1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407
|
#### PATTERN | VECTOR ##############################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# Vector space model, based on cosine similarity using tf-idf.
# Documents (e.g., a sentence or a text) are represented as bag-of-words:
# the unordered words in the document and their (relative frequency).
# The dictionary of word => frequency items is called the document vector.
# The frequency weight is either TF or TF-IDF (term frequency-inverse document frequency, i.e.,
# the relevance of a word in a document offset by the frequency of the word in all documents).
# Documents can be grouped in a Model to calculate TF-IDF and cosine similarity,
# which measures similarity (0.0-1.0) between documents based on the cosine distance metric.
# A document cay have a type (or label). A model of labeled documents can be used to train
# a classifier. A classifier can be used to predict the label of unlabeled documents.
# This is called supervised machine learning (since we provide labeled training examples).
# Unsupervised machine learning or clustering can be used to group unlabeled documents
# into subsets based on their similarity.
import stemmer; _stemmer=stemmer
import sys
import os
import re
import glob
import heapq
import codecs
import tempfile
import cPickle
import gzip
import types
from math import log, exp, sqrt, tanh
from time import time
from random import random, randint, uniform, choice, sample, seed
from itertools import chain
from bisect import insort
from operator import itemgetter
from StringIO import StringIO
from codecs import open
from collections import defaultdict
if sys.version > "3":
long = int
xrange = range
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
try: from pattern.text import singularize, predicative, conjugate, tokenize
except:
try:
import sys; sys.path.insert(0, os.path.join(MODULE, ".."))
from text import singularize, predicative, conjugate, tokenize
except:
singularize = lambda w, **k: w
predicative = lambda w, **k: w
conjugate = lambda w, t, **k: w
tokenize = lambda s: filter(len,
re.split(r"(.*?[\.|\?|\!])",
re.sub(r"(\.|\?|\!|,|;|:)", " \\1", s)))
#--- STRING FUNCTIONS ------------------------------------------------------------------------------
# Latin-1 (ISO-8859-1) encoding is identical to Windows-1252 except for the code points 128-159:
# Latin-1 assigns control codes in this range, Windows-1252 has characters, punctuation, symbols
# assigned to these code points.
def decode_string(v, encoding="utf-8"):
""" Returns the given value as a Unicode string (if possible).
"""
if isinstance(encoding, basestring):
encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore"))
if isinstance(v, str):
for e in encoding:
try: return v.decode(*e)
except:
pass
return v
return unicode(v)
def encode_string(v, encoding="utf-8"):
""" Returns the given value as a Python byte string (if possible).
"""
if isinstance(encoding, basestring):
encoding = ((encoding,),) + (("windows-1252",), ("utf-8", "ignore"))
if isinstance(v, unicode):
for e in encoding:
try: return v.encode(*e)
except:
pass
return v
return str(v)
decode_utf8 = decode_string
encode_utf8 = encode_string
def shi(i, base="0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"):
""" Returns a short string hash for a given int.
"""
s = []
while i > 0:
i, r = divmod(i, len(base))
s.append(base[r])
return "".join(reversed(s))
#--- LIST FUNCTIONS --------------------------------------------------------------------------------
def shuffled(iterable, **kwargs):
""" Returns a copy of the given list with the items in random order.
"""
seed(kwargs.get("seed"))
return sorted(list(iterable), key=lambda x: random())
def chunk(iterable, n):
""" Returns an iterator of n successive equal-sized chunks from the given list.
"""
# list(chunk([1, 2, 3, 4], n=2)) => [[1, 2], [3, 4]]
a = list(iterable)
n = int(n)
i = 0
j = 0
for m in xrange(n):
j = i + len(a[m::n])
yield a[i:j]
i = j
def mix(iterables=[], n=10):
""" Returns an iterator that alternates the given lists, in n chunks.
"""
# list(mix([[1, 2, 3, 4], ["a", "b"]], n=2)) => [1, 2, "a", 3, 4, "b"]
a = [list(chunk(x, n)) for x in iterables]
for i in xrange(int(n)):
for x in a:
for item in x[i]:
yield item
def bin(iterable, key=lambda x: x, value=lambda x: x):
""" Returns a dictionary with items in the given list grouped by the given key.
"""
# bin([["a", 1], ["a", 2], ["b", 3]], key=lambda x: x[0]) =>
# {"a": [["a", 1], ["a", 2]],
# "b": [["b", 3]]
# }
m = defaultdict(list)
for x in iterable:
m[key(x)].append(value(x))
return m
def pimap(iterable, function, *args, **kwargs):
""" Returns an iterator of function(x, *args, **kwargs) for the iterable (x1, x2, x3, ...).
The function is applied in parallel over available CPU cores.
"""
from multiprocessing import Pool
global worker
def worker(x):
return function(x, *args, **kwargs)
return Pool(processes=None).imap(worker, iterable)
#--- READ-ONLY DICTIONARY --------------------------------------------------------------------------
class ReadOnlyError(Exception):
pass
# Read-only dictionary, used for Document.terms and Document.vector
# (updating these directly invalidates the Document and Model cache).
class readonlydict(dict):
def __init__(self, *args, **kwargs):
dict.__init__(self, *args, **kwargs)
@classmethod
def fromkeys(cls, k, default=None):
return readonlydict((k, default) for k in k)
def copy(self):
return readonlydict(self)
def __setitem__(self, k, v):
raise ReadOnlyError
def __delitem__(self, k):
raise ReadOnlyError
def pop(self, k, default=None):
raise ReadOnlyError
def popitem(self, kv):
raise ReadOnlyError
def clear(self):
raise ReadOnlyError
def update(self, kv):
raise ReadOnlyError
def setdefault(self, k, default=None):
if k in self:
return self[k]
raise ReadOnlyError
# Read-only list, used for Model.documents.
class readonlylist(list):
def __init__(self, *args, **kwargs):
list.__init__(self, *args, **kwargs)
def __setitem__(self, i, v):
raise ReadOnlyError
def __delitem__(self, i):
raise ReadOnlyError
def append(self, v):
raise ReadOnlyError
def extend(self, v):
raise ReadOnlyError
def insert(self, i, v):
raise ReadOnlyError
def remove(self, v):
raise ReadOnlyError
def pop(self, i):
raise ReadOnlyError
#### DOCUMENT ######################################################################################
#--- STOP WORDS ------------------------------------------------------------------------------------
# A dictionary of (language, words)-items of function words, for example: {"en": {"the": True}}.
# - de: 950+, Marco Götze & Steffen Geyer
# - en: 550+, Martin Porter (http://snowball.tartarus.org)
# - es: 300+, Martin Porter
# - fr: 550+, Martin Porter, Audrey Baneyx
# - nl: 100+, Martin Porter, Damien van Holten
stopwords = _stopwords = {}
for f in glob.glob(os.path.join(MODULE, "stopwords-*.txt")):
language = os.path.basename(f)[-6:-4] # stopwords-[en].txt
w = codecs.open(f, encoding="utf-8")
w = (w.strip() for w in w.read().split(","))
stopwords[language] = dict.fromkeys(w, True)
# The following English words could also be meaningful nouns:
#from pattern.vector import stopwords
#for w in ["mine", "us", "will", "can", "may", "might"]:
# stopwords["en"].pop(w)
#--- WORD COUNT ------------------------------------------------------------------------------------
# Simple bag-of-word models are often made up of word frequencies or character trigram frequencies.
PUNCTUATION = ".,;:!?()[]{}`'\"@#$^&*+-|=~_"
def words(string, filter=lambda w: w.strip("'").isalnum(), punctuation=PUNCTUATION, **kwargs):
""" Returns a list of words (alphanumeric character sequences) from the given string.
Common punctuation marks are stripped from words.
"""
string = decode_utf8(string)
string = re.sub(r"([a-z|A-Z])'(m|s|ve|re|ll|d)", u"\\1 <QUOTE/>\\2", string)
string = re.sub(r"(c|d|gl|j|l|m|n|s|t|un)'([a-z|A-Z])", u"\\1<QUOTE/> \\2", string)
words = (w.strip(punctuation).replace(u"<QUOTE/>", "'", 1) for w in string.split())
words = (w for w in words if filter is None or filter(w) is not False)
words = [w for w in words if w]
return words
PORTER, LEMMA = "porter", "lemma"
def stem(word, stemmer=PORTER, **kwargs):
""" Returns the base form of the word when counting words in count().
With stemmer=PORTER, the Porter2 stemming algorithm is used.
With stemmer=LEMMA, either uses Word.lemma or inflect.singularize().
(with optional parameter language="en", pattern.en.inflect is used).
"""
if hasattr(word, "string") and stemmer in (PORTER, None):
word = word.string
if isinstance(word, basestring):
word = decode_utf8(word.lower())
if stemmer is None:
return word.lower()
if stemmer == PORTER:
return _stemmer.stem(word, **kwargs)
if stemmer == LEMMA:
if hasattr(word, "lemma"): # pattern.en.Word
w = word.string.lower()
if word.lemma is not None:
return word.lemma
if word.pos == "NNS":
return singularize(w)
if word.pos.startswith(("VB", "MD")):
return conjugate(w, "infinitive") or w
if word.pos.startswith(("JJ",)):
return predicative(w)
if word.pos.startswith(("DT", "PR", "WP")):
return singularize(w, pos=word.pos)
return w
return singularize(word, pos=kwargs.get("pos", "NN"))
if hasattr(stemmer, "__call__"):
return decode_utf8(stemmer(word))
return word.lower()
def count(words=[], top=None, threshold=0, stemmer=None, exclude=[], stopwords=False, language=None, **kwargs):
""" Returns a dictionary of (word, count)-items, in lowercase.
Words in the exclude list and stop words (by default, English) are not counted.
Words whose count falls below (or equals) the given threshold are excluded.
Words that are not in the given top most counted are excluded.
"""
# An optional dict-parameter can be used to specify a subclass of dict,
# e.g., count(words, dict=readonlydict) as used in Document.
count = kwargs.get("dict", dict)()
for w in words:
w1 = w
w2 = w
if hasattr(w, "string"): # pattern.en.Word
w1 = w.string.lower()
if isinstance(w, basestring):
w1 = w.lower()
w2 = w.lower()
if (stopwords or not w1 in _stopwords.get(language or "en", ())) and not w1 in exclude:
if stemmer is not None:
w2 = stem(w2, stemmer, **kwargs).lower()
dict.__setitem__(count, w2, (w2 in count) and count[w2]+1 or 1)
for k in count.keys():
if count[k] <= threshold:
dict.__delitem__(count, k)
if top is not None:
count = count.__class__(heapq.nsmallest(top, count.items(), key=lambda kv: (-kv[1], kv[0])))
return count
def character_ngrams(string="", n=3, top=None, threshold=0, exclude=[], **kwargs):
""" Returns a dictionary of (character n-gram, count)-items.
N-grams in the exclude list are not counted.
N-grams whose count falls below (or equals) the given threshold are excluded.
N-grams that are not in the given top most counted are excluded.
"""
# An optional dict-parameter can be used to specify a subclass of dict,
# e.g., count(words, dict=readonlydict) as used in Document.
count = defaultdict(int)
if n > 0:
for i in xrange(len(string)-n+1):
w = string[i:i+n]
if w not in exclude:
count[w] += 1
if threshold > 0:
count = dict((k, v) for k, v in count.items() if v > threshold)
if top is not None:
count = dict(heapq.nsmallest(top, count.items(), key=lambda kv: (-kv[1], kv[0])))
return kwargs.get("dict", dict)(count)
chngrams = character_ngrams
#--- DOCUMENT --------------------------------------------------------------------------------------
# A Document is a bag of words in which each word is a feature.
# A Document is represented as a vector of weighted (TF-IDF) features.
# A Document can be part of a training model used for learning (i.e., clustering or classification).
_UID = 0
_SESSION = shi(int(time() * 1000)) # Avoid collision with pickled documents.
def _uid():
""" Returns a string id, for example: "NPIJYaS-1", "NPIJYaS-2", ...
The string part is based on the current time, the number suffix is auto-incremental.
"""
global _UID; _UID+=1; return _SESSION+"-"+str(_UID)
# Term relevance weight:
TF, TFIDF, TF_IDF, BINARY = \
"tf", "tf-idf", "tf-idf", "binary"
class Document(object):
# Document(string = "",
# filter = lambda w: w.lstrip("'").isalnum(),
# punctuation = PUNCTUATION,
# top = None,
# threshold = 0,
# stemmer = None,
# exclude = [],
# stopwords = False,
# name = None,
# type = None,
# language = None,
# description = None
# )
def __init__(self, string="", **kwargs):
""" An unordered bag-of-words representation of the given string, list, dict or Sentence.
Lists can contain tuples (of), strings or numbers.
Dicts can contain tuples (of), strings or numbers as keys, and floats as values.
