File: __init__.py

package info (click to toggle)
python-pattern 2.6%2Bgit20150109-3
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 78,672 kB
  • sloc: python: 53,865; xml: 11,965; ansic: 2,318; makefile: 94
file content (222 lines) | stat: -rw-r--r-- 8,031 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
#### PATTERN | XX ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) year, institute, country
# Author: Name (e-mail)
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern

####################################################################################################
# Template for pattern.xx, bundling natural language processing tools for language XXXXX.
# The module bundles a shallow parser (part-of-speech tagger, chunker, lemmatizer)
# with functions for word inflection (singularization, pluralization, conjugation)
# and sentiment analysis.

# Base classes for the parser, verb table and sentiment lexicon are inherited from pattern.text.
# The parser can be subclassed with a custom tokenizer (finds sentence boundaries)
# and lemmatizer (uses word inflection to find the base form of words).
# The part-of-speech tagger requires a lexicon of tagged known words and rules for unknown words.

# Tools for word inflection should be bundled in pattern.text.xx.inflect.

import os
import sys

try:
    MODULE = os.path.dirname(os.path.realpath(__file__))
except:
    MODULE = ""

sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))

# Import parser base classes.
from pattern.text import (
    Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
    PUNCTUATION
)
# Import parse tree base classes.
from pattern.text.tree import (
    Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
    SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import sentiment analysis base classes.
from pattern.text import (
    Sentiment,
    NOUN, VERB, ADJECTIVE, ADVERB,
    MOOD, IRONY
)
# Import spelling base class.
from pattern.text import (
    Spelling
)
# Import verb tenses.
from pattern.text import (
    INFINITIVE, PRESENT, PAST, FUTURE,
    FIRST, SECOND, THIRD,
    SINGULAR, PLURAL, SG, PL,
    PROGRESSIVE,
    PARTICIPLE
)
# Import inflection functions.
from pattern.text.xx.inflect import (
    article, referenced, DEFINITE, INDEFINITE,
    pluralize, singularize, NOUN, VERB, ADJECTIVE,
    verbs, conjugate, lemma, lexeme, tenses,
    predicative, attributive
)
# Import all submodules.
from pattern.text.xx import inflect

sys.path.pop(0)

#--- PARSER ----------------------------------------------------------------------------------------

# Pattern uses the Penn Treebank II tagset (http://www.clips.ua.ac.be/pages/penn-treebank-tagset).
# The lexicon for pattern.xx may be using a different tagset (e.g., PAROLE, WOTAN).
# The following functions are meant to map the tags to Penn Treebank II, see Parser.find_chunks().

TAGSET = {"??": "NN"} # pattern.xx tagset => Penn Treebank II.

def tagset2penntreebank(tag):
    return TAGSET.get(tag, tag)

# Different languages have different contractions (e.g., English "I've" or French "j'ai")
# and abbreviations. The following functions define contractions and abbreviations
# for pattern.xx, see also Parser.find_tokens().

REPLACEMENTS  = {"'s": " 's", "'ve": " 've"}
ABBREVIATIONS = set(("e.g.", "etc.", "i.e."))

# A lemmatizer can be constructed if we have a pattern.xx.inflect,
# with functions for noun singularization and verb conjugation (i.e., infinitives).

def find_lemmata(tokens):
    """ Annotates the tokens with lemmata for plural nouns and conjugated verbs,
        where each token is a [word, part-of-speech] list.
    """
    for token in tokens:
        word, pos, lemma = token[0], token[1], token[0]
        if pos.startswith("JJ"):
            lemma = predicative(word)  
        if pos == "NNS":
            lemma = singularize(word)
        if pos.startswith(("VB", "MD")):
            lemma = conjugate(word, INFINITIVE) or word
        token.append(lemma.lower())
    return tokens

