation, iob)  # Append Chunk, or add last word to last chunk.
        self._do_conjunction()
        self._do_relation()
        self._do_pnp(pnp, anchor)
        self._do_anchor(anchor)
        self._do_custom(custom)

    def parse_token(self, token, tags=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
        """ Returns the arguments for Sentence.append() from a tagged token representation.
            The order in which token tags appear can be specified.
            The default order is (separated by slashes): 
            - word, 
            - part-of-speech, 
            - (IOB-)chunk, 
            - (IOB-)preposition, 
            - chunk(-relation)(-role), 
            - anchor, 
            - lemma.
            Examples:
            The/DT/B-NP/O/NP-SBJ-1/O/the
            cats/NNS/I-NP/O/NP-SBJ-1/O/cat
            clawed/VBD/B-VP/O/VP-1/A1/claw
            at/IN/B-PP/B-PNP/PP/P1/at
            the/DT/B-NP/I-PNP/NP/P1/the
            sofa/NN/I-NP/I-PNP/NP/P1/sofa
            ././O/O/O/O/.
            Returns a (word, lemma, type, chunk, role, relation, preposition, anchor, iob, custom)-tuple,
            which can be passed to Sentence.append(): Sentence.append(*Sentence.parse_token("cats/NNS/NP"))
            The custom value is a dictionary of (tag, value)-items of unrecognized tags in the token.
        """
        p = { WORD: "", 
               POS: None, 
               IOB: None,
             CHUNK: None,
               PNP: None,
               REL: None,
              ROLE: None,
            ANCHOR: None,
             LEMMA: None }
        # Split the slash-formatted token into separate tags in the given order.
        # Decode &slash; characters (usually in words and lemmata).
        # Assume None for missing tags (except the word itself, which defaults to an empty string).
        custom = {}
        for k, v in izip(tags, token.split("/")):
            if SLASH0 in v:
                v = v.replace(SLASH, "/")
            if k == "pos":
                k = POS
            if k not in p:
                custom[k] = None
            if v != OUTSIDE or k == WORD or k == LEMMA: # "type O negative" => "O" != OUTSIDE.
                (p if k not in custom else custom)[k] = v
        # Split IOB-prefix from the chunk tag:
        # B- marks the start of a new chunk, 
        # I- marks inside of a chunk.
        ch = p[CHUNK]
        if ch is not None and ch.startswith(("B-", "I-")):
            p[IOB], p[CHUNK] = ch[:1], ch[2:] # B-NP
        # Split the role from the relation:
        # NP-SBJ-1 => relation id is 1 and role is SBJ, 
        # VP-1 => relation id is 1 with no role.
        # Tokens may be tagged with multiple relations (e.g., NP-OBJ-1*NP-OBJ-3).
        if p[REL] is not None:
            ch, p[REL], p[ROLE] = self._parse_relation(p[REL])
            # Infer a missing chunk tag from the relation tag (e.g., NP-SBJ-1 => NP).
            # For PP relation tags (e.g., PP-CLR-1), the first chunk is PP, the following chunks NP.
            if ch == "PP" \
             and self._previous \
             and self._previous[REL] == p[REL] \
             and self._previous[ROLE] == p[ROLE]: 
                ch = "NP"
            if p[CHUNK] is None and ch != OUTSIDE:
                p[CHUNK] = ch
        self._previous = p
        # Return the tags in the right order for Sentence.append().
        return p[WORD], p[LEMMA], p[POS], p[CHUNK], p[ROLE], p[REL], p[PNP], p[ANCHOR], p[IOB], custom
    
    def _parse_relation(self, tag):
        """ Parses the chunk tag, role and relation id from the token relation tag.
            - VP                => VP, [], []
            - VP-1              => VP, [1], [None]
            - ADJP-PRD          => ADJP, [None], [PRD]
            - NP-SBJ-1          => NP, [1], [SBJ]
            - NP-OBJ-1*NP-OBJ-2 => NP, [1,2], [OBJ,OBJ]
            - NP-SBJ;NP-OBJ-1   => NP, [1,1], [SBJ,OBJ]
        """
        chunk, relation, role = None, [], []
        if ";" in tag:
            # NP-SBJ;NP-OBJ-1 => 1 relates to both SBJ and OBJ.
            id = tag.split("*")[0][-2:]
            id = id if id.startswith("-") else ""
            tag = tag.replace(";", id + "*")
        if "*" in tag:
            tag = tag.split("*")
        else:
            tag = [tag]
        for s in tag:
            s = s.split("-")
            n = len(s)
            if n == 1: 
                chunk = s[0]
            if n == 2: 
                chunk = s[0]; relation.append(s[1]); role.append(None)
            if n >= 3: 
                chunk = s[0]; relation.append(s[2]); role.append(s[1])
            if n > 1:
                id = relation[-1]
                if id.isdigit():
                    relation[-1] = int(id)
                else:
                    # Correct "ADJP-PRD":
                    # (ADJP, [PRD], [None]) => (ADJP, [None], [PRD])
                    relation[-1], role[-1] = None, id
        return chunk, relation, role
    
    def _do_word(self, word, lemma=None, type=None):
        """ Adds a new Word to the sentence.
            Other Sentence._do_[tag] functions assume a new word has just been appended.
        """
        # Improve 3rd person singular "'s" lemma to "be", e.g., as in "he's fine".
        if lemma == "'s" and type in ("VB", "VBZ"):
            lemma = "be"
        self.words.append(Word(self, word, lemma, type, index=len(self.words)))     