Document.words stores a dict of (word, count)-items.
Document.vector stores a dict of (word, weight)-items,
where weight is the term frequency normalized (0.0-1.0) to remove document length bias.
Punctuation marks are stripped from the words.
Stop words in the exclude list are excluded from the document.
Only top words whose count exceeds the threshold are included in the document.
"""
kwargs.setdefault("filter", lambda w: w.lstrip("'").isalnum())
kwargs.setdefault("threshold", 0)
kwargs.setdefault("dict", readonlydict)
# A string of words: map to read-only dict of (word, count)-items.
if string is None:
w = kwargs["dict"]()
v = None
elif isinstance(string, basestring):
w = words(string, **kwargs)
w = count(w, **kwargs)
v = None
# A list of words: map to read-only dict of (word, count)-items.
elif isinstance(string, (list, tuple)) and not string.__class__.__name__ == "Text":
w = string
w = count(w, **kwargs)
v = None
# A set of unique words: map to ready-only dict of (word, 1)-items.
elif isinstance(string, set):
w = string
w = kwargs["dict"].fromkeys(w, 1)
v = None
# A Vector of (word, weight)-items: copy as document vector.
elif isinstance(string, Vector):
w = string
w = kwargs["dict"](w)
v = Vector(w)
# A dict of (word, count)-items: make read-only.
elif isinstance(string, dict):
w = string
w = kwargs["dict"](w)
v = None
# pattern.en.Sentence with Word objects: can use stemmer=LEMMA.
elif string.__class__.__name__ == "Sentence":
w = string.words
w = [w for w in w if kwargs["filter"](w.string)]
w = count(w, **kwargs)
v = None
# pattern.en.Text with Sentence objects, can use stemmer=LEMMA.
elif string.__class__.__name__ == "Text":
w = []; [w.extend(sentence.words) for sentence in string]
w = [w for w in w if kwargs["filter"](w.string)]
w = count(w, **kwargs)
v = None
# Another Document: copy words, wordcount, name and type.
elif isinstance(string, Document):
for k in ("name", "type", "label", "language", "description"):
if hasattr(string, k):
kwargs.setdefault(k, getattr(string, k))
w = string.terms
w = kwargs["dict"](w)
v = None
else:
raise TypeError("document string is not str, unicode, list, dict, Vector, Sentence or Text.")
self._id = _uid() # Document ID, used when comparing objects.
self._name = kwargs.get("name") # Name that describes the document content.
self._type = kwargs.get("type", # Type that describes the category or class of the document.
kwargs.get("label"))
self._language = kwargs.get("language")
self._description = kwargs.get("description", "")
self._terms = w # Dictionary of (word, count)-items.
self._vector = v # Cached tf-idf vector.
self._count = None # Total number of words (minus stop words).
self._model = None # Parent Model.
@classmethod
def load(cls, path):
""" Returns a new Document from the given text file path.
The given text file must be generated with Document.save().
"""
# Open unicode file.
s = open(path, "rb").read()
s = s.lstrip(codecs.BOM_UTF8)
s = decode_utf8(s)
a = {}
v = {}
# Parse document name and type.
# Parse document terms and frequency.
for s in s.splitlines():
if s.startswith("#"): # comment
a["description"] = a.get("description", "") + s.lstrip("#").strip() + "\n"
elif s.startswith("@name:"):
a["name"] = s[len("@name:")+1:].replace("\\n", "\n")
elif s.startswith("@type:"):
a["type"] = s[len("@type:")+1:].replace("\\n", "\n")
elif s.startswith("@language:"):
a["lang"] = s[len("@lang:")+1:].replace("\\n", "\n")
else:
s = s.split(" ")
w, f = " ".join(s[:-1]), s[-1]
if f.isdigit():
v[w] = int(f)
else:
v[w] = float(f)
return cls(v, name = a.get("name"),
type = a.get("type"),
language = a.get("lang"),
description = a.get("description").rstrip("\n"))
def save(self, path):
""" Saves the document as a text file at the given path.
The file content has the following format:
# Cat document.
@name: cat
@type: animal
a 3
cat 2
catch 1
claw 1
...
"""
s = []
# Parse document description.
for x in self.description.split("\n"):
s.append("# %s" % x)
# Parse document name, type and language.
for k, v in (("@name:", self.name), ("@type:", self.type), ("@lang:", self.language)):
if v is not None:
s.append("%s %s" % (k, v.replace("\n", "\\n")))
# Parse document terms and frequency.
for w, f in sorted(self.terms.items()):
if isinstance(f, int):
s.append("%s %i" % (w, f))
if isinstance(f, float):
s.append("%s %.3f" % (w, f))
s = "\n".join(s)
s = encode_utf8(s)
# Save unicode file.
f = open(path, "wb")
f.write(codecs.BOM_UTF8)
f.write(s)
f.close()
def _get_model(self):
return self._model
def _set_model(self, model):
self._vector = None
self._model and self._model._update()
self._model = model
self._model and self._model._update()
model = corpus = property(_get_model, _set_model)
@property
def id(self):
return self._id
@property
def name(self):
return self._name
@property
def type(self):
return self._type
@property
def label(self):
return self._type
@property
def language(self):
return self._language
@property
def description(self):
return self._description
@property
def terms(self):
return self._terms
@property
def words(self):
return self._terms
@property
def features(self):
return self._terms.keys()
@property
def count(self):
# Yields the number of words in the document representation.
# Cache the word count so we can reuse it when calculating tf.
if not self._count: self._count = sum(self.terms.values())
return self._count
@property
def wordcount(self):
return self._count
def __len__(self):
return len(self.terms)
def __iter__(self):
return iter(self.terms)
def __contains__(self, word):
return word in self.terms
def __getitem__(self, word):
return self.terms.__getitem__(word)
def get(self, word, default=None):
return self.terms.get(word, default)
def term_frequency(self, word):
""" Returns the term frequency of a given word in the document (0.0-1.0).
tf = number of occurences of the word / number of words in document.
The more occurences of the word, the higher its relative tf weight.
"""
return float(self.terms.get(word, 0)) / (self.count or 1)
tf = term_frequency
def term_frequency_inverse_document_frequency(self, word, weight=TFIDF):
""" Returns the word relevance as tf * idf (0.0-1.0).
The relevance is a measure of how frequent the word occurs in the document,
compared to its frequency in other documents in the model.
If the document is not incorporated in a model, simply returns tf weight.
"""
if self.model is not None and weight == TFIDF:
# Use tf if no model, or idf==None (happens when the word is not in the model).
idf = self.model.idf(word)
idf = idf is None and 1 or idf
return self.tf(word) * idf
return self.tf(word)
tf_idf = tfidf = term_frequency_inverse_document_frequency
def information_gain(self, word):
""" Returns the information gain for the given word (0.0-1.0).
"""
if self.model is not None:
return self.model.ig(word)
return 0.0
ig = infogain = information_gain
def gain_ratio(self, word):
""" Returns the information gain ratio for the given word (0.0-1.0).
"""
if self.model is not None:
return self.model.gr(word)
return 0.0
gr = gainratio = gain_ratio
@property
def vector(self):
""" Yields the document vector, a dictionary of (word, relevance)-items from the document.
The relevance is tf, tf * idf, infogain or binary if the document is part of a Model,
based on the value of Model.weight (TF, TFIDF, IG, GR, BINARY, None).
The document vector is used to calculate similarity between two documents,
for example in a clustering or classification algorithm.
"""
if not self._vector:
# See the Vector class below = a dict with extra functionality (copy, norm).
# When a document is added/deleted from a model, the cached vector is deleted.
w = getattr(self.model, "weight", TF)
if w not in (TF, TFIDF, IG, INFOGAIN, GR, GAINRATIO, BINARY):
f = lambda w: float(self._terms[w]); w=None
if w == BINARY:
f = lambda w: int(self._terms[w] > 0)
if w == TF:
f = self.tf
if w == TFIDF:
f = self.tf_idf
if w in (IG, INFOGAIN):
f = self.model.ig
if w in (GR, GAINRATIO):
f = self.model.gr
self._vector = Vector(((w, f(w)) for w in self.terms), weight=w)
return self._vector
@property
def concepts(self):
""" Yields the document concept vector if the document is part of an LSA model.
"""
return self.model and self.model.lsa and self.model.lsa.concepts.get(self.id) or None
def keywords(self, top=10, normalized=True):
""" Returns a sorted list of (relevance, word)-tuples that are top keywords in the document.
With normalized=True, weights are normalized between 0.0 and 1.0 (their sum will be 1.0).
"""
n = normalized and sum(self.vector.values()) or 1.0
v = ((f/n, w) for w, f in self.vector.items())
v = heapq.nsmallest(top, v, key=lambda v: (-v[0], v[1]))
return v
def cosine_similarity(self, document):
""" Returns the similarity between the two documents as a number between 0.0-1.0.
If both documents are part of the same model the calculations are cached for reuse.
"""
if self.model is not None:
return self.model.cosine_similarity(self, document)
if document.model is not None:
return document.model.cosine_similarity(self, document)
return cosine_similarity(self.vector, document.vector)
similarity = cosine_similarity
def copy(self):
d = Document(None, name=self.name, type=self.type, description=self.description)
dict.update(d.terms, self.terms)
return d
def __eq__(self, document):
return isinstance(document, Document) and self.id == document.id
def __ne__(self, document):
return not self.__eq__(document)
def __repr__(self):
return "Document(id=%s%s%s)" % (
repr(self._id),
self.name and ", name=%s" % repr(self.name) or "",
self.type and ", type=%s" % repr(self.type) or "")
Bag = BagOfWords = BOW = Document
#--- VECTOR ----------------------------------------------------------------------------------------
# A Vector represents document terms (called features) and their tf or tf * idf relevance weight.
# A Vector is a sparse represenation: i.e., a dictionary with only those features > 0.
# This is fast, usually also faster than LSA which creates a full vector space with non-zero values.
# Document vectors can be used to calculate similarity between documents,
# for example in a clustering or classification algorithm.
# To find the average feature length in a model:
# sum(len(d.vector) for d in model.documents) / float(len(model))
class Vector(readonlydict):
id = 0
def __init__(self, *args, **kwargs):
""" A dictionary of (feature, weight)-items of the features (terms, words) in a Document.
A vector can be used to compare the document to another document with a distance metric.
For example, vectors with 2 features (x, y) can be compared using 2D Euclidean distance.
Vectors that represent text documents can be compared using cosine similarity.
"""
s = kwargs.pop("sparse", True)
f = ()
w = None
if len(args) > 0:
# From a Vector (copy weighting scheme).
if isinstance(args[0], Vector):
w = args[0].weight
# From a dict.
if isinstance(args[0], dict):
f = args[0].items()
# From an iterator.
elif hasattr(args[0], "__iter__"):
f = iter(args[0])
Vector.id += 1
self.id = Vector.id # Unique ID.
self.weight = kwargs.pop("weight", w) # TF, TFIDF, IG, BINARY or None.
self._norm = None # Cached L2-norm.
# Exclude zero weights (sparse=True).
f = chain(f, kwargs.items())
f = ((k, v) for k, v in f if not s or v != 0)
readonlydict.__init__(self, f)
@classmethod
def fromkeys(cls, k, default=None, **kwargs):
return Vector(((k, default) for k in k), **kwargs)
@property
def features(self):
return self.keys()
@property
def l2_norm(self):
""" Yields the Frobenius matrix norm (cached).
n = the square root of the sum of the absolute squares of the values.
The matrix norm is used to normalize (0.0-1.0) cosine similarity between documents.
"""
if self._norm is None:
self._norm = sum(w * w for w in self.values()) ** 0.5
return self._norm
norm = l2 = L2 = L2norm = l2norm = L2_norm = l2_norm
def copy(self):
return Vector(self, weight=self.weight, sparse=False)
def __call__(self, vector={}):
""" Vector(vector) returns a new vector updated with values from the given vector.
No new features are added. For example: Vector({1:1, 2:2})({1:0, 3:3}) => {1:0, 2:2}.
"""
if isinstance(vector, (Document, Model)):
vector = vector.vector
v = self.copy()
s = dict.__setitem__
for f, w in vector.items():
if f in v:
s(v, f, w)
return v
#--- VECTOR DISTANCE -------------------------------------------------------------------------------
# The "distance" between two vectors can be calculated using different metrics.
# For vectors that represent text, cosine similarity is a good metric.
# For more information, see Domain Similarity Measures (Vincent Van Asch, 2012).
# The following functions can be used if you work with Vectors or plain dictionaries,
# instead of Documents and Models (which use caching for cosine similarity).
def features(vectors=[]):
""" Returns the set of unique features for all given vectors.
"""
return set(chain(*vectors))
_features = features
def sparse(v):
""" Returns the vector with features that have weight 0 removed.