# Subclass the base parser with the language-specific functionality:

class Parser(_Parser):
    
    def find_tokens(self, tokens, **kwargs):
        kwargs.setdefault("abbreviations", ABBREVIATIONS)
        kwargs.setdefault("replace", REPLACEMENTS)
        return _Parser.find_tokens(self, tokens, **kwargs)
        
    def find_tags(self, tokens, **kwargs):
        kwargs.setdefault("map", tagset2penntreebank)
        return _Parser.find_tags(self, tokens, **kwargs)
        
    def find_chunks(self, tokens, **kwargs):
        return _Parser.find_chunks(self, tokens, **kwargs)

    def find_lemmata(self, tokens, **kwargs):
        return find_lemmata(tokens)

# The parser's part-of-speech tagger requires a lexicon of tagged known words,
# and rules for unknown words. See pattern.text.Morphology and pattern.text.Context
# for further details. A tutorial on how to acquire data for the lexicon is here:
# http://www.clips.ua.ac.be/pages/using-wiktionary-to-build-an-italian-part-of-speech-tagger

# Create the parser with default tags for unknown words:
# (noun, proper noun, numeric).

parser = Parser(
     lexicon = os.path.join(MODULE, "xx-lexicon.txt"),    # A dict of known words => most frequent tag.
   frequency = os.path.join(MODULE, "xx-frequency.txt"),  # A dict of word frequency.
  morphology = os.path.join(MODULE, "xx-morphology.txt"), # A set of suffix rules.
     context = os.path.join(MODULE, "xx-context.txt"),    # A set of contextual rules.
    entities = os.path.join(MODULE, "xx-entities.txt"),   # A dict of named entities: John = NNP-PERS.
     default = ("NN", "NNP", "CD"),
    language = "xx"
)

lexicon = parser.lexicon # Expose lexicon.

# Create the sentiment lexicon,
# see pattern/text/xx/xx-sentiment.xml for further details.
# We also need to define the tag for modifiers,
# words that modify the score of the following word 
# (e.g., *very* good, *not good, ...)

sentiment = Sentiment(
        path = os.path.join(MODULE, "xx-sentiment.xml"), 
      synset = None,
   negations = ("no", "not", "never"),
   modifiers = ("RB",),
   modifier  = lambda w: w.endswith("ly"), # brilliantly, hardly, partially, ...
    language = "xx"
)

# Nothing should be changed below.

def tokenize(s, *args, **kwargs):
    """ Returns a list of sentences, where punctuation marks have been split from words.
    """
    return parser.find_tokens(s, *args, **kwargs)

def parse(s, *args, **kwargs):
    """ Returns a tagged Unicode string.
    """
    return parser.parse(s, *args, **kwargs)

def parsetree(s, *args, **kwargs):
    """ Returns a parsed Text from the given string.
    """
    return Text(parse(s, *args, **kwargs))

def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
    """ Returns a parsed Text from the given parsed string.
    """
    return Text(s, token)
    
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
    """ Returns a list of (token, tag)-tuples from the given string.
    """
    tags = []
    for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
        for token in sentence:
            tags.append((token[0], token[1]))
    return tags

def keywords(s, top=10, **kwargs):
     """ Returns a sorted list of keywords in the given string.
     """
    return parser.find_keywords(s, **dict({
        "frequency": parser.frequency,
              "top": top,
              "pos": ("NN",),
           "ignore": ("rt",)}, **kwargs))
     
def polarity(s, **kwargs):
    """ Returns the sentence polarity (positive/negative) between -1.0 and 1.0.
    """
    return sentiment(s, **kwargs)[0]

def subjectivity(s, **kwargs):
    """ Returns the sentence subjectivity (objective/subjective) between 0.0 and 1.0.
    """
    return sentiment(s, **kwargs)[1]
    
def positive(s, threshold=0.1, **kwargs):
    """ Returns True if the given sentence has a positive sentiment.
    """
    return polarity(s, **kwargs) >= threshold

split = tree # Backwards compatibility.

#---------------------------------------------------------------------------------------------------
# python -m pattern.xx xml -s "..." -OTCL

if __name__ == "__main__":
    commandline(parse)