    def _do_chunk(self, type, role=None, relation=None, iob=None):
        """ Adds a new Chunk to the sentence, or adds the last word to the previous chunk.
            The word is attached to the previous chunk if both type and relation match,
            and if the word's chunk tag does not start with "B-" (i.e., iob != BEGIN).
            Punctuation marks (or other "O" chunk tags) are not chunked.
        """
        if (type is None or type == OUTSIDE) and \
           (role is None or role == OUTSIDE) and (relation is None or relation == OUTSIDE):
            return
        if iob != BEGIN \
         and self.chunks \
         and self.chunks[-1].type == type \
         and self._relation == (relation, role) \
         and self.words[-2].chunk is not None: # "one, two" => "one" & "two" different chunks.
            self.chunks[-1].append(self.words[-1])
        else:
            ch = Chunk(self, [self.words[-1]], type, role, relation)
            self.chunks.append(ch)
            self._relation = (relation, role)
    
    def _do_relation(self):
        """ Attaches subjects, objects and verbs.
            If the previous chunk is a subject/object/verb, it is stored in Sentence.relations{}.
        """
        if self.chunks:
            ch = self.chunks[-1]
            for relation, role in ch.relations:
                if role == "SBJ" or role == "OBJ":
                    self.relations[role][relation] = ch
            if ch.type in ("VP",):
                self.relations[ch.type][ch.relation] = ch

    def _do_pnp(self, pnp, anchor=None):
        """ Attaches prepositional noun phrases.
            Identifies PNP's from either the PNP tag or the P-attachment tag.
            This does not determine the PP-anchor, it only groups words in a PNP chunk.
        """
        if anchor or pnp and pnp.endswith("PNP"):
            if anchor is not None:
                m = find(lambda x: x.startswith("P"), anchor)
            else:
                m = None
            if self.pnp \
             and pnp \
             and pnp != OUTSIDE \
             and pnp.startswith("B-") is False \
             and self.words[-2].pnp is not None:
                self.pnp[-1].append(self.words[-1])
            elif m is not None and m == self._attachment:
                self.pnp[-1].append(self.words[-1])
            else:
                ch = PNPChunk(self, [self.words[-1]], type="PNP")
                self.pnp.append(ch)                
            self._attachment = m
    
    def _do_anchor(self, anchor):
        """ Collects preposition anchors and attachments in a dictionary.
            Once the dictionary has an entry for both the anchor and the attachment, they are linked.
        """
        if anchor:
            for x in anchor.split("-"):
                A, P = None, None
                if x.startswith("A") and len(self.chunks) > 0: # anchor
                    A, P = x, x.replace("A","P")
                    self._anchors[A] = self.chunks[-1]
                if x.startswith("P") and len(self.pnp) > 0:    # attachment (PNP)
                    A, P = x.replace("P","A"), x
                    self._anchors[P] = self.pnp[-1]
                if A in self._anchors and P in self._anchors and not self._anchors[P].anchor:
                    pnp = self._anchors[P]
                    pnp.anchor = self._anchors[A]
                    pnp.anchor.attachments.append(pnp)
                
    def _do_custom(self, custom):
        """ Adds the user-defined tags to the last word.
            Custom tags can be used to add extra semantical meaning or metadata to words.
        """
        if custom:
            self.words[-1].custom_tags.update(custom)

    def _do_conjunction(self, _and=("and", "e", "en", "et", "und", "y")):
        """ Attach conjunctions.
            CC-words like "and" and "or" between two chunks indicate a conjunction.
        """
        w = self.words
        if len(w) > 2 and w[-2].type == "CC" and w[-2].chunk is None:
            cc  = w[-2].string.lower() in _and and AND or OR
            ch1 = w[-3].chunk
            ch2 = w[-1].chunk
            if ch1 is not None and \
               ch2 is not None:
                ch1.conjunctions.append(ch2, cc)
                ch2.conjunctions.append(ch1, cc)

    def get(self, index, tag=LEMMA):
        """ Returns a tag for the word at the given index.
            The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
        """
        if tag == WORD:
            return self.words[index]
        if tag == LEMMA:
            return self.words[index].lemma
        if tag == POS or tag == "pos":
            return self.words[index].type
        if tag == CHUNK:
            return self.words[index].chunk
        if tag == PNP:
            return self.words[index].pnp
        if tag == REL:
            ch = self.words[index].chunk; return ch and ch.relation
        if tag == ROLE:
            ch = self.words[index].chunk; return ch and ch.role
        if tag == ANCHOR:
            ch = self.words[index].pnp; return ch and ch.anchor
        if tag in self.words[index].custom_tags:
            return self.words[index].custom_tags[tag]
        return None
        
    def loop(self, *tags):
        """ Iterates over the tags in the entire Sentence,
            For example, Sentence.loop(POS, LEMMA) yields tuples of the part-of-speech tags and lemmata. 
            Possible tags: WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
            Any order or combination of tags can be supplied.
        """
        for i in range(len(self.words)):
            yield tuple([self.get(i, tag=tag) for tag in tags])  

    def indexof(self, value, tag=WORD):
        """ Returns the indices of tokens in the sentence where the given token tag equals the string.
            The string can contain a wildcard "*" at the end (this way "NN*" will match "NN" and "NNS").
            The tag can be WORD, LEMMA, POS, CHUNK, PNP, RELATION, ROLE, ANCHOR or a custom word tag.
            For example: Sentence.indexof("VP", tag=CHUNK) 
            returns the indices of all the words that are part of a VP chunk.
        """
        match = lambda a, b: a.endswith("*") and b.startswith(a[:-1]) or a==b
        indices = []
        for i in range(len(self.words)):
            if match(value, unicode(self.get(i, tag))):
                indices.append(i)
        return indices