"""
for f, w in list(v.items()):
if w == 0:
del v[f]
return v
def relative(v):
""" Returns the vector with feature weights normalized so that their sum is 1.0 (in-place).
"""
n = float(sum(v.values())) or 1.0
s = dict.__setitem__
for f in v: # Modified in-place.
s(v, f, v[f] / n)
return v
normalize = rel = relative
def l2_norm(v):
""" Returns the L2-norm of the given vector.
"""
if isinstance(v, Vector):
return v.l2_norm
return sum(w * w for w in v.values()) ** 0.5
norm = l2 = L2 = L2norm = l2norm = L2_norm = l2_norm
def cosine_similarity(v1, v2):
""" Returns the cosine similarity of the given vectors.
"""
s = sum(v1.get(f, 0) * w for f, w in v2.items())
s = float(s) / (l2_norm(v1) * l2_norm(v2) or 1)
return s
cos = cosine_similarity
def tf_idf(vectors=[], base=2.71828): # Euler's number
""" Calculates tf * idf on the vector feature weights (in-place).
"""
df = {}
for v in vectors:
for f in v:
if v[f] != 0:
df[f] = df[f] + 1 if f in df else 1.0
n = len(vectors)
s = dict.__setitem__
for v in vectors:
for f in v: # Modified in-place.
s(v, f, v[f] * (log(n / df[f], base)))
return vectors
tfidf = tf_idf
COSINE, EUCLIDEAN, MANHATTAN, CHEBYSHEV, HAMMING = \
"cosine", "euclidean", "manhattan", "chebyshev", "hamming"
def distance(v1, v2, method=COSINE):
""" Returns the distance between two vectors.
"""
if method == COSINE:
return 1 - cosine_similarity(v1, v2)
if method == EUCLIDEAN: # Squared Euclidean distance is used (1.5x faster).
return sum((v1.get(w, 0) - v2.get(w, 0)) ** 2 for w in set(chain(v1, v2)))
if method == MANHATTAN:
return sum(abs(v1.get(w, 0) - v2.get(w, 0)) for w in set(chain(v1, v2)))
if method == CHEBYSHEV:
return max(abs(v1.get(w, 0) - v2.get(w, 0)) for w in set(chain(v1, v2)))
if method == HAMMING:
d = sum(not (w in v1 and w in v2 and v1[w] == v2[w]) for w in set(chain(v1, v2)))
d = d / float(max(len(v1), len(v2)) or 1)
return d
if isinstance(method, type(distance)):
# Given method is a function of the form: distance(v1, v2) => float.
return method(v1, v2)
_distance = distance
def entropy(p=[], base=None):
""" Returns the Shannon entropy for the given list of probabilities
as a value between 0.0-1.0, where higher values indicate uncertainty.
"""
# entropy([1.0]) => 0.0, one possible outcome with a 100% chance
# entropy([0.5, 0.5]) => 1.0, two outcomes with a 50% chance each (random).
p = list(p)
s = float(sum(p)) or 1.0
s = s if len(p) > 1 else max(s, 1.0)
b = base or max(len(p), 2)
return -sum(x / s * log(x / s, b) for x in p if x != 0) or 0.0
#### MODEL #########################################################################################
#--- MODEL -----------------------------------------------------------------------------------------
# A Model is a representation of a collection of documents as bag-of-words.
# A Model is a matrix (or vector space) with features as columns and documents as rows,
# where each document is a vector of features (e.g., words) and feature weights (e.g., frequency).
# The matrix is used to calculate adjusted weights (e.g., tf * idf), document similarity and LSA.
# Export formats:
ORANGE, WEKA = "orange", "weka"
# LSA reduction methods:
NORM, L1, L2, TOP300 = "norm", "L1", "L2", "top300"
# Feature selection methods:
INFOGAIN, GAINRATIO, CHISQUARE, CHISQUARED = "infogain", "gainratio", "chisquare", "chisquared"
IG, GR, X2, DF = "ig", "gr", "x2", "df"
# Clustering methods:
KMEANS, HIERARCHICAL = "k-means", "hierarchical"
class Model(object):
def __init__(self, documents=[], weight=TFIDF):
""" A model is a bag-of-word representation of a corpus of documents,
where each document vector is a bag of (word, relevance)-items.
Vectors can then be compared for similarity using a distance metric.
The weighting scheme can be: relative TF, TFIDF (default), IG, BINARY, None,
where None means that the original weights are used.
"""
self.description = "" # Description of the dataset: author e-mail, etc.
self._documents = readonlylist() # List of documents (read-only).
self._index = {} # Document.name => Document.
self._df = {} # Cache of document frequency per word.
self._cos = {} # Cache of ((d1.id, d2.id), relevance)-items (cosine similarity).
self._pp = {} # Cache of ((word, type), probability)-items.
self._x2 = {} # Cache of (word, chi-squared p-value)-items.
self._ig = {} # Cache of (word, information gain)-items.
self._gr = {} # Cache of (word, information gain ratio)-items.
self._inverted = {} # Cache of word => Document.
self._vector = None # Cache of model vector with all the features in the model.
self._classifier = None # Classifier trained on the documents in the model (NB, KNN, SVM).
self._lsa = None # LSA matrix with reduced dimensionality.
self._weight = weight # Weight used in Document.vector (TF, TFIDF, IG, BINARY or None).
self._update()
self.extend(documents)
@property
def documents(self):
return self._documents
docs = documents
@property
def terms(self):
return self.vector.keys()
features = words = terms
@property
def classes(self):
return list(set(d.type for d in self.documents))
labels = classes
@property
def classifier(self):
return self._classifier
def _get_lsa(self):
return self._lsa
def _set_lsa(self, v=None):
self._update() # Clear the cache.
self._lsa = v
lsa = property(_get_lsa, _set_lsa)
def _get_weight(self):
return self._weight
def _set_weight(self, w):
self._update() # Clear the cache.
self._weight = w
weight = property(_get_weight, _set_weight)
@classmethod
def load(cls, path):
""" Loads the model from a gzipped pickle file created with Model.save().
"""
model = cPickle.loads(gzip.GzipFile(path, "rb").read())
# Deserialize Model.classifier.
if model.classifier:
p = path + ".tmp"
f = open(p, "wb")
f.write(model.classifier)
f.close()
model._classifier = Classifier.load(p)
os.remove(p)
return model
def save(self, path, update=False, final=False):
""" Saves the model as a gzipped pickle file at the given path.
The advantage is that cached vectors and cosine similarity are stored.
"""
# Update the cache before saving.
if update:
classes = self.classes
self.document_frequency("") # set self._df
self.inverted_index # set self._inverted
self.vector # set self._vector
self.posterior_probability("", "") # set self._pp
self.chi_squared("") # set self._x2
self.information_gain("") # set self._ig + self._gr
for d1 in self.documents: # set self._cos
for d2 in self.documents:
self.cosine_similarity(d1, d2)
# Serialize Model.classifier.
if self._classifier:
p = path + ".tmp"
self._classifier.save(p, final)
self._classifier = open(p, "rb").read(); os.remove(p)
f = gzip.GzipFile(path, "wb")
f.write(cPickle.dumps(self, 1)) # 1 = binary
f.close()
def export(self, path, format=ORANGE, **kwargs):
""" Exports the model as a file for other machine learning applications,
e.g., Orange or Weka.
"""
# The Document.vector space is exported without cache or LSA concept space.
keys = sorted(self.vector.keys())
s = []
# Orange tab format:
if format.lower() == ORANGE:
s.append("\t".join(keys + ["m#name", "c#type"]))
for document in self.documents:
v = document.vector
v = [v.get(k, 0) for k in keys]
v = "\t".join(x==0 and "0" or "%.4f" % x for x in v)
v = "%s\t%s\t%s" % (v, document.name or "", document.type or "")
s.append(v)
# Weka ARFF format:
if format.lower() == WEKA:
s.append("@RELATION %s" % kwargs.get("name", hash(self)))
s.append("\n".join("@ATTRIBUTE %s NUMERIC" % k for k in keys))
s.append("@ATTRIBUTE class {%s}" % ",".join(set(d.type or "" for d in self.documents)))
s.append("@DATA")
for document in self.documents:
v = document.vector
v = [v.get(k, 0) for k in keys]
v = ",".join(x==0 and "0" or "%.4f" % x for x in v)
v = "%s,%s" % (v, document.type or "")
s.append(v)
s = "\n".join(s)
f = open(path, "wb", encoding="utf-8")
f.write(decode_utf8(s))
f.close()
def _update(self):
# Ensures that all document vectors are recalculated
# when a document is added or deleted (= new features).
self._df = {}
self._cos = {}
self._pp = {}
self._x2 = {}
self._ig = {}
self._gr = {}
self._inverted = {}
self._vector = None
self._classifier = None
self._lsa = None
for document in self.documents:
document._vector = None
def __len__(self):
return len(self.documents)
def __iter__(self):
return iter(self.documents)
def __getitem__(self, i):
return self.documents.__getitem__(i)
def __delitem__(self, i):
d = list.pop(self.documents, i)
d._model = None
self._index.pop(d.name, None)
self._update()
def clear(self):
self._documents = readonlylist()
self._update()
def append(self, document):
""" Appends the given Document to the model.
If Model.weight != TF, the cache of vectors and cosine similarity is cleared
(feature weights will be different now that there is a new document).
"""
if not isinstance(document, Document):
document = Document(document)
if document.name is not None:
self._index[document.name] = document
document._model = self
list.append(self.documents, document)
if self._weight not in (TF, BINARY, None):
self._update()
def extend(self, documents):
""" Extends the model with the given list of documents.
"""
documents = list(documents)
for i, document in enumerate(documents):
if not isinstance(document, Document):
documents[i] = Document(document)
if document.name is not None:
self._index[document.name] = document
document._model = self
list.extend(self.documents, documents)
if self._weight not in (TF, BINARY, None):
self._update()
def remove(self, document):
""" Removes the given Document from the model, and sets Document.model=None.
"""
self.__delitem__(self.documents.index(document))
def document(self, name):
""" Returns the Document with the given name (assuming document names are unique).
"""
if name in self._index:
return self._index[name]
doc = document
def keywords(self, top=10, normalized=True):
""" Returns a sorted list of (relevance, word)-tuples that are top keywords in the model.
With normalized=True, weights are normalized between 0.0 and 1.0 (their sum will be 1.0).
"""
self.df(None) # Populate document frequency cache.
n = normalized and sum(self._df.values()) or 1.0
v = ((f/n, w) for w, f in self._df.items())
v = heapq.nsmallest(top, v, key=lambda v: (-v[0], v[1]))
return v
def document_frequency(self, word):
""" Returns the document frequency for the given word or feature.
Returns 0 if there are no documents in the model (e.g. no word frequency).
df = number of documents containing the word / number of documents.
The more occurences of the word across the model, the higher its df weight.
"""
if len(self.documents) == 0:
return 0.0
if len(self._df) == 0:
# Caching document frequency for each word gives a 300x performance boost
# (i.e., calculated all at once). Drawback is if you need it for just one word.
df = self._df
for d in self.documents:
for w, f in d.terms.items():
if f != 0:
df[w] = (w in df) and df[w] + 1 or 1.0
for w in df:
df[w] /= float(len(self.documents))
return self._df.get(word, 0.0)
df = document_frequency
def inverse_document_frequency(self, word, base=2.71828):
""" Returns the inverse document frequency for the given word or feature.
Returns None if the word is not in the model, or if there are no documents in the model.
Using the natural logarithm:
idf = log(1/df)
The more occurences of the word, the lower its idf weight (log() makes it grow slowly).
"""
df = self.df(word)
if df == 0.0:
return None
if df == 1.0:
return 0.0
return log(1.0 / df, base)
idf = inverse_document_frequency
@property
def inverted_index(self):
""" Yields a dictionary of (word, set([document1, document2, ...]))-items.
"""
if not self._inverted:
m = {}
for d in self.documents:
for w in d.terms:
if w not in m:
m[w] = set()
m[w].add(d)
self._inverted = m
return self._inverted
inverted = inverted_index
@property
def vector(self):
""" Returns a Vector dict of (word, 0.0)-items from the vector space model.
It includes all words from all documents (i.e. it is the dimension of the vector space).
Model.vector(document) yields a vector with the feature weights of the given document.
"""
# Notes:
# 1) Model.vector is the dictionary of all (word, 0.0)-items.
# 2) Model.vector(document) returns a copy with the document's word frequencies.
# This is the full vector, as opposed to the sparse Document.vector.
# Words in a document that are not in the model are ignored,
# i.e., the document was not in the model, this can be the case in Model.search().
# See: Vector.__call__().
if not self._vector:
self._vector = Vector(((w, 0.0) for w in chain(*(d.terms for d in self.documents))), sparse=False)
return self._vector
@property
def vectors(self):
""" Yields a list of all document vectors.
