1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222
|
#### PATTERN | XX ##################################################################################
# -*- coding: utf-8 -*-
# Copyright (c) year, institute, country
# Author: Name (e-mail)
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# Template for pattern.xx, bundling natural language processing tools for language XXXXX.
# The module bundles a shallow parser (part-of-speech tagger, chunker, lemmatizer)
# with functions for word inflection (singularization, pluralization, conjugation)
# and sentiment analysis.
# Base classes for the parser, verb table and sentiment lexicon are inherited from pattern.text.
# The parser can be subclassed with a custom tokenizer (finds sentence boundaries)
# and lemmatizer (uses word inflection to find the base form of words).
# The part-of-speech tagger requires a lexicon of tagged known words and rules for unknown words.
# Tools for word inflection should be bundled in pattern.text.xx.inflect.
import os
import sys
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
sys.path.insert(0, os.path.join(MODULE, "..", "..", "..", ".."))
# Import parser base classes.
from pattern.text import (
Lexicon, Model, Morphology, Context, Parser as _Parser, ngrams, pprint, commandline,
PUNCTUATION
)
# Import parse tree base classes.
from pattern.text.tree import (
Tree, Text, Sentence, Slice, Chunk, PNPChunk, Chink, Word, table,
SLASH, WORD, POS, CHUNK, PNP, REL, ANCHOR, LEMMA, AND, OR
)
# Import sentiment analysis base classes.
from pattern.text import (
Sentiment,
NOUN, VERB, ADJECTIVE, ADVERB,
MOOD, IRONY
)
# Import spelling base class.
from pattern.text import (
Spelling
)
# Import verb tenses.
from pattern.text import (
INFINITIVE, PRESENT, PAST, FUTURE,
FIRST, SECOND, THIRD,
SINGULAR, PLURAL, SG, PL,
PROGRESSIVE,
PARTICIPLE
)
# Import inflection functions.
from pattern.text.xx.inflect import (
article, referenced, DEFINITE, INDEFINITE,
pluralize, singularize, NOUN, VERB, ADJECTIVE,
verbs, conjugate, lemma, lexeme, tenses,
predicative, attributive
)
# Import all submodules.
from pattern.text.xx import inflect
sys.path.pop(0)
#--- PARSER ----------------------------------------------------------------------------------------
# Pattern uses the Penn Treebank II tagset (http://www.clips.ua.ac.be/pages/penn-treebank-tagset).
# The lexicon for pattern.xx may be using a different tagset (e.g., PAROLE, WOTAN).
# The following functions are meant to map the tags to Penn Treebank II, see Parser.find_chunks().
TAGSET = {"??": "NN"} # pattern.xx tagset => Penn Treebank II.
def tagset2penntreebank(tag):
return TAGSET.get(tag, tag)
# Different languages have different contractions (e.g., English "I've" or French "j'ai")
# and abbreviations. The following functions define contractions and abbreviations
# for pattern.xx, see also Parser.find_tokens().
REPLACEMENTS = {"'s": " 's", "'ve": " 've"}
ABBREVIATIONS = set(("e.g.", "etc.", "i.e."))
# A lemmatizer can be constructed if we have a pattern.xx.inflect,
# with functions for noun singularization and verb conjugation (i.e., infinitives).
def find_lemmata(tokens):
""" Annotates the tokens with lemmata for plural nouns and conjugated verbs,
where each token is a [word, part-of-speech] list.