    def slice(self, start, stop):
        """ Returns a portion of the sentence from word start index to word stop index.
            The returned slice is a subclass of Sentence and a deep copy.
        """
        s = Slice(token=self.token, language=self.language)
        for i, word in enumerate(self.words[start:stop]):
            # The easiest way to copy (part of) a sentence
            # is by unpacking all of the token tags and passing them to Sentence.append().
            p0 = word.string                                                       # WORD
            p1 = word.lemma                                                        # LEMMA
            p2 = word.type                                                         # POS
            p3 = word.chunk is not None and word.chunk.type or None                # CHUNK
            p4 = word.pnp is not None and "PNP" or None                            # PNP
            p5 = word.chunk is not None and unzip(0, word.chunk.relations) or None # REL            
            p6 = word.chunk is not None and unzip(1, word.chunk.relations) or None # ROLE
            p7 = word.chunk and word.chunk.anchor_id or None                       # ANCHOR
            p8 = word.chunk and word.chunk.start == start+i and BEGIN or None      # IOB
            p9 = word.custom_tags                                                  # User-defined tags.
            # If the given range does not contain the chunk head, remove the chunk tags.
            if word.chunk is not None and (word.chunk.stop > stop):
                p3, p4, p5, p6, p7, p8 = None, None, None, None, None, None
            # If the word starts the preposition, add the IOB B-prefix (i.e., B-PNP).
            if word.pnp is not None and word.pnp.start == start+i:
                p4 = BEGIN+"-"+"PNP"
            # If the given range does not contain the entire PNP, remove the PNP tags.
            # The range must contain the entire PNP, 
            # since it starts with the PP and ends with the chunk head (and is meaningless without these).
            if word.pnp is not None and (word.pnp.start < start or word.chunk.stop > stop):
                p4, p7 = None, None
            s.append(word=p0, lemma=p1, type=p2, chunk=p3, pnp=p4, relation=p5, role=p6, anchor=p7, iob=p8, custom=p9)
        s.parent = self
        s._start = start
        return s

    def copy(self):
        return self.slice(0, len(self))
        
    def chunked(self):
        return chunked(self)
        
    def constituents(self, pnp=False):
        """ Returns an in-order list of mixed Chunk and Word objects.
            With pnp=True, also contains PNPChunk objects whenever possible.
        """
        a = []
        for word in self.words:
            if pnp and word.pnp is not None:
                if len(a) == 0 or a[-1] != word.pnp:
                    a.append(word.pnp)
            elif word.chunk is not None:
                if len(a) == 0 or a[-1] != word.chunk:
                    a.append(word.chunk)
            else:
                a.append(word)
        return a

    # Sentence.string and unicode(Sentence) are Unicode strings.
    # repr(Sentence) is a Python strings (with Unicode characters encoded).
    @property
    def string(self):
        return u" ".join(word.string for word in self)
    def __unicode__(self):
        return self.string
    def __repr__(self):
        return "Sentence(%s)" % repr(" ".join(["/".join(word.tags) for word in self.words]).encode("utf-8"))
        
    def __eq__(self, other):
        if not isinstance(other, Sentence): 
            return False
        return len(self) == len(other) and repr(self) == repr(other)

    @property
    def xml(self):
        """ Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded).
        """
        return parse_xml(self, tab="\t", id=self.id or "")
        
    @classmethod
    def from_xml(cls, xml):
        """ Returns a new Text from the given XML string.
        """
        s = parse_string(xml)
        return Sentence(s.split("\n")[0], token=s.tags, language=s.language)
        
    fromxml = from_xml
        
    def nltk_tree(self):
        """ The sentence as an nltk.tree object.
        """
        return nltk_tree(self)

class Slice(Sentence):
    
    def __init__(self, *args, **kwargs):
        """ A portion of the sentence returned by Sentence.slice().
        """
        self._start = kwargs.pop("start", 0)
        Sentence.__init__(self, *args, **kwargs)
    
    @property
    def start(self):
        return self._start
        
    @property
    def stop(self):
        return self._start + len(self.words)

#---------------------------------------------------------------------------------------------------
# s = Sentence(parse("black cats and white dogs"))
# s.words          => [Word('black/JJ'), Word('cats/NNS'), Word('and/CC'), Word('white/JJ'), Word('dogs/NNS')]
# s.chunks         => [Chunk('black cats/NP'), Chunk('white dogs/NP')]
# s.constituents() => [Chunk('black cats/NP'), Word('and/CC'), Chunk('white dogs/NP')]
# s.chunked(s)     => [Chunk('black cats/NP'), Chink('and/O'), Chunk('white dogs/NP')]

def chunked(sentence):
    """ Returns a list of Chunk and Chink objects from the given sentence.
        Chink is a subclass of Chunk used for words that have Word.chunk == None
        (e.g., punctuation marks, conjunctions).
    """
    # For example, to construct a training vector with the head of previous chunks as a feature.
    # Doing this with Sentence.chunks would discard the punctuation marks and conjunctions
    # (Sentence.chunks only yields Chunk objects), which amy be useful features.
    chunks = []
    for word in sentence:
        if word.chunk is not None:
            if len(chunks) == 0 or chunks[-1] != word.chunk:
                chunks.append(word.chunk)
        else:
            ch = Chink(sentence)
            ch.append(word.copy(ch))
            chunks.append(ch)
    return chunks