"""
return [d.vector for d in self.documents]
@property
def density(self):
""" Yields the overall word coverage as a number between 0.0-1.0.
"""
return float(sum(len(d.vector) for d in self.documents)) / len(self.vector) ** 2
# Following methods rely on Document.vector:
# frequent sets, cosine similarity, nearest neighbors, search, clustering,
# information gain, latent semantic analysis.
def frequent_concept_sets(self, threshold=0.5):
""" Returns a dictionary of (set(feature), frequency)
of feature combinations with a frequency above the given threshold.
"""
return apriori([d.terms for d in self.documents], support=threshold)
sets = frequent = frequent_concept_sets
def cosine_similarity(self, document1, document2):
""" Returns the similarity between two documents in the model as a number between 0.0-1.0,
based on the document feature weight (e.g., tf * idf of words in the text).
cos = dot(v1, v2) / (norm(v1) * norm(v2))
"""
# If we already calculated similarity between two given documents,
# it is available in cache for reuse.
id1 = document1.id
id2 = document2.id
if (id1, id2) in self._cos:
return self._cos[(id1, id2)]
if (id2, id1) in self._cos:
return self._cos[(id2, id1)]
# Calculate the matrix multiplication of the document vectors.
if not getattr(self, "lsa", None):
v1 = document1.vector
v2 = document2.vector
s = cosine_similarity(v1, v2)
else:
# Using LSA concept space:
v1 = id1 in self.lsa and self.lsa[id1] or self._lsa.transform(document1)
v2 = id2 in self.lsa and self.lsa[id2] or self._lsa.transform(document2)
s = cosine_similarity(v1, v2)
# Cache the similarity weight for reuse.
if document1.model == self and \
document2.model == self:
self._cos[(id1, id2)] = s
return s
similarity = cos = cosine_similarity
def nearest_neighbors(self, document, top=10):
""" Returns a list of (similarity, document)-tuples in the model,
sorted by cosine similarity to the given document.
"""
v = ((self.cosine_similarity(document, d), d) for d in self.documents)
# Filter the input document from the matches.
# Filter documents that score zero, and return the top.
v = [(w, d) for w, d in v if w > 0 and d.id != document.id]
v = heapq.nsmallest(top, v, key=lambda v: (-v[0], v[1]))
return v
similar = related = neighbors = nn = nearest_neighbors
def vector_space_search(self, words=[], **kwargs):
""" Returns related documents from the model as a list of (similarity, document)-tuples.
The given words can be a string (one word), a list or tuple of words, or a Document.
"""
top = kwargs.pop("top", 10)
if not isinstance(words, Document):
kwargs.setdefault("filter", lambda w: w) # pass-through.
kwargs.setdefault("stopwords", True)
words = Document(words)
if len([w for w in words if w in self.vector]) == 0:
return []
m, words._model = words._model, self # So we can calculate tf-idf.
n, words._model = self.nearest_neighbors(words, top), m
words._model = m
return n
search = vector_space_search
def distance(self, document1, document2, *args, **kwargs):
""" Returns the distance (COSINE, EUCLIDEAN, ...) between two document vectors (0.0-1.0).
"""
return distance(document1.vector, document2.vector, *args, **kwargs)
# def cluster(self, method=KMEANS, k=10, iterations=10)
# def cluster(self, method=HIERARCHICAL, k=1, iterations=1000)
def cluster(self, method=KMEANS, **kwargs):
""" Clustering is an unsupervised machine learning method for grouping similar documents.
- k-means clustering returns a list of k clusters (each is a list of documents).
- hierarchical clustering returns a list of documents and Cluster objects,
where a Cluster is a list of documents and other clusters (see Cluster.flatten()).
"""
# The optional documents parameter can be a selective list
# of documents in the model to cluster.
documents = kwargs.get("documents", self.documents)
if not getattr(self, "lsa", None):
# Using document vectors:
vectors, features = [d.vector for d in documents], self.vector.keys()
else:
# Using LSA concept space:
vectors, features = [self.lsa[d.id] for d in documents], range(len(self.lsa))
# Create a dictionary of vector.id => Document.
# We need it to map the clustered vectors back to the actual documents.
map = dict((v.id, documents[i]) for i, v in enumerate(vectors))
if method in (KMEANS, "kmeans"):
clusters = k_means(vectors,
k = kwargs.pop("k", 10),
iterations = kwargs.pop("iterations", 10),
features = features, **kwargs)
if method == HIERARCHICAL:
clusters = hierarchical(vectors,
k = kwargs.pop("k", 1),
iterations = kwargs.pop("iterations", 1000),
features = features, **kwargs)
if method in (KMEANS, "kmeans"):
clusters = [[map[v.id] for v in cluster] for cluster in clusters]
if method == HIERARCHICAL:
clusters.traverse(visit=lambda cluster: \
[cluster.__setitem__(i, map[v.id])
for i, v in enumerate(cluster) if not isinstance(v, Cluster)])
return clusters
def latent_semantic_analysis(self, dimensions=NORM):
""" Creates LSA concept vectors by reducing the vector space's dimensionality.
Each concept vector has the given number of features (concepts).
The concept vectors are consequently used in Model.cosine_similarity(), Model.cluster()
and classification. This can be faster for high-dimensional vectors (i.e., many features).
The reduction can be undone by setting Model.lsa=False.
"""
self._lsa = LSA(self, k=dimensions)
self._cos = {}
return self._lsa
reduce = latent_semantic_analysis
def condensed_nearest_neighbor(self, k=1, distance=COSINE):
""" Returns a filtered list of documents, without impairing classification accuracy.
Iteratively constructs a set of "prototype" documents.
Documents that are correctly classified by the set are discarded.
Documents that are incorrectly classified by the set are added to the set.
"""
d = DistanceMap(method=distance)
u = []
v = list(self.documents)
b = False
while not b:
b = True
for i, x in enumerate(v):
nn = heapq.nsmallest(k, ((d(x.vector, y.vector), y) for y in u))
if not u or x.type in (y.type for d, y in nn):
b = False
u.append(x)
v.pop(i)
break
return v
cnn = condensed_nearest_neighbor
def posterior_probability(self, word, type):
""" Returns the probability that a document with the given word is of the given type.
"""
if not self._pp:
# p1: {class: count}
# p2: {feature: {class: count}}
# p3: {feature: count}
# p4: {(feature, class): probability}
p1 = defaultdict(float)
p2 = defaultdict(lambda: defaultdict(float))
p3 = defaultdict(float)
p4 = defaultdict(float)
for d in self.documents:
p1[d.type] += 1
for d in self.documents:
for f in d.terms:
p2[f][d.type] += 1 / p1[d.type]
p3[f] += 1
for t in p1:
for f in p3:
p4[(f, t)] = p1[t] * p2[f][t] / p3[f]
self._pp = p4
return self._pp[(word, type)]
pp = probability = posterior_probability
def chi_squared(self, word):
""" Returns the chi-squared p-value (0.0-1.0) for the given feature.
When p < 0.05, the feature is biased to a class (document type),
i.e., it is a significant predictor for that class.
"""
if not self._x2:
from pattern.metrics import chi2
# p1: {class: count}
# p2: {class: {feature: count}}
# p3: {feature: count}
# p4: {feature: p-value}
p1 = defaultdict(float)
p2 = defaultdict(lambda: defaultdict(float))
p3 = defaultdict(float)
p4 = defaultdict(float)
for d in self.documents:
p1[d.type] += 1
for d in self.documents:
for f in d.terms:
p2[d.type][f] += 1
p3[f] += 1
for f in p3:
p4[f] = chi2(observed=[[p2[t][f] for t in p2], [p1[t] - p2[t][f] for t in p2]])[1]
self._x2 = p4
return self._x2[word]
X2 = x2 = chi2 = chi_square = chi_squared
def information_gain(self, word):
""" Returns the information gain (IG, 0.0-1.0) for the given feature,
by measuring how much the feature contributes to each document type (class).
High information gain means low entropy. Low entropy means predictability,
i.e., a feature that is biased towards some class(es),
i.e., a feature that occurs more in one document type and less in others.
"""
if not self._ig:
# Based on Vincent Van Asch, http://www.clips.ua.ac.be/~vincent/scripts/textgain.py
# IG(f) = H(C) - sum(p(v) * H(C|v) for v in V)
# where C is the set of class labels,
# where V is the set of values for feature f,
# where p(v) is the probability that feature f has value v,
# where C|v is the distribution of value v for feature f per class.
# H is the entropy for a list of probabilities.
# Lower entropy indicates predictability, i.e., some values are more probable.
# H([0.50, 0.50]) = 1.00
# H([0.75, 0.25]) = 0.81
H = entropy
# C => {class: count}
C = dict.fromkeys(self.classes, 0)
for d in self.documents:
C[d.type] += 1
HC = H(C.values())
# V => {feature: {value: {class: count}}}
F = set(self.features)
V = dict((f, defaultdict(lambda: defaultdict(lambda: 0))) for f in F)
for d in self.documents:
if self.weight in (IG, GR, INFOGAIN, GAINRATIO):
d_vector = dict.fromkeys(d.terms, True)
else:
d_vector = d.vector
# Count features by value per class.
# Equal-width binning.
# Features with float values are taken to range between 0.0-1.0,
# for which 10 discrete intervals are used (0.1, 0.2, 0.3, ...).
for f, v in d_vector.items():
if isinstance(v, float):
v = round(v, 1)
V[f][v][d.type] += 1
#for f in F - set(d_vector):
# V[f][0][type] += 1
# We also need to count features with value 0.0.
# This is done with the two lines above, however
# the code below is over a 1000x faster (less dict.__getitem__).
for f in F:
for type, n in C.items():
V[f][0][type] += n - sum(V[f][v][type] for v in V[f])
# IG
for f in F:
Vf = V[f]
n = sum(sum(Vf[v].values()) for v in Vf) # total value count
n = float(n) or 1
ig = HC
si = 0 # split info
for Cv in Vf.values():
Cv = Cv.values()
pv = sum(Cv) / n
ig = ig - pv * H(Cv)
si = si + H([pv])
self._ig[f] = ig
self._gr[f] = ig / (si or 1)
return self._ig.get(word, 0.0)
IG = ig = infogain = gain = information_gain
def gain_ratio(self, word):
""" Returns the information gain ratio (GR, 0.0-1.0) for the given feature.
"""
if not self._gr: self.ig(word)
return self._gr[word]
GR = gr = gainratio = gain_ratio
def feature_selection(self, top=100, method=CHISQUARED, threshold=0.0, weighted=False):
""" Returns a list with the most informative features (terms), using information gain.
This is a subset of Model.features that can be used to build a Classifier
that is faster (less features = less matrix columns) but still efficient.
The given document frequency threshold excludes features that occur in
less than the given percentage of documents (i.e., outliers).
"""
if method is None:
f = lambda w: 1.0
if method in (X2, CHISQUARE, CHISQUARED, "X2"):
f = lambda w: 1.0 - self.x2(w)
if method in (IG, INFOGAIN):
f = self.ig
if method in (GR, GAINRATIO):
f = self.gr
if method == DF:
f = self.df
if hasattr(method, "__call__"):
f = method
subset = ((f(w), w) for w in self.terms if self.df(w) >= threshold)
subset = sorted(subset, key=itemgetter(1))
subset = sorted(subset, key=itemgetter(0), reverse=True)
subset = subset[:top if top is not None else len(subset)]
subset = subset if weighted else [w for x, w in subset]
return subset
def filter(self, features=[], documents=[]):
""" Returns a new Model with documents only containing the given list of features,
for example a subset returned from Model.feature_selection().
"""
documents = documents or self.documents
features = set(features)
model = Model(weight=self.weight)
model.extend([
Document(dict((w, f) for w, f in d.terms.items() if w in features),
name = d.name,
type = d.type,
language = d.language,
description = d.description) for d in documents])
return model
def train(self, *args, **kwargs):
""" Trains Model.classifier with the document vectors.
Each document is expected to have a Document.type.
Model.predict() can then be used to predict the type of other (unknown) documents.
"""
if len(args) == 0:
# Model.train(classifier=KNN)
Classifier = kwargs.pop("Classifier", NB)
if len(args) >= 1:
# Model.train(KNN, k=1)
Classifier = args[0]; args=args[1:]
kwargs["train"] = self
self._classifier = Classifier(*args, **kwargs)
self._classifier.finalize()
def predict(self, *args, **kwargs):
""" Returns the type for a given document,
based on the similarity of documents in the trained Model.classifier.
"""
return self._classifier.classify(*args, **kwargs)
# Backwards compatibility.
Corpus = Model
#### FREQUENT CONCEPT SETS #########################################################################
# Agrawal R. & Srikant R. (1994), Fast algorithms for mining association rules in large databases.
# Based on: https://gist.github.com/1423287
class Apriori(object):
def __init__(self):
self._candidates = []
self._support = {}
def C1(self, sets):
""" Returns the unique features from all sets as a list of (hashable) frozensets.