"""
for token in tokens:
word, pos, lemma = token[0], token[1], token[0]
if pos.startswith("JJ"):
lemma = predicative(word)
if pos == "NNS":
lemma = singularize(word)
if pos.startswith(("VB", "MD")):
lemma = conjugate(word, INFINITIVE) or word
token.append(lemma.lower())
return tokens
# Subclass the base parser with the language-specific functionality:
class Parser(_Parser):
def find_tokens(self, tokens, **kwargs):
kwargs.setdefault("abbreviations", ABBREVIATIONS)
kwargs.setdefault("replace", REPLACEMENTS)
return _Parser.find_tokens(self, tokens, **kwargs)
def find_tags(self, tokens, **kwargs):
kwargs.setdefault("map", tagset2penntreebank)
return _Parser.find_tags(self, tokens, **kwargs)
def find_chunks(self, tokens, **kwargs):
return _Parser.find_chunks(self, tokens, **kwargs)
def find_lemmata(self, tokens, **kwargs):
return find_lemmata(tokens)
# The parser's part-of-speech tagger requires a lexicon of tagged known words,
# and rules for unknown words. See pattern.text.Morphology and pattern.text.Context
# for further details. A tutorial on how to acquire data for the lexicon is here:
# http://www.clips.ua.ac.be/pages/using-wiktionary-to-build-an-italian-part-of-speech-tagger
# Create the parser with default tags for unknown words:
# (noun, proper noun, numeric).
parser = Parser(
lexicon = os.path.join(MODULE, "xx-lexicon.txt"), # A dict of known words => most frequent tag.
frequency = os.path.join(MODULE, "xx-frequency.txt"), # A dict of word frequency.
morphology = os.path.join(MODULE, "xx-morphology.txt"), # A set of suffix rules.
context = os.path.join(MODULE, "xx-context.txt"), # A set of contextual rules.
entities = os.path.join(MODULE, "xx-entities.txt"), # A dict of named entities: John = NNP-PERS.
default = ("NN", "NNP", "CD"),
language = "xx"
)
lexicon = parser.lexicon # Expose lexicon.
# Create the sentiment lexicon,
# see pattern/text/xx/xx-sentiment.xml for further details.
# We also need to define the tag for modifiers,
# words that modify the score of the following word
# (e.g., *very* good, *not good, ...)
sentiment = Sentiment(
path = os.path.join(MODULE, "xx-sentiment.xml"),
synset = None,
negations = ("no", "not", "never"),
modifiers = ("RB",),
modifier = lambda w: w.endswith("ly"), # brilliantly, hardly, partially, ...
language = "xx"
)
# Nothing should be changed below.
def tokenize(s, *args, **kwargs):
""" Returns a list of sentences, where punctuation marks have been split from words.
"""
return parser.find_tokens(s, *args, **kwargs)
def parse(s, *args, **kwargs):
""" Returns a tagged Unicode string.
"""
return parser.parse(s, *args, **kwargs)
def parsetree(s, *args, **kwargs):
""" Returns a parsed Text from the given string.
"""
return Text(parse(s, *args, **kwargs))
def tree(s, token=[WORD, POS, CHUNK, PNP, REL, LEMMA]):
""" Returns a parsed Text from the given parsed string.
"""
return Text(s, token)
def tag(s, tokenize=True, encoding="utf-8", **kwargs):
""" Returns a list of (token, tag)-tuples from the given string.
"""
tags = []
for sentence in parse(s, tokenize, True, False, False, False, encoding, **kwargs).split():
for token in sentence:
tags.append((token[0], token[1]))
return tags
def keywords(s, top=10, **kwargs):
""" Returns a sorted list of keywords in the given string.
"""
return parser.find_keywords(s, **dict({
"frequency": parser.frequency,
"top": top,
"pos": ("NN",),
"ignore": ("rt",)}, **kwargs))
def polarity(s, **kwargs):
""" Returns the sentence polarity (positive/negative) between -1.0 and 1.0.
"""
return sentiment(s, **kwargs)[0]
def subjectivity(s, **kwargs):
""" Returns the sentence subjectivity (objective/subjective) between 0.0 and 1.0.
"""
return sentiment(s, **kwargs)[1]
def positive(s, threshold=0.1, **kwargs):
""" Returns True if the given sentence has a positive sentiment.
"""
return polarity(s, **kwargs) >= threshold
split = tree # Backwards compatibility.
#---------------------------------------------------------------------------------------------------
# python -m pattern.xx xml -s "..." -OTCL
if __name__ == "__main__":
commandline(parse)
|