#--- TEXT ------------------------------------------------------------------------------------------

class Text(list):
    
    def __init__(self, string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA], language="en", encoding="utf-8"):
        """ A list of Sentence objects parsed from the given string.
            The string is the Unicode return value from parse().
        """
        self.encoding = encoding
        # Extract token format from TokenString if possible.
        if _is_tokenstring(string):
            token, language = string.tags, getattr(string, "language", language)
        if string:
            # From a string.
            if isinstance(string, basestring):
                string = string.splitlines()
            # From an iterable (e.g., string.splitlines(), open('parsed.txt')).
            self.extend(Sentence(s, token, language) for s in string)
    
    def insert(self, index, sentence):
        list.insert(self, index, sentence)
        sentence.text = self
        
    def append(self, sentence):
        list.append(self, sentence)
        sentence.text = self
        
    def extend(self, sentences):
        list.extend(self, sentences)
        for s in sentences:
            s.text = self
            
    def remove(self, sentence):
        list.remove(self, sentence)
        sentence.text = None
        
    def pop(self, index):
        sentence = list.pop(self, index)
        sentence.text = None
        return sentence
    
    @property
    def sentences(self):
        return list(self)
        
    @property
    def words(self):
        return list(chain(*self))
        
    def copy(self):
        t = Text("", encoding=self.encoding)
        for sentence in self:
            t.append(sentence.copy())
        return t
    
    # Text.string and unicode(Text) are Unicode strings.
    @property
    def string(self):
        return u"\n".join(sentence.string for sentence in self)
        
    def __unicode__(self):
        return self.string
        
    #def __repr__(self):
    #    return "\n".join([repr(sentence) for sentence in self])

    @property
    def xml(self):
        """ Yields the sentence as an XML-formatted string (plain bytestring, UTF-8 encoded).
            All the sentences in the XML are wrapped in a <text> element.
        """
        xml = []
        xml.append('<?xml version="1.0" encoding="%s"?>' % XML_ENCODING.get(self.encoding, self.encoding))
        xml.append("<%s>" % XML_TEXT)
        xml.extend([sentence.xml for sentence in self])
        xml.append("</%s>" % XML_TEXT)
        return "\n".join(xml)
        
    @classmethod
    def from_xml(cls, xml):
        """ Returns a new Text from the given XML string.
        """
        return Text(parse_string(xml))
        
    fromxml = from_xml

Tree = Text

def tree(string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
    """ Transforms the output of parse() into a Text object.
        The token parameter lists the order of tags in each token in the input string.
    """
    return Text(string, token)
    
split = tree # Backwards compatibility.

def xml(string, token=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
    """ Transforms the output of parse() into XML.
        The token parameter lists the order of tags in each token in the input string.
    """
    return Text(string, token).xml

### XML ############################################################################################

# Elements:
XML_TEXT     = "text"     # <text>, corresponds to Text object.
XML_SENTENCE = "sentence" # <sentence>, corresponds to Sentence object.
XML_CHINK    = "chink"    # <chink>, where word.chunk.type=None.
XML_CHUNK    = "chunk"    # <chunk>, corresponds to Chunk object.
XML_PNP      = "chunk"    # <chunk type="PNP">, corresponds to PNP chunk object.
XML_WORD     = "word"     # <word>, corresponds to Word object

# Attributes:
XML_LANGUAGE = "language" # <sentence language="">, defines the language used.
XML_TOKEN    = "token"    # <sentence token="">, defines the order of tags in a token.
XML_TYPE     = "type"     # <word type="">, <chunk type="">
XML_RELATION = "relation" # <chunk relation="">
XML_ID       = "id"       # <chunk id="">
XML_OF       = "of"       # <chunk of=""> corresponds to id-attribute.
XML_ANCHOR   = "anchor"   # <chunk anchor=""> corresponds to id-attribute.
XML_LEMMA    = "lemma"    # <word lemma="">

XML_ENCODING = {
            'utf8' : 'UTF-8', 
           'utf-8' : 'UTF-8', 
           'utf16' : 'UTF-16', 
          'utf-16' : 'UTF-16',
           'latin' : 'ISO-8859-1', 
          'latin1' : 'ISO-8859-1', 
         'latin-1' : 'ISO-8859-1', 
          'cp1252' : 'windows-1252', 
    'windows-1252' : 'windows-1252'
}

def xml_encode(string):
    """ Returns the string with XML-safe special characters.
    """
    string = string.replace("&", "&amp;")
    string = string.replace("<", "&lt;")
    string = string.replace(">", "&gt;")
    string = string.replace("\"","&quot;")
    string = string.replace(SLASH, "/")
    return string
    
def xml_decode(string):
    """ Returns the string with special characters decoded.
    """
    string = string.replace("&amp;", "&")
    string = string.replace("&lt;",  "<")
    string = string.replace("&gt;",  ">")
    string = string.replace("&quot;","\"")
    string = string.replace("/", SLASH)
    return string

#--- SENTENCE TO XML -------------------------------------------------------------------------------

# Relation id's in the XML output are relative to the sentence id,
# so relation 1 in sentence 2 = "2.1".
_UID_SEPARATOR = "."

def parse_xml(sentence, tab="\t", id=""):
    """ Returns the given Sentence object as an XML-string (plain bytestring, UTF-8 encoded).
        The tab delimiter is used as indendation for nested elements.
        The id can be used as a unique identifier per sentence for chunk id's and anchors.
        For example: "I eat pizza with a fork." =>
        