"""
return [frozenset([v]) for v in set(chain(*sets))]
def Ck(self, sets):
""" For the given sets of length k, returns combined candidate sets of length k+1.
"""
Ck = []
for i, s1 in enumerate(sets):
for j, s2 in enumerate(sets[i+1:]):
if set(list(s1)[:-1]) == set(list(s2)[:-1]):
Ck.append(s1 | s2)
return Ck
def Lk(self, sets, candidates, support=0.0):
""" Prunes candidate sets whose frequency < support threshold.
Returns a dictionary of (candidate set, frequency)-items.
"""
Lk, x = {}, 1.0 / (len(sets) or 1) # relative count
for s1 in candidates:
for s2 in sets:
if s1.issubset(s2):
Lk[s1] = s1 in Lk and Lk[s1] + x or x
return dict((s, f) for s, f in Lk.items() if f >= support)
def __call__(self, sets=[], support=0.5):
""" Returns a dictionary of (set(features), frequency)-items.
The given support (0.0-1.0) is the relative amount of documents
in which a combination of features must appear.
"""
sets = [set(iterable) for iterable in sets]
C1 = self.C1(sets)
L1 = self.Lk(sets, C1, support)
self._candidates = [L1.keys()]
self._support = L1
while True:
# Terminate when no further extensions are found.
if len(self._candidates[-1]) == 0:
break
# Extend frequent subsets one item at a time.
Ck = self.Ck(self._candidates[-1])
Lk = self.Lk(sets, Ck, support)
self._candidates.append(Lk.keys())
self._support.update(Lk)
return self._support
apriori = Apriori()
#### LATENT SEMANTIC ANALYSIS ######################################################################
# Based on:
# http://en.wikipedia.org/wiki/Latent_semantic_analysis
# http://blog.josephwilk.net/projects/latent-semantic-analysis-in-python.html
class LSA(object):
def __init__(self, model, k=NORM):
""" Latent Semantic Analysis is a statistical machine learning method based on
singular value decomposition (SVD), and related to principal component analysis (PCA).
Closely related features (words) in the model are combined into "concepts".
Documents then get a concept vector that is an approximation of the original vector,
but with reduced dimensionality so that cosine similarity and clustering run faster.
"""
import numpy
# Calling Model.vector() in a loop is quite slow, we should refactor this:
matrix = [model.vector(d).values() for d in model.documents]
matrix = numpy.array(matrix)
# Singular value decomposition, where u * sigma * vt = svd(matrix).
# Sigma is the diagonal matrix of singular values,
# u has document rows and concept columns, vt has concept rows and term columns.
u, sigma, vt = numpy.linalg.svd(matrix, full_matrices=False)
# Delete the smallest coefficients in the diagonal matrix (i.e., at the end of the list).
# The difficulty and weakness of LSA is knowing how many dimensions to reduce
# (generally L2-norm is used).
if k == L1:
k = int(round(numpy.linalg.norm(sigma, 1)))
if k == L2 or k == NORM:
k = int(round(numpy.linalg.norm(sigma, 2)))
if k == TOP300:
k = max(0, len(sigma) - 300)
if isinstance(k, int):
k = max(0, len(sigma) - k)
if type(k).__name__ == "function":
k = max(0, int(k(sigma)))
#print(numpy.dot(u, numpy.dot(numpy.diag(sigma), vt)))
# Apply dimension reduction.
# The maximum length of a concept vector = the number of documents.
assert k < len(model.documents), \
"can't create more dimensions than there are documents"
tail = lambda list, i: range(len(list)-i, len(list))
u, sigma, vt = (
numpy.delete(u, tail(u[0], k), axis=1),
numpy.delete(sigma, tail(sigma, k), axis=0),
numpy.delete(vt, tail(vt, k), axis=0)
)
# Store as Python dict and lists so we can pickle it.
self.model = model
self._terms = dict(enumerate(model.vector().keys())) # Vt-index => word.
self.u, self.sigma, self.vt = (
dict((d.id, Vector((i, float(x)) for i, x in enumerate(v))) for d, v in zip(model, u)),
list(sigma),
[[float(x) for x in v] for v in vt]
)
@property
def terms(self):
""" Yields a list of all terms, identical to LSA.model.vector.keys().
"""
return self._terms.values()
features = words = terms
@property
def concepts(self):
""" Yields a list of all concepts, each a dictionary of (word, weight)-items.
"""
# Round the weight so 9.0649330400000009e-17 becomes a more meaningful 0.0.
return [dict((self._terms[i], round(w, 15)) for i, w in enumerate(concept)) for concept in self.vt]
@property
def vectors(self):
""" Yields a dictionary of (Document.id, concepts),
where each concept is a dictionary of (concept_index, weight)-items.
for document in lsa.model:
for concept in lsa.vectors(document.id):
print(document, concept)
"""
return self.u
def vector(self, id):
if isinstance(id, Document):
id = id.id
return self.u[id]
def __getitem__(self, id):
return self.u[id]
def __contains__(self, id):
return id in self.u
def __iter__(self):
return iter(self.u)
def __len__(self):
return len(self.u)
def transform(self, document):
""" Given a document not in the model, returns a vector in LSA concept space.
This happes automatically in Model.cosine_similarity(),
but it must be done explicitly for Classifier.classify() input.
"""
if document.id in self.u:
return self.u[document.id]
if document.id in _lsa_transform_cache:
return _lsa_transform_cache[document.id]
import numpy
v = self.model.vector(document)
v = [v[self._terms[i]] for i in range(len(v))]
v = numpy.dot(numpy.dot(numpy.linalg.inv(numpy.diag(self.sigma)), self.vt), v)
v = _lsa_transform_cache[document.id] = Vector(enumerate(v))
return v
# LSA cache for Model.vector_space_search() shouldn't be stored with Model.save()
# (so it is a global instead of a property of the LSA class).
_lsa_transform_cache = {}
#def iter2array(iterator, typecode):
# a = numpy.array([next(iterator)], typecode)
# shape0 = a.shape[1:]
# for (i, item) in enumerate(iterator):
# a.resize((i+2,) + shape0)
# a[i+1] = item
# return a
#def filter(matrix, min=0):
# columns = numpy.max(matrix, axis=0)
# columns = [i for i, v in enumerate(columns) if v <= min] # Indices of removed columns.
# matrix = numpy.delete(matrix, columns, axis=1)
# return matrix, columns
#### CLUSTERING ####################################################################################
# Clustering can be used to categorize a set of unlabeled documents.
# Clustering is an unsupervised machine learning method that partitions a set of vectors into
# subsets, using a distance metric to determine how similar two vectors are.
# For example, for (x, y)-points in 2D space we can use Euclidean distance ("as the crow flies").
# The k_means() and hierarchical() functions work with Vector objects or dictionaries.
def mean(iterable, length=None):
""" Returns the arithmetic mean of the values in the given iterable or iterator.
"""
if length is None:
if not hasattr(iterable, "__len__"):
iterable = list(iterable)
length = len(iterable)
return sum(iterable) / float(length or 1)
def centroid(vectors=[], features=[]):
""" Returns the center of the given list of vectors.
For example: if each vector has two features, (x, y)-coordinates in 2D space,
the centroid is the geometric center of the coordinates forming a polygon.
Since vectors are sparse (i.e., features with weight 0 are omitted),
the list of all features (= Model.vector) must be given.
"""
c = []
for v in vectors:
if isinstance(v, Cluster):
c.extend(v.flatten())
elif isinstance(v, Document):
c.append(v.vector)
else:
c.append(v)
if not features:
features = _features(c)
c = [(f, mean((v.get(f, 0) for v in c), len(c))) for f in features]
c = Vector((f, w) for f, w in c if w != 0)
return c
class DistanceMap(object):
def __init__(self, method=COSINE):
""" A lazy map of cached distances between Vector objects.
"""
self.method = method
self._cache = {}
def __call__(self, v1, v2):
return self.distance(v1, v2)
def distance(self, v1, v2):
""" Returns the cached distance between two vectors.
"""
try:
# Two Vector objects for which the distance was already calculated.
d = self._cache[(v1.id, v2.id)]
except KeyError:
# Two Vector objects for which the distance has not been calculated.
d = self._cache[(v1.id, v2.id)] = distance(v1, v2, method=self.method)
except AttributeError:
# No "id" property, so not a Vector but a plain dict.
d = distance(v1, v2, method=self.method)
return d
def cluster(method=KMEANS, vectors=[], **kwargs):
""" Clusters the given list of vectors using the k-means or hierarchical algorithm.
"""
if method == KMEANS:
return k_means(vectors, **kwargs)
if method == HIERARCHICAL:
return hierarchical(vectors, **kwargs)
#--- K-MEANS ---------------------------------------------------------------------------------------
# k-means is fast but no optimal solution is guaranteed (random initialization).
# Initialization methods:
RANDOM, KMPP = "random", "kmeans++"
def k_means(vectors, k=None, iterations=10, distance=COSINE, seed=RANDOM, **kwargs):
""" Returns a list of k clusters, where each cluster is a list of vectors (Lloyd's algorithm).
Vectors are assigned to k random centers using a distance metric (EUCLIDEAN, COSINE, ...).
Since the initial centers are chosen randomly (by default, seed=RANDOM),
there is no guarantee of convergence or of finding an optimal solution.
A more efficient way is to use seed=KMPP (k-means++ initialization algorithm).
"""
features = kwargs.get("features") or _features(vectors)
if k is None:
k = sqrt(len(vectors) / 2)
if k < 2:
return [[v for v in vectors]]
if seed == KMPP:
clusters = kmpp(vectors, k, distance)
else:
clusters = [[] for i in xrange(int(k))]
for i, v in enumerate(sorted(vectors, key=lambda x: random())):
# Randomly partition the vectors across k clusters.
clusters[i % int(k)].append(v)
# Cache the distance calculations between vectors (up to 4x faster).
map = DistanceMap(method=distance); distance = map.distance
converged = False
while not converged and iterations > 0 and k > 0:
# Calculate the center of each cluster.
centroids = [centroid(cluster, features) for cluster in clusters]
# Triangle inequality: one side is shorter than the sum of the two other sides.
# We can exploit this to avoid costly distance() calls (up to 3x faster).
p = 0.5 * kwargs.get("p", 0.8) # "Relaxed" triangle inequality (cosine distance is a semimetric) 0.25-0.5.
D = {}
for i in range(len(centroids)):
for j in range(i, len(centroids)): # center1–center2 < center1–vector + vector–center2 ?
D[(i,j)] = D[(j,i)] = p * distance(centroids[i], centroids[j])
# For every vector in every cluster,
# check if it is nearer to the center of another cluster.
# If so, assign it. When visualized, this produces a Voronoi diagram.
converged = True
for i in xrange(len(clusters)):
for v in clusters[i]:
nearest, d1 = i, distance(v, centroids[i])
for j in xrange(len(clusters)):
if D[(i,j)] < d1: # Triangle inequality (Elkan, 2003).
d2 = distance(v, centroids[j])
if d2 < d1:
nearest = j
if nearest != i: # Other cluster is nearer.
clusters[nearest].append(clusters[i].pop(clusters[i].index(v)))
converged = False
iterations -= 1; #print(iterations)
return clusters
kmeans = k_means
def kmpp(vectors, k, distance=COSINE):
""" The k-means++ initialization algorithm returns a set of initial clusers,
with the advantage that:
- it generates better clusters than k-means(seed=RANDOM) on most data sets,
- it runs faster than standard k-means,
- it has a theoretical approximation guarantee.
"""
# Cache the distance calculations between vectors (up to 4x faster).
map = DistanceMap(method=distance); distance = map.distance
# David Arthur, 2006, http://theory.stanford.edu/~sergei/slides/BATS-Means.pdf
# Based on:
# http://www.stanford.edu/~darthur/kmpp.zip
# http://yongsun.me/2008/10/k-means-and-k-means-with-python
# Choose one center at random.
# Calculate the distance between each vector and the nearest center.
centroids = [choice(vectors)]
d = [distance(v, centroids[0]) for v in vectors]
s = sum(d)
for _ in range(int(k) - 1):
# Choose a random number y between 0 and d1 + d2 + ... + dn.
# Find vector i so that: d1 + d2 + ... + di >= y > d1 + d2 + ... + dj.
# Perform a number of local tries so that y yields a small distance sum.
i = 0
for _ in range(int(2 + log(k))):
y = random() * s
for i1, v1 in enumerate(vectors):
if y <= d[i1]:
break
y -= d[i1]
s1 = sum(min(d[j], distance(v1, v2)) for j, v2 in enumerate(vectors))
if s1 < s:
s, i = s1, i1
# Add vector i as a new center.
# Repeat until we have chosen k centers.
centroids.append(vectors[i])
d = [min(d[i], distance(v, centroids[-1])) for i, v in enumerate(vectors)]
s = sum(d)
# Assign points to the nearest center.
clusters = [[] for i in xrange(int(k))]
for v1 in vectors:
d = [distance(v1, v2) for v2 in centroids]
clusters[d.index(min(d))].append(v1)
return clusters
#--- HIERARCHICAL ----------------------------------------------------------------------------------
# Hierarchical clustering is slow but the optimal solution guaranteed in O(len(vectors) ** 3).
class Cluster(list):
def __init__(self, *args, **kwargs):
""" A nested list of Cluster and Vector objects,
returned from hierarchical() clustering.
"""
list.__init__(self, *args, **kwargs)
@property
def depth(self):
""" Yields the maximum depth of nested clusters.
Cluster((1, Cluster((2, Cluster((3, 4)))))).depth => 2.
"""
return max([0] + [1 + n.depth for n in self if isinstance(n, Cluster)])
def flatten(self, depth=1000):
""" Flattens nested clusters to a list, down to the given depth.
Cluster((1, Cluster((2, Cluster((3, 4)))))).flatten(1) => [1, 2, Cluster(3, 4)].
"""
a = []
for item in self:
if isinstance(item, Cluster) and depth > 0:
a.extend(item.flatten(depth-1))
else:
a.append(item)
return a
def traverse(self, visit=lambda cluster: None):
""" Calls the given visit() function on this cluster and each nested cluster, breadth-first.
"""
visit(self)
for item in self:
if isinstance(item, Cluster):
item.traverse(visit)
def __repr__(self):
return "Cluster(%s)" % list.__repr__(self)
def sequence(i=0, f=lambda i: i+1):
""" Yields an infinite sequence, for example:
sequence() => 0, 1, 2, 3, ...
sequence(1.0, lambda i: i/2) => 1, 0.5, 0.25, 0.125, ...
"""
# Used to generate unique vector id's in hierarchical().
# We cannot use Vector.id, since the given vectors might be plain dicts.
# We cannot use id(vector), since id() is only unique for the lifespan of the object.
while True:
yield i; i=f(i)
def hierarchical(vectors, k=1, iterations=1000, distance=COSINE, **kwargs):
""" Returns a Cluster containing k items (vectors or clusters with nested items).
With k=1, the top-level cluster contains a single cluster.
"""
id = sequence()
features = kwargs.get("features", _features(vectors))
clusters = Cluster((v for v in shuffled(vectors)))
centroids = [(next(id), v) for v in clusters]
map = {}
for _ in range(iterations):
if len(clusters) <= max(k, 1):
break
nearest, d0 = None, None
for i, (id1, v1) in enumerate(centroids):
for j, (id2, v2) in enumerate(centroids[i+1:]):
# Cache the distance calculations between vectors.
# This is identical to DistanceMap.distance(),
# but it is faster in the inner loop to use it directly.
try:
d = map[(id1, id2)]
except KeyError:
d = map[(id1, id2)] = _distance(v1, v2, method=distance)
if d0 is None or d < d0:
nearest, d0 = (i, j+i+1), d
# Pairs of nearest clusters are merged as we move up the hierarchy:
i, j = nearest
merged = Cluster((clusters[i], clusters[j]))
clusters.pop(j)
clusters.pop(i)
clusters.append(merged)
# Cache the center of the new cluster.
v = centroid(merged.flatten(), features)
centroids.pop(j)
centroids.pop(i)
centroids.append((next(id), v))
return clusters
#from pattern.vector import Vector
#
#v1 = Vector(wings=0, beak=0, claws=1, paws=1, fur=1) # cat
#v2 = Vector(wings=0, beak=0, claws=0, paws=1, fur=1) # dog
#v3 = Vector(wings=1, beak=1, claws=1, paws=0, fur=0) # bird
#
#print(hierarchical([v1, v2, v3]))
#### CLASSIFIER ####################################################################################
# Classification can be used to predict the label of an unlabeled document.
# Classification is a supervised machine learning method that uses labeled documents
# (i.e., Document objects with a type) as training examples to statistically predict
# the label (type, class) of new documents, based on their similarity to the training examples
# using a distance metric (e.g., cosine similarity).
#--- CLASSIFIER BASE CLASS -------------------------------------------------------------------------
# The default baseline (i.e., the default predicted class) is the most frequent class:
MAJORITY, FREQUENCY = "majority", "frequency"
class Classifier(object):
def __init__(self, train=[], baseline=MAJORITY, **kwargs):
""" A base class for Naive Bayes, k-NN and SVM.
Trains a classifier on the given list of Documents or (document, type)-tuples,
where document can be a Document, Vector, dict or string
(dicts and strings are implicitly converted to vectors).
"""
data = getattr(self, "_data", {})
self.description = "" # Description of the dataset: author e-mail, etc.
self._data = data # Custom data to store when pickled.
self._vectors = [] # List of trained (type, vector)-tuples.
self._classes = {} # Dict of (class, frequency)-items.
self._baseline = baseline # Default predicted class.
# Train on the list of Document objects or (document, type)-tuples:
for d in (isinstance(d, Document) and (d, d.type) or d for d in train):
self.train(*d)
# In Pattern 2.5-, Classifier.test() is a classmethod.
# In Pattern 2.6+, it is replaced with Classifier._test() once instantiated:
self.test = self._test
@property
def features(self):
""" Yields a list of trained features.
"""
return list(features(v for type, v in self._vectors))
@property
def classes(self):
""" Yields a list of trained classes.
"""
return self._classes.keys()
terms, types = features, classes
@property
def binary(self):
""" Yields True if the classifier predicts either True (0) or False (1).
"""
return sorted(self.classes) in ([False, True], [0, 1])
@property
def distribution(self):
""" Yields a dictionary of trained (class, frequency)-items.
"""
return self._classes.copy()
@property
def majority(self):
""" Yields the majority class (= most frequent class).
"""
d = sorted((v, k) for k, v in self._classes.items())
return d and d[-1][1] or None
@property
def minority(self):
""" Yields the minority class (= least frequent class).
"""
d = sorted((v, k) for k, v in self._classes.items())
return d and d[0][1] or None
@property
def baseline(self):
""" Yields the most frequent class in the training data,
or a user-defined class if Classifier(baseline != MAJORITY).
"""
if self._baseline not in (MAJORITY, FREQUENCY):
return self._baseline
return ([(0, None)] + sorted([(v, k) for k, v in self._classes.items()]))[-1][1]
@property
def weighted_random_baseline(self):
""" Yields the weighted random baseline:
accuracy with classes predicted randomly according to their distribution.
"""
n = float(sum(self.distribution.values())) or 1
return sum(map(lambda x: (x / n) ** 2, self.distribution.values()))
wrb = weighted_random_baseline
@property
def skewness(self):
""" Yields 0.0 if the trained classes are evenly distributed.
Yields > +1.0 or < -1.0 if the training data is highly skewed.
"""
def moment(a, m, k=1):
return sum([(x-m)**k for x in a]) / (len(a) or 1)
# List each training instance by an int that represents its class:
a = list(chain(*([i] * v for i, (k, v) in enumerate(self._classes.items()))))
m = float(sum(a)) / len(a) # mean
return moment(a, m, 3) / (moment(a, m, 2) ** 1.5 or 1)
def train(self, document, type=None):
""" Trains the classifier with the given document of the given type (i.e., class).
A document can be a Document, Vector, dict, list or string.
If no type is given, Document.type will be used instead.
"""
type, vector = self._vector(document, type)
self._vectors.append((type, vector))
self._classes[type] = self._classes.get(type, 0) + 1
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
Returns a dict of (class, probability)-items if discrete=False.
"""
# This method must be implemented in subclass.
if not discrete:
return defaultdict(float)
return self.baseline
def _vector(self, document, type=None, **kwargs):
""" Returns a (type, Vector)-tuple for the given document.
If the document is part of a LSA-reduced model, returns the LSA concept vector.
If the given type is None, returns document.type (if a Document is given).
"""
if isinstance(document, Document):
if type is None:
type = document.type
if document.model and document.model.lsa:
return type, document.model.lsa[document.id] # LSA concept vector.
return type, document.vector
if isinstance(document, Vector):
return type, document
if isinstance(document, dict):
return type, Vector(document, **kwargs)
if isinstance(document, (list, tuple)):
return type, Document(document, filter=None, stopwords=True).vector
if isinstance(document, basestring):
return type, Document(document, filter=None, stopwords=True).vector
@classmethod
def k_fold_cross_validation(cls, corpus=[], k=10, **kwargs):
# Backwards compatibility.
return K_fold_cross_validation(cls, documents=corpus, folds=k, **kwargs)
crossvalidate = cross_validate = cv = k_fold_cross_validation
@classmethod
def test(cls, corpus=[], d=0.65, folds=1, **kwargs):
# Backwards compatibility.
# In Pattern 2.5-, Classifier.test() is a classmethod.
# In Pattern 2.6+, it is replaced with Classifier._test() once instantiated.
corpus = kwargs.pop("documents", kwargs.pop("train", corpus))
if folds > 1:
return K_fold_cross_validation(cls, documents=corpus, folds=folds, **kwargs)
i = int(round(max(0.0, min(1.0, d)) * len(corpus)))
d = shuffled(corpus)
return cls(train=d[:i], **kwargs).test(d[i:])
def _test(self, documents=[], target=None, **kwargs):
""" Returns an (accuracy, precision, recall, F1-score)-tuple for the given documents,
with values between 0.0 and 1.0 (0-100%).
Accuracy is the percentage of correct predictions for the given test set,
but this metric can be misleading (e.g., classifier *always* predicts True).
Precision is the percentage of predictions that were correct.
Recall is the percentage of documents that were correctly labeled.
F1-score is the harmonic mean of precision and recall.
"""
return self.confusion_matrix(documents).test(target)
def auc(self, documents=[], k=10):
""" Returns the area under the ROC-curve.
Returns the probability (0.0-1.0) that a classifier will rank
a random positive document (True) higher than a random negative one (False).
"""
return self.confusion_matrix(documents).auc(k)
def confusion_matrix(self, documents=[]):
""" Returns the confusion matrix for the given test data,
which is a list of Documents or (document, type)-tuples.
"""
documents = [isinstance(d, Document) and (d, d.type) or d for d in documents]
return ConfusionMatrix(self.classify, documents)
def save(self, path, final=False):
""" Saves the classifier as a gzipped pickle file.
"""
if final:
self.finalize()
self.test = None # Can't pickle instancemethods.
f = gzip.GzipFile(path, "wb")
f.write(cPickle.dumps(self, 1)) # 1 = binary
f.close()
@classmethod
def load(cls, path):
""" Loads the classifier from a gzipped pickle file.
"""
f = gzip.GzipFile(path, "rb")
self = cPickle.loads(f.read())
self._on_load(path) # Initialize subclass (e.g., SVM).
self.test = self._test
f.close()
return self
def _on_load(self, path):
pass
def finalize(self):
""" Removes training data from memory, keeping only the trained model,
reducing file size with Classifier.save().
"""
pass
#--- CLASSIFIER EVALUATION -------------------------------------------------------------------------
class ConfusionMatrix(defaultdict):
def __init__(self, classify=lambda document: True, documents=[]):
""" Returns the matrix of classes x predicted classes as a dictionary.
"""
defaultdict.__init__(self, lambda: defaultdict(int))
for document, type1 in documents:
type2 = classify(document)
self[type1][type2] += 1
def split(self):
""" Returns an iterator over one-vs-all (type, TP, TN, FP, FN)-tuples.
"""
return iter((type,) + self(type) for type in self)
def __call__(self, target):
""" Returns a (TP, TN, FP, FN)-tuple for the given class (one-vs-all).
"""
TP = 0 # True positives.
TN = 0 # True negatives.
FP = 0 # False positives (type I error).
FN = 0 # False negatives (type II error).
for t1 in self:
for t2, n in self[t1].items():
if target == t1 == t2:
TP += n
if target != t1 == t2:
TN += n
if target == t1 != t2:
FN += n
if target == t2 != t1:
FP += n
return (TP, TN, FP, FN)
def test(self, target=None):
""" Returns an (accuracy, precision, recall, F1-score)-tuple.
"""
A = [] # Accuracy.
P = [] # Precision.
R = [] # Recall.
for type, TP, TN, FP, FN in self.split():
if type == target or target is None:
# Calculate precision & recall per class.
A.append(float(TP + TN) / ((TP + TN + FP + FN)))
P.append(float(TP) / ((TP + FP) or 1))
R.append(float(TP) / ((TP + FN) or 1))
# Macro-averaged:
A = sum(A) / (len(A) or 1.0)
P = sum(P) / (len(P) or 1.0)
R = sum(R) / (len(R) or 1.0)
F = 2.0 * P * R / ((P + R) or 1.0)
return A, P, R, F
def auc(self, k=10):
""" Returns the area under the ROC-curve.