        <sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma" language="en">
            <chunk type="NP" relation="SBJ" of="1">
                <word type="PRP" lemma="i">I</word>
            </chunk>
            <chunk type="VP" relation="VP" id="1" anchor="A1">
                <word type="VBP" lemma="eat">eat</word>
            </chunk>
            <chunk type="NP" relation="OBJ" of="1">
                <word type="NN" lemma="pizza">pizza</word>
            </chunk>
            <chunk type="PNP" of="A1">
                <chunk type="PP">
                    <word type="IN" lemma="with">with</word>
                </chunk>
                <chunk type="NP">
                    <word type="DT" lemma="a">a</word>
                    <word type="NN" lemma="fork">fork</word>
                </chunk>
            </chunk>
            <chink>
                <word type="." lemma=".">.</word>
            </chink>
        </sentence>
    """
    uid  = lambda *parts: "".join([str(id), _UID_SEPARATOR ]+[str(x) for x in parts]).lstrip(_UID_SEPARATOR)
    push = lambda indent: indent+tab         # push() increases the indentation.
    pop  = lambda indent: indent[:-len(tab)] # pop() decreases the indentation.
    indent = tab
    xml = []
    # Start the sentence element:
    # <sentence token="word, part-of-speech, chunk, preposition, relation, anchor, lemma">
    xml.append('<%s%s %s="%s" %s="%s">' % (
        XML_SENTENCE,
        XML_ID and " %s=\"%s\"" % (XML_ID, str(id)) or "",
        XML_TOKEN, ", ".join(sentence.token),
        XML_LANGUAGE, sentence.language
    ))
    # Collect chunks that are PNP anchors and assign id.
    anchors = {}
    for chunk in sentence.chunks:
        if chunk.attachments:
            anchors[chunk.start] = len(anchors) + 1
    # Traverse all words in the sentence.
    for word in sentence.words:
        chunk = word.chunk
        pnp   = word.chunk and word.chunk.pnp or None
        # Start the PNP element if the chunk is the first chunk in PNP:
        # <chunk type="PNP" of="A1">
        if pnp and pnp.start == chunk.start:
            a = pnp.anchor and ' %s="%s"' % (XML_OF, uid("A", anchors.get(pnp.anchor.start, ""))) or ""
            xml.append(indent + '<%s %s="PNP"%s>' % (XML_CHUNK, XML_TYPE, a))
            indent = push(indent)
        # Start the chunk element if the word is the first word in the chunk:
        # <chunk type="VP" relation="VP" id="1" anchor="A1">
        if chunk and chunk.start == word.index:
            if chunk.relations:
                # Create the shortest possible attribute values for multiple relations, 
                # e.g., [(1,"OBJ"),(2,"OBJ")]) => relation="OBJ" id="1|2"
                r1 = unzip(0, chunk.relations) # Relation id's.
                r2 = unzip(1, chunk.relations) # Relation roles.
                r1 = [x is None and "-" or uid(x) for x in r1]
                r2 = [x is None and "-" or x for x in r2]
                r1 = not len(unique(r1)) == 1 and "|".join(r1) or (r1+[None])[0]
                r2 = not len(unique(r2)) == 1 and "|".join(r2) or (r2+[None])[0]
            xml.append(indent + '<%s%s%s%s%s%s>' % (
                XML_CHUNK,
                chunk.type and ' %s="%s"' % (XML_TYPE, chunk.type) or "",
                chunk.relations and chunk.role != None and ' %s="%s"' % (XML_RELATION, r2) or "",
                chunk.relation  and chunk.type == "VP" and ' %s="%s"' % (XML_ID, uid(chunk.relation)) or "",
                chunk.relation  and chunk.type != "VP" and ' %s="%s"' % (XML_OF, r1) or "",
                chunk.attachments and ' %s="%s"' % (XML_ANCHOR, uid("A",anchors[chunk.start])) or ""
            ))
            indent = push(indent)
        # Words outside of a chunk are wrapped in a <chink> tag:
        # <chink>
        if not chunk:
            xml.append(indent + '<%s>' % XML_CHINK)
            indent = push(indent)
        # Add the word element:
        # <word type="VBP" lemma="eat">eat</word>
        xml.append(indent + '<%s%s%s%s>%s</%s>' % (
            XML_WORD,
            word.type and ' %s="%s"' % (XML_TYPE, xml_encode(word.type)) or '',
            word.lemma and ' %s="%s"' % (XML_LEMMA, xml_encode(word.lemma)) or '',
            (" "+" ".join(['%s="%s"' % (k,v) for k,v in word.custom_tags.items() if v != None])).rstrip(),
            xml_encode(unicode(word)),
            XML_WORD
        ))
        if not chunk:
            # Close the <chink> element if outside of a chunk.
            indent = pop(indent); xml.append(indent + "</%s>" % XML_CHINK)
        if chunk and chunk.stop-1 == word.index:
            # Close the <chunk> element if this is the last word in the chunk.
            indent = pop(indent); xml.append(indent + "</%s>" % XML_CHUNK)
        if pnp and pnp.stop-1 == word.index:
            # Close the PNP element if this is the last word in the PNP.
            indent = pop(indent); xml.append(indent + "</%s>" % XML_CHUNK)
    xml.append("</%s>" % XML_SENTENCE)
    # Return as a plain str.
    return "\n".join(xml).encode("utf-8")