"""
roc = [(0.0, 0.0), (1.0, 1.0)]
for type, TP, TN, FP, FN in self.split():
x = FPR = float(FP) / ((FP + TN) or 1) # false positive rate
y = TPR = float(TP) / ((TP + FN) or 1) # true positive rate
roc.append((x, y))
#print("%s\t%s %s %s %s\t %s %s" % (TP, TN, FP, FN, FPR, TPR))
roc = sorted(roc)
# Trapzoidal rule: area = (a + b) * h / 2, where a=y0, b=y1 and h=x1-x0.
return sum(0.5 * (x1 - x0) * (y1 + y0) for (x0, y0), (x1, y1) in sorted(zip(roc, roc[1:])))
@property
def table(self, padding=1):
""" Returns the matrix as a string with rows and columns.
"""
k = sorted(self)
n = max(map(lambda x: len(decode_utf8(x)), k))
n = max(n, *(len(str(self[k1][k2])) for k1 in k for k2 in k)) + padding
s = "".ljust(n)
for t1 in k:
s += decode_utf8(t1).ljust(n)
for t1 in k:
s += "\n"
s += decode_utf8(t1).ljust(n)
for t2 in k:
s += str(self[t1][t2]).ljust(n)
return s
def __repr__(self):
return repr(dict((k, dict(v)) for k, v in self.items()))
def K_fold_cross_validation(Classifier, documents=[], folds=10, **kwargs):
""" Returns an (accuracy, precisiom, recall, F1-score, standard deviation)-tuple.
For 10-fold cross-validation, performs 10 separate tests of the classifier,
each with a different 9/10 training and 1/10 testing documents.
The given list of documents contains Documents or (document, type)-tuples.
The given classifier is a class (NB, KNN, SLP, SVM)
which is initialized with the given optional parameters.
"""
K = kwargs.pop("K", folds)
s = kwargs.pop("shuffled", True)
# Macro-average accuracy, precision, recall & F1-score.
m = [0.0, 0.0, 0.0, 0.0]
f = []
# Create shuffled folds to avoid a list sorted by type
# (we take successive folds and the source data could be sorted).
if isinstance(K, (int, float, long)):
folds = list(_folds(shuffled(documents) if s else documents, K))
# K tests with different train (d1) and test (d2) sets.
for d1, d2 in folds:
d1 = [isinstance(d, Document) and (d, d.type) or d for d in d1]
d2 = [isinstance(d, Document) and (d, d.type) or d for d in d2]
classifier = Classifier(train=d1, **kwargs)
A, P, R, F = classifier.test(d2, **kwargs)
m[0] += A
m[1] += P
m[2] += R
m[3] += F
f.append(F)
# F-score mean & variance.
K = len(folds)
u = float(sum(f)) / (K or 1.0)
o = float(sum((x - u) ** 2 for x in f)) / (K-1 or 1.0)
o = sqrt(o)
return tuple([v / (K or 1.0) for v in m] + [o])
kfoldcv = K_fold_cv = k_fold_cv = k_fold_cross_validation = K_fold_cross_validation
def folds(documents=[], K=10, **kwargs):
""" Returns an iterator of K folds, where each fold is a (train, test)-tuple.
For example, for 10-fold cross-validation, it yields 10 tuples,
each with a different 9/10 training and 1/10 testing documents.
"""
def chunks(iterable, n=10):
# Returns an iterator of n lists of roughly equal size.
# http://www.garyrobinson.net/2008/04/splitting-a-pyt.html
a = list(iterable)
i = 0
j = 0
for m in xrange(n):
j = i + len(a[m::n])
yield a[i:j]
i = j
k = kwargs.get("k", K)
d = list(chunks(documents, max(k, 2)))
for holdout in xrange(k):
yield list(chain(*(d[:holdout] + d[holdout+1:]))), d[holdout]
_folds = folds
def gridsearch(Classifier, documents=[], folds=10, **kwargs):
""" Returns the test results for every combination of optional parameters,
using K-fold cross-validation for the given classifier (NB, KNN, SLP, SVM).
For example:
for (A, P, R, F, o), p in gridsearch(SVM, data, c=[0.1, 1, 10]):
print((A, P, R, F, o), p)
> (0.919, 0.921, 0.919, 0.920), {"c": 10}
> (0.874, 0.884, 0.865, 0.874), {"c": 1}
> (0.535, 0.424, 0.551, 0.454), {"c": 0.1}
"""
def product(*args):
# Yields the cartesian product of given iterables:
# list(product([1, 2], [3, 4])) => [(1, 3), (1, 4), (2, 3), (2, 4)]
p = [[]]
for iterable in args:
p = [x + [y] for x in p for y in iterable]
for p in p:
yield tuple(p)
s = [] # [((A, P, R, F, o), parameters), ...]
p = [] # [[("c", 0.1), ("c", 10), ...],
# [("gamma", 0.1), ("gamma", 0.2), ...], ...]
for k, v in kwargs.items():
p.append([(k, v) for v in v])
for p in product(*p):
p = dict(p)
s.append((K_fold_cross_validation(Classifier, documents, folds, **p), p))
return sorted(s, reverse=True)
def feature_selection(documents=[], top=None, method=CHISQUARED, threshold=0.0):
""" Returns an iterator of (feature, weight, (probability, class))-tuples,
sorted by the given feature selection method (IG, GR, X2) and document frequency threshold.
"""
a = []
for i, d in enumerate(documents):
if not isinstance(d, Document):
d = Document(d[0], type=d[1], stopwords=True)
a.append(d)
m = Model(a, weight=None)
p = m.posterior_probability
c = m.classes
for w, f in m.feature_selection(top, method, threshold, weighted=True):
# For each feature, retrieve the class with the maximum probabilty.
yield f, w, max([(p(f, type), type) for type in c])
fsel = feature_selection
#--- NAIVE BAYES CLASSIFIER ------------------------------------------------------------------------
MULTINOMIAL = "multinomial" # Feature weighting.
BINOMIAL = "binomial" # Feature occurs in class (1) or not (0).
BERNOUILLI = "bernouilli" # Feature occurs in class (1) or not (0).
class NB(Classifier):
def __init__(self, train=[], baseline=MAJORITY, method=MULTINOMIAL, alpha=0.0001, **kwargs):
""" Naive Bayes is a simple supervised learning method for text classification.
Documents are classified based on the probability that a feature occurs in a class,
(independent of other features).
"""
self._classes = {} # {class: frequency}
self._features = {} # {feature: frequency}
self._likelihood = {} # {class: {feature: frequency}}
self._cache = {} # Cache log likelihood sums.
self._method = method # MULTINOMIAL or BERNOUILLI.
self._alpha = alpha # Smoothing.
Classifier.__init__(self, train, baseline)
@property
def method(self):
return self._method
@property
def features(self):
return self._features.keys()
def train(self, document, type=None):
""" Trains the classifier with the given document of the given type (i.e., class).
A document can be a Document, Vector, dict, list or string.
If no type is given, Document.type will be used instead.
"""
# Calculate the probability of a class.
# Calculate the probability of a feature.
# Calculate the probability of a feature occuring in a class (= conditional probability).
type, vector = self._vector(document, type=type)
self._classes[type] = self._classes.get(type, 0) + 1
self._likelihood.setdefault(type, {})
self._cache.pop(type, None)
for f, w in vector.items():
if self._method in (BINARY, BINOMIAL, BERNOUILLI):
w = 1
self._features[f] = self._features.get(f, 0) + 1
self._likelihood[type][f] = self._likelihood[type].get(f, 0) + w
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
If the classifier has been trained on LSA concept vectors
you need to supply LSA.transform(document).
"""
# Given red & round, what is the likelihood that it is an apple?
# p = p(red|apple) * p(round|apple) * p(apple) / (p(red) * p(round))
# The multiplication can cause underflow so we use log() instead.
# For unknown features, we smoothen with an alpha value.
v = self._vector(document)[1]
m = self._method
a = self._alpha
n = self._classes.values()
n = float(sum(n))
p = defaultdict(float)
for type in self._classes:
if m == MULTINOMIAL:
if not type in self._cache: # 10x faster
self._cache[type] = float(sum(self._likelihood[type].values()))
d = self._cache[type]
if m == BINOMIAL \
or m == BERNOUILLI:
d = float(self._classes[type])
L = self._likelihood[type]
g = sum(log((L[f] if f in L else a) / d) for f in v)
g = exp(g) * self._classes[type] / n # prior
p[type] = g
# Normalize probability estimates.
s = sum(p.values()) or 1
for type in p:
p[type] /= s
if not discrete:
return p
try:
# Ties are broken in favor of the majority class
# (random winner for majority ties).
m = max(p.values())
p = sorted((self._classes[type], type) for type, g in p.items() if g == m > 0)
p = [type for frequency, type in p if frequency == p[0][0]]
return choice(p)
except:
return self.baseline
Bayes = NaiveBayes = NB
#--- K-NEAREST NEIGHBOR CLASSIFIER -----------------------------------------------------------------
class KNN(Classifier):
def __init__(self, train=[], baseline=MAJORITY, k=10, distance=COSINE, **kwargs):
""" k-nearest neighbor (kNN) is a simple supervised learning method for text classification.
Documents are classified by a majority vote of nearest neighbors (cosine distance)
in the training data.
"""
self.k = k # Number of nearest neighbors to observe.
self.distance = distance # COSINE, EUCLIDEAN, ...
Classifier.__init__(self, train, baseline)
def train(self, document, type=None):
""" Trains the classifier with the given document of the given type (i.e., class).
A document can be a Document, Vector, dict, list or string.
If no type is given, Document.type will be used instead.
"""
Classifier.train(self, document, type)
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
If the classifier has been trained on LSA concept vectors
you need to supply LSA.transform(document).
"""
# Distance is calculated between the document vector and all training instances.
# This will make KNN slow in higher dimensions.
classes = {}
v1 = self._vector(document)[1]
D = ((distance(v1, v2, method=self.distance), type) for type, v2 in self._vectors)
D = ((d, type) for d, type in D if d < 1) # Nothing in common if distance=1.0.
D = heapq.nsmallest(self.k, D) # k-least distant.
# Normalize probability estimates.
s = sum(1 - d for d, type in D) or 1
p = defaultdict(float)
for d, type in D:
p[type] += (1 - d) / s
if not discrete:
return p
try:
# Ties are broken in favor of the majority class
# (random winner for majority ties).
m = max(p.values())
p = sorted((self._classes[type], type) for type, w in p.items() if w == m > 0)
p = [type for frequency, type in p if frequency == p[0][0]]
return choice(p)
except:
return self.baseline
NearestNeighbor = kNN = KNN
#from pattern.vector import Document, KNN
#
#d1 = Document("cats have stripes, purr and drink milk", type="cat")
#d2 = Document("cows are black and white, they moo and give milk", type="cow")
#d3 = Document("birds have wings and can fly", type="bird")
#
#knn = KNN()
#for d in (d1, d2, d3):
# knn.train(d)
#
#print(knn.binary)
#print(knn.classes)
#print(knn.classify(Document("something that can fly")))
#print(KNN.test((d1, d2, d3), folds=2))
#--- INFORMATION GAIN TREE --------------------------------------------------------------------------
class IGTreeNode(list):
def __init__(self, feature=None, value=None, type=None):
self.feature = feature
self.value = value
self.type = type
@property
def children(self):
return self
@property
def leaf(self):
return len(self) == 0
class IGTree(Classifier):
def __init__(self, train=[], baseline=MAJORITY, method=GAINRATIO, **kwargs):
""" IGTREE is a supervised learning method
where training data is represented as a tree ordered by information gain.
A feature is taken to occur in a vector (1) or not (0), i.e. BINARY weight.
"""
self._root = None
self._method = method
Classifier.__init__(self, train, baseline)
@property
def method(self):
return self._method
def _tree(self, vectors=[], features=[]):
""" Returns a tree of nested IGTREE.Node objects,
where the given list of vectors contains (Vector, class)-tuples, and
where the given list of features is sorted by information gain ratio.
"""
# Daelemans, W., van den Bosch, A., Weijters, T. (1997).
# IGTree: Using trees for compression and classification in lazy learning algorithms.
# Artificial Intelligence Review 11, 407-423.
vectors = list(vectors)
features = list(features)
if len(vectors) == 0 or len(features) == 0:
return IGTreeNode()
# {class: count}
classes = defaultdict(int)
for v, type in vectors:
classes[type] += 1
# Find the most frequent class for the set of vectors.
c = max(classes, key=classes.__getitem__)
# Find the most informative feature f.
f = features[0]
n = IGTreeNode(feature=f, type=c)
# The current node has a hyperplane on feature f,
# and the majority class in the set of vectors.
if len(classes) == 1:
return n
if len(features) == 1:
return n
# Partition the set of vectors into subsets
# (vectors with the same value for feature f are in the same subset).
p = defaultdict(list)
for v, type in vectors:
#x = round(v.get(f, 0.0), 1)
x = f in v
p[x].append((v, type))
# If not all vectors in a subset have the same class,
# build IGTREE._tree(subset, features[1:]) and connect it to the current node.
for x in p:
if any((type != c) for v, type in p[x]):
n.append(self._tree(p[x], features[1:]))
n[-1].value = x
return n
def _search(self, node, vector):
""" Returns the predicted class for the given Vector.
"""
while True:
#x = round(vector.get(node.feature, 0.0), 1)
x = node.feature in vector
b = False
for n in node.children:
if n.value == x:
b = True
break
if b is False:
return node.type
node = n
def _train(self):
""" Calculates information gain ratio for the features in the training data.
Constructs the search tree.
"""
m = Model((Document(set(v), type=type) for type, v in self._vectors), weight=BINARY)
f = sorted(m.features, key=getattr(m, self._method), reverse=True)
sys.setrecursionlimit(max(len(f) * 2, 1000))
self._root = self._tree([(v, type) for type, v in self._vectors], features=f)
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
If the classifier has been trained on LSA concept vectors
you need to supply LSA.transform(document).
"""
if self._root is None:
self._train()
return self._search(self._root, self._vector(document)[1])
def finalize(self):
""" Removes training data from memory, keeping only the IG tree,
reducing file size with Classifier.save().
"""
if self._root is None:
self._train()
self._vectors = []
IGTREE = IGTree
#from pattern.db import csv, pd
#data = csv(pd("..", "..", "test", "corpora", "polarity-nl-bol.com.csv"))
#data = ((review, score) for score, review in data)
#
#print(kfoldcv(IGTree, data, folds=3))
#--- SINGLE-LAYER PERCEPTRON ------------------------------------------------------------------------
class SLP(Classifier):
def __init__(self, train=[], baseline=MAJORITY, iterations=1, **kwargs):
""" Perceptron (SLP, single-layer averaged perceptron) is a simple artificial neural network,
a supervised learning method sometimes used for i.a. part-of-speech tagging.
Documents are classified based on the neuron that outputs the highest weight
for the given inputs (i.e., document vector features).
A feature is taken to occur in a vector (1) or not (0), i.e. BINARY weight.
"""
self._weight = defaultdict(dict) # {class: {feature: (weight, weight sum, timestamp)}}
self._iterations = iterations
self._iteration = 0
train = list(train)
train = chain(*(shuffled(train) for i in range(iterations)))
Classifier.__init__(self, train, baseline)
@property
def iterations(self):
return self._iterations
@property
def features(self):
return list(set(chain(*(f.keys() for f in self._weight.values()))))
def train(self, document, type=None):
""" Trains the classifier with the given document of the given type (i.e., class).
A document can be a Document, Vector, dict, list or string.
If no type is given, Document.type will be used instead.
"""
def _accumulate(type, feature, weight, i):
# Collins M. (2002). Discriminative Training Methods for Hidden Markov Models. EMNLP 2002.
# Based on: http://honnibal.wordpress.com/2013/09/11/
# Accumulate average weights (prevents overfitting).
# Instead of keeping all intermediate results and averaging them at the end,
# we keep a running sum and the iteration in which the sum was last modified.
w = self._weight[type]
w0, w1, j = w[feature] if feature in w else (0, 0, 0)
w0 += weight
w[feature] = (w0, (i-j) * w0 + w1, i)
type, vector = self._vector(document, type=type)
self._classes[type] = self._classes.get(type, 0) + 1
t1 = type
t2 = SLP.classify(self, document)
if t1 != t2: # Error correction.
self._iteration += 1
for f in vector:
_accumulate(t1, f, +1, self._iteration)
_accumulate(t2, f, -1, self._iteration)
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
If the classifier has been trained on LSA concept vectors
you need to supply LSA.transform(document).
"""
v = self._vector(document)[1]
i = self._iteration or 1
i = float(i)
p = defaultdict(float)
for type, w in self._weight.items():
#p[type] = sum(w[f][0] for f in v if f in w) # Without averaging.
s = 0
for f in v:
if f in w:
w0, w1, j = w[f]
s += ((i-j) * w0 + w1) / i
p[type] = s
# Normalize probability estimates.
m = min(chain(p.values(), (0,)))
s = sum(x-m for x in p.values()) or 1
for type in p:
p[type] -= m
p[type] /= s
if not discrete:
return p
try:
# Ties are broken in favor of the majority class
# (random winner for majority ties).
m = max(p.values())
p = sorted((self._classes[type], type) for type, w in p.items() if w == m > 0)
p = [type for frequency, type in p if frequency == p[0][0]]
return choice(p)
except:
return self.baseline
def finalize(self):
""" Removes training data from memory, keeping only the node weights,
reducing file size with Classifier.save().
"""
self._vectors = []
AP = AveragedPerceptron = Perceptron = SLP
# Perceptron learns one training example at a time,
# adjusting weights if the example is predicted wrong.
# Higher accuracy can be achieved by doing multiple iterations:
#from pattern.vector import Perceptron, shuffled
#
#p = Perceptron()
#for i in range(5):
# for v in shuffled(data):
# p.train(v)
#--- BACKPROPAGATION NEURAL NETWORK -----------------------------------------------------------------
# "Deep learning" refers to deep neural networks and deep belief systems.
# Deep neural networks are networks that have hidden layers between the input and output layers.
# By contrast, Perceptron directly feeds the input to the output layer.
# Weight initialization:
RANDOM = "random"
def matrix(m, n, a=0.0, b=0.0):
""" Returns an n x m matrix with values 0.0.
If a and b are given, values are uniformly random between a and b.
"""
if a == b == 0:
return [[0.0] * n for i in xrange(m)]
return [[uniform(a, b) for j in xrange(n)] for i in xrange(m)]
def sigmoid(x):
""" Forward propagation activation function.
"""
#return 1.0 / (1.0 + math.exp(-x))
return tanh(x)
def dsigmoid(y):
""" Backward propagation activation function derivative.
"""
#return y * (1.0 - y)
return 1.0 - y * y
class BPNN(Classifier):
def __init__(self, train=[], baseline=MAJORITY, layers=2, iterations=1000, **kwargs):
""" Backpropagation neural network (BPNN) is a supervised learning method
bases on a network of interconnected neurons
inspired by an animal's nervous system (i.e., the brain).
"""
# Based on:
# http://www.cs.pomona.edu/classes/cs30/notes/cs030neural.py
# http://arctrix.com/nas/python/bpnn.py
self._layers = layers
self._iterations = iterations
self._rate = kwargs.get("rate", 0.5)
self._momentum = kwargs.get("momentum", 0.1)
self._trained = False
Classifier.__init__(self, train, baseline)
@property
def layers(self):
return self._layers
@property
def iterations(self):
return self._iterations
@property
def rate(self):
return self._rate
@property
def momentum(self):
return self._momentum
learningrate = learning_rate = rate
def _weight_initialization(self, i=1, o=1, hidden=1, method=RANDOM, a=0.0, b=1.0):
""" Initializes the network with the given number of input, hidden, output nodes.
Initializes the node weights uniformly random between a and b.
"""
i += 1 # bias
# Node activation.
self._ai = [1.0] * i
self._ao = [1.0] * o
self._ah = [1.0] * hidden
# Node weights (w) and recent change (c).
self._wi = matrix(i, hidden, a, b)
self._ci = matrix(i, hidden)
self._wo = matrix(hidden, o, a, b)
self._co = matrix(hidden, o)
def _propagate_forward(self, input=[]):
""" Propagates the input through the network and returns the output activiation.
"""
ai, ao, ah, wi, wo = self._ai, self._ao, self._ah, self._wi, self._wo
assert len(input) == len(ai) - 1
# Activate input nodes.
for i, v in enumerate(input):
ai[i] = v
# Activate hidden nodes.
for j, v in enumerate(ah):
ah[j] = sigmoid(sum((v * wi[i][j] for i, v in enumerate(ai))))
# Activate output nodes.
for k, v in enumerate(ao):
ao[k] = sigmoid(sum((v * wo[j][k] for j, v in enumerate(ah))))
return list(ao)
def _propagate_backward(self, output=[], rate=0.5, momentum=0.1):
""" Propagates the output through the network and
generates delta for hidden and output nodes.
The learning rate determines speed vs. accuracy of the algorithm.
"""
ai, ao, ah, wi, wo, ci, co = self._ai, self._ao, self._ah, self._wi, self._wo, self._ci, self._co
# Compute delta for output nodes.
do = [0.0] * len(ao)
for k, v in enumerate(ao):
error = output[k] - v
do[k] = error * dsigmoid(v)
# Compute delta for hidden nodes.
dh = [0.0] * len(ah)
for j, v in enumerate(ah):
error = sum(do[k] * wo[j][k] for k in range(len(ao)))
dh[j] = error * dsigmoid(v)
# Update output weights.
for j, v1 in enumerate(ah):
for k, v2 in enumerate(ao):
change = do[k] * v1
wo[j][k] += rate * change + momentum * co[j][k]
co[j][k] = change
# Update input weight.
for i, v1 in enumerate(ai):
for j, v2 in enumerate(ah):
change = dh[j] * v1
wi[i][j] += rate * change + momentum * ci[i][j]
ci[i][j] = change
# Compute and return error.
return sum(0.5 * (output[k] - v) ** 2 for k, v in enumerate(ao))
_backprop = _propagate_backward
def _train(self, data=[], iterations=1000, rate=0.5, momentum=0.1):
""" Trains the network with the given data using backpropagation.
The given data is a list of (input, output)-tuples,
where each input and output a list of values.
For example, to learn the XOR-function:
nn = BPNN()
nn._weight_initialization(2, 1, hidden=2)
nn._train([
([0,0], [0]),
([0,1], [1]),
([1,0], [1]),
([1,1], [0])
])
print(nn._classify([0,0]))
print(nn._classify([0,1]))
"""
# Error decreases with each iteration.
for i in range(iterations):
error = 0.0
for input, output in data:
self._propagate_forward(input)
error += self._propagate_backward(output, rate, momentum)
def _classify(self, input):
return self._propagate_forward(input)
def train(self, document, type=None):
""" Trains the classifier with the given document of the given type (i.e., class).
A document can be a Document, Vector, dict, list or string.
If no type is given, Document.type will be used instead.
"""
Classifier.train(self, document, type)
self._trained = False
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
If the classifier has been trained on LSA concept vectors
you need to supply LSA.transform(document).
"""
if not self._trained:
# Batch learning (we need to know the number of features in advance).
n = float(len(self.classes)) - 1
H1 = list(sorted(self.features))
H2 = dict((x, i/n) for i, x in enumerate(self.classes)) # Class => float hash (0.0-1.0).
H3 = dict((i/n, x) for i, x in enumerate(self.classes)) # Class reversed hash.
v = [([v.get(f, 0.0) for f in H1], [H2[type]]) for type, v in self._vectors]
self._h = (H1, H2, H3)
self._weight_initialization(i=len(H1), o=1, hidden=self._layers, a=0.0, b=1.0)
self._train(v, self._iterations, self._rate, self._momentum)
self._trained = True
H1, H2, H3 = self._h
v = self._vector(document)[1]
i = [v.get(f, 0.0) for f in H1]
o = self._classify(i)[0]
c = min(H3.keys(), key=lambda k: abs(k - o))
c = H3[c]
return c
def finalize(self):
""" Removes training data from memory, keeping only the node weights,
reducing file size with Classifier.save().
"""
self._vectors = []
ANN = NN = NeuralNetwork = BPNN
#nn = BPNN()
#nn._weight_initialization(2, 1, hidden=2)
#nn._train([
# ([0,0], [0]),
# ([0,1], [1]),
# ([1,0], [1]),
# ([1,1], [0])
#])
#print(nn._classify([0,0]))
#print(nn._classify([0,1]))
#print
#--- SUPPORT VECTOR MACHINE ------------------------------------------------------------------------
# Pattern comes bundled with LIBSVM 3.17:
# http://www.csie.ntu.edu.tw/~cjlin/libsvm/
#
# Compiled binaries for 32-bit and 64-bit Windows, Mac OS X and Ubuntu are included.
# If no binary works, SVM() raises an ImportError,
# and you will need to download and compile LIBSVM from source.
# If Mac OS X complains during compilation, rename -soname" to "-install_name" in libsvm/Makefile.
# If the binary is named "libsvm.so.2", strip the ".2".