#--- XML TO SENTENCE(S) ----------------------------------------------------------------------------

# Classes XML and XMLNode provide an abstract interface to cElementTree.
# The advantage is that we can switch to a faster parser in the future
# (as we did when switching from xml.dom.minidom to xml.etree).
# cElemenTree is fast; but the fastest way is to simply store and reload the parsed Unicode string.
# The disadvantage is that we need to remember the token format, see (1) below:
# s = "..."
# s = parse(s, lemmata=True)
# open("parsed.txt",  "w", encoding="utf-8").write(s)
# s = open("parsed.txt", encoding="utf-8")
# s = Text(s, token=[WORD, POS, CHUNK, PNP, LEMMA]) # (1)

class XML(object):
    def __init__(self, string):
        from xml.etree import cElementTree
        self.root = cElementTree.fromstring(string)
    def __call__(self, tag):
        return [XMLNode(e) for e in self.root.findall(tag)]

class XMLNode(object):
    def __init__(self, element):
        self.element = element
    @property
    def tag(self):
        return self.element.tag
    @property
    def value(self):
        return self.element.text
    def __iter__(self):
        return iter(XMLNode(e) for e in self.element)
    def __getitem__(self, k):
        return self.element.attrib[k]
    def get(self, k, default=""):
        return self.element.attrib.get(k, default)

# The structure of linked anchor chunks and PNP attachments
# is collected from _parse_token() calls.
_anchors     = {} # {u'A1': [[u'eat', u'VBP', u'B-VP', 'O', u'VP-1', 'O', u'eat', 'O']]}
_attachments = {} # {u'A1': [[[u'with', u'IN', u'B-PP', 'B-PNP', u'PP', 'O', u'with', 'O'], 
                  #           [u'a', u'DT', u'B-NP', 'I-PNP', u'NP', 'O', u'a', 'O'], 
                  #           [u'fork', u'NN', u'I-NP', 'I-PNP', u'NP', 'O', u'fork', 'O']]]}

# This is a fallback if for some reason we fail to import MBSP.TokenString,
# e.g., when tree.py is part of another project.
class TaggedString(unicode):
    def __new__(cls, string, tags=["word"], language="en"):
        if isinstance(string, unicode) and hasattr(string, "tags"): 
            tags, language = string.tags, getattr(string, "language", language)
        s = unicode.__new__(cls, string)
        s.tags = list(tags)
        s.language = language
        return s

def parse_string(xml):
    """ Returns a slash-formatted string from the given XML representation.
        The return value is a TokenString (for MBSP) or TaggedString (for Pattern).
    """
    string = ""
    # Traverse all the <sentence> elements in the XML.
    dom = XML(xml)
    for sentence in dom(XML_SENTENCE):
        _anchors.clear()     # Populated by calling _parse_tokens().
        _attachments.clear() # Populated by calling _parse_tokens().
        # Parse the language from <sentence language="">.
        language = sentence.get(XML_LANGUAGE, "en")
        # Parse the token tag format from <sentence token="">.
        # This information is returned in TokenString.tags,
        # so the format and order of the token tags is retained when exporting/importing as XML.
        format = sentence.get(XML_TOKEN, [WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA])
        format = not isinstance(format, basestring) and format or format.replace(" ","").split(",")
        # Traverse all <chunk> and <chink> elements in the sentence.
        # Find the <word> elements inside and create tokens.
        tokens = []
        for chunk in sentence:
            tokens.extend(_parse_tokens(chunk, format))
        # Attach PNP's to their anchors.
        # Keys in _anchors have linked anchor chunks (each chunk is a list of tokens).
        # The keys correspond to the keys in _attachments, which have linked PNP chunks.
        if ANCHOR in format:
            A, P, a, i = _anchors, _attachments, 1, format.index(ANCHOR)
            for id in sorted(A.keys()):
                for token in A[id]:
                    token[i] += "-"+"-".join(["A"+str(a+p) for p in range(len(P[id]))])
                    token[i]  = token[i].strip("O-")
                for p, pnp in enumerate(P[id]):
                    for token in pnp: 
                        token[i] += "-"+"P"+str(a+p)
                        token[i]  = token[i].strip("O-")
                a += len(P[id])
        # Collapse the tokens to string.
        # Separate multiple sentences with a new line.
        tokens = ["/".join([tag for tag in token]) for token in tokens]
        tokens = " ".join(tokens)
        string += tokens + "\n"
    # Return a TokenString, which is a unicode string that transforms easily
    # into a plain str, a list of tokens, or a Sentence.
    try:
        if MBSP: from mbsp import TokenString
        return TokenString(string.strip(), tags=format, language=language)
    except:
        return TaggedString(string.strip(), tags=format, language=language)

def _parse_tokens(chunk, format=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
    """ Parses tokens from <word> elements in the given XML <chunk> element.
        Returns a flat list of tokens, in which each token is [WORD, POS, CHUNK, PNP, RELATION, ANCHOR, LEMMA].
        If a <chunk type="PNP"> is encountered, traverses all of the chunks in the PNP.
    """
    tokens = []
    # Only process <chunk> and <chink> elements, 
    # text nodes in between return an empty list.
    if not (chunk.tag == XML_CHUNK or chunk.tag == XML_CHINK):
        return []
    type = chunk.get(XML_TYPE, "O")
    if type == "PNP":
        # For, <chunk type="PNP">, recurse all the child chunks inside the PNP.
        for ch in chunk:
            tokens.extend(_parse_tokens(ch, format))
        # Tag each of them as part of the PNP.
        if PNP in format:
            i = format.index(PNP)
            for j, token in enumerate(tokens):
                token[i] = (j==0 and "B-" or "I-") + "PNP"
        # Store attachments so we can construct anchor id's in parse_string().
        # This has to be done at the end, when all the chunks have been found.
        a = chunk.get(XML_OF).split(_UID_SEPARATOR)[-1]
        if a:
            _attachments.setdefault(a, [])
            _attachments[a].append(tokens)
        return tokens
    # For <chunk type-"VP" id="1">, the relation is VP-1.
    # For <chunk type="NP" relation="OBJ" of="1">, the relation is NP-OBJ-1.
    relation = _parse_relation(chunk, type)
    # Process all of the <word> elements in the chunk, for example:
    # <word type="NN" lemma="pizza">pizza</word> => [pizza, NN, I-NP, O, NP-OBJ-1, O, pizza]
    for word in filter(lambda n: n.tag == XML_WORD, chunk):
        tokens.append(_parse_token(word, chunk=type, relation=relation, format=format))
    # Add the IOB chunk tags:
    # words at the start of a chunk are marked with B-, words inside with I-.
    if CHUNK in format:
        i = format.index(CHUNK)
        for j, token in enumerate(tokens):
            token[i] = token[i] != "O" and ((j==0 and "B-" or "I-") + token[i]) or "O"
    # The chunk can be the anchor of one or more PNP chunks.
    # Store anchors so we can construct anchor id's in parse_string().
    a = chunk.get(XML_ANCHOR, "").split(_UID_SEPARATOR)[-1]
    if a: 
        _anchors[a] = tokens
    return tokens

def _parse_relation(chunk, type="O"):
    """ Returns a string of the roles and relations parsed from the given <chunk> element.
        The chunk type (which is part of the relation string) can be given as parameter.
    """
    r1 = chunk.get(XML_RELATION)
    r2 = chunk.get(XML_ID, chunk.get(XML_OF))
    r1 = [x != "-" and x or None for x in r1.split("|")] or [None]
    r2 = [x != "-" and x or None for x in r2.split("|")] or [None]
    r2 = [x is not None and x.split(_UID_SEPARATOR )[-1] or x for x in r2]
    if len(r1) < len(r2): r1 = r1 + r1 * (len(r2)-len(r1)) # [1] ["SBJ", "OBJ"] => "SBJ-1;OBJ-1"
    if len(r2) < len(r1): r2 = r2 + r2 * (len(r1)-len(r2)) # [2,4] ["OBJ"] => "OBJ-2;OBJ-4"
    return ";".join(["-".join([x for x in (type, r1, r2) if x]) for r1, r2 in zip(r1, r2)])    

def _parse_token(word, chunk="O", pnp="O", relation="O", anchor="O", 
                 format=[WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA]):
    """ Returns a list of token tags parsed from the given <word> element.
        Tags that are not attributes in a <word> (e.g., relation) can be given as parameters.
    """
    tags = []
    for tag in format:
        if   tag == WORD   : tags.append(xml_decode(word.value))
        elif tag == POS    : tags.append(xml_decode(word.get(XML_TYPE, "O")))
        elif tag == CHUNK  : tags.append(chunk)
        elif tag == PNP    : tags.append(pnp)
        elif tag == REL    : tags.append(relation)
        elif tag == ANCHOR : tags.append(anchor)
        elif tag == LEMMA  : tags.append(xml_decode(word.get(XML_LEMMA, "")))
        else:
            # Custom tags when the parser has been extended, see also Word.custom_tags{}.
            tags.append(xml_decode(word.get(tag, "O")))
    return tags

### NLTK TREE ######################################################################################

def nltk_tree(sentence):
    """ Returns an NLTK nltk.tree.Tree object from the given Sentence.
        The NLTK module should be on the search path somewhere.
    """
    from nltk import tree
    def do_pnp(pnp):
        # Returns the PNPChunk (and the contained Chunk objects) in NLTK bracket format.
        s = ' '.join([do_chunk(ch) for ch in pnp.chunks])
        return '(PNP %s)' % s
    
    def do_chunk(ch):
        # Returns the Chunk in NLTK bracket format. Recurse attached PNP's.
        s = ' '.join(['(%s %s)' % (w.pos, w.string) for w in ch.words])
        s+= ' '.join([do_pnp(pnp) for pnp in ch.attachments])
        return '(%s %s)' % (ch.type, s)
    
    T = ['(S']
    v = [] # PNP's already visited.
    for ch in sentence.chunked():
        if not ch.pnp and isinstance(ch, Chink):
            T.append('(%s %s)' % (ch.words[0].pos, ch.words[0].string))
        elif not ch.pnp:
            T.append(do_chunk(ch))
        #elif ch.pnp not in v:
        elif ch.pnp.anchor is None and ch.pnp not in v:
            # The chunk is part of a PNP without an anchor.
            T.append(do_pnp(ch.pnp))
            v.append(ch.pnp)
    T.append(')')
    return tree.bracket_parse(' '.join(T))

### GRAPHVIZ DOT ###################################################################################

BLUE = {
       '' : ("#f0f5ff", "#000000"),
     'VP' : ("#e6f0ff", "#000000"),
    'SBJ' : ("#64788c", "#ffffff"),
    'OBJ' : ("#64788c", "#ffffff"),
}

def _colorize(x, colors):
    s = ''
    if isinstance(x, Word):
        x = x.chunk
    if isinstance(x, Chunk):
        s = ',style=filled, fillcolor="%s", fontcolor="%s"' % ( \
            colors.get(x.role) or \
            colors.get(x.type) or \
            colors.get('') or ("none", "black"))
    return s

def graphviz_dot(sentence, font="Arial", colors=BLUE):
    """ Returns a dot-formatted string that can be visualized as a graph in GraphViz.
    """
    s  = 'digraph sentence {\n'
    s += '\tranksep=0.75;\n'
    s += '\tnodesep=0.15;\n'
    s += '\tnode [penwidth=1, fontname="%s", shape=record, margin=0.1, height=0.35];\n' % font
    s += '\tedge [penwidth=1];\n'
    s += '\t{ rank=same;\n'
    # Create node groups for words, chunks and PNP chunks.
    for w in sentence.words:
        s += '\t\tword%s [label="<f0>%s|<f1>%s"%s];\n' % (w.index, w.string, w.type, _colorize(w, colors))
    for w in sentence.words[:-1]:
        # Invisible edges forces the words into the right order:
        s += '\t\tword%s -> word%s [color=none];\n' % (w.index, w.index+1)
    s += '\t}\n'
    s += '\t{ rank=same;\n'        
    for i, ch in enumerate(sentence.chunks):
        s += '\t\tchunk%s [label="<f0>%s"%s];\n' % (i+1, "-".join([x for x in (
            ch.type, ch.role, str(ch.relation or '')) if x]) or '-', _colorize(ch, colors))
    for i, ch in enumerate(sentence.chunks[:-1]):
        # Invisible edges forces the chunks into the right order:
        s += '\t\tchunk%s -> chunk%s [color=none];\n' % (i+1, i+2)
    s += '}\n'
    s += '\t{ rank=same;\n'
    for i, ch in enumerate(sentence.pnp):
        s += '\t\tpnp%s [label="<f0>PNP"%s];\n' % (i+1, _colorize(ch, colors))
    s += '\t}\n'
    s += '\t{ rank=same;\n S [shape=circle, margin=0.25, penwidth=2]; }\n'
    # Connect words to chunks.
    # Connect chunks to PNP or S.
    for i, ch in enumerate(sentence.chunks):
        for w in ch:
            s += '\tword%s -> chunk%s;\n' % (w.index, i+1)
        if ch.pnp:
            s += '\tchunk%s -> pnp%s;\n' % (i+1, sentence.pnp.index(ch.pnp)+1)
        else:
            s += '\tchunk%s -> S;\n' % (i+1)
        if ch.type == 'VP':
            # Indicate related chunks with a dotted
            for r in ch.related:
                s += '\tchunk%s -> chunk%s [style=dotted, arrowhead=none];\n' % (
                    i+1, sentence.chunks.index(r)+1)
    # Connect PNP to anchor chunk or S.
    for i, ch in enumerate(sentence.pnp):
        if ch.anchor:
            s += '\tpnp%s -> chunk%s;\n' % (i+1, sentence.chunks.index(ch.anchor)+1)
            s += '\tpnp%s -> S [color=none];\n' % (i+1)
        else:
            s += '\tpnp%s -> S;\n' % (i+1)
    s += "}"
    return s

### STDOUT TABLE ###################################################################################

def table(sentence, fill=1, placeholder="-"):
    """ Returns a string where the tags of tokens in the sentence are organized in outlined columns.
    """
    tags  = [WORD, POS, IOB, CHUNK, ROLE, REL, PNP, ANCHOR, LEMMA]
    tags += [tag for tag in sentence.token if tag not in tags]
    def format(token, tag):
        # Returns the token tag as a string.
        if   tag == WORD   : s = token.string
        elif tag == POS    : s = token.type
        elif tag == IOB    : s = token.chunk and (token.index == token.chunk.start and "B" or "I")
        elif tag == CHUNK  : s = token.chunk and token.chunk.type
        elif tag == ROLE   : s = token.chunk and token.chunk.role
        elif tag == REL    : s = token.chunk and token.chunk.relation and str(token.chunk.relation)
        elif tag == PNP    : s = token.chunk and token.chunk.pnp and token.chunk.pnp.type
        elif tag == ANCHOR : s = token.chunk and token.chunk.anchor_id
        elif tag == LEMMA  : s = token.lemma
        else               : s = token.custom_tags.get(tag)
        return s or placeholder
    def outline(column, fill=1, padding=3, align="left"):
        # Add spaces to each string in the column so they line out to the highest width.
        n = max([len(x) for x in column]+[fill])
        if align == "left"  : return [x+" "*(n-len(x))+" "*padding for x in column]
        if align == "right" : return [" "*(n-len(x))+x+" "*padding for x in column]
    
    # Gather the tags of the tokens in the sentece per column.
    # If the IOB-tag is I-, mark the chunk tag with "^".
    # Add the tag names as headers in each column.
    columns = [[format(token, tag) for token in sentence] for tag in tags]
    columns[3] = [columns[3][i]+(iob == "I" and " ^" or "") for i, iob in enumerate(columns[2])]
    del columns[2]
    for i, header in enumerate(['word', 'tag', 'chunk', 'role', 'id', 'pnp', 'anchor', 'lemma']+tags[9:]):
        columns[i].insert(0, "")
        columns[i].insert(0, header.upper())
    # The left column (the word itself) is outlined to the right,
    # and has extra spacing so that words across sentences line out nicely below each other.
    for i, column in enumerate(columns):
        columns[i] = outline(column, fill+10*(i==0), align=("left","right")[i==0])
    # Anchor column is useful in MBSP but not in pattern.en.
    if not MBSP:
        del columns[6] 
    # Create a string with one row (i.e., one token) per line.
    return "\n".join(["".join([x[i] for x in columns]) for i in range(len(columns[0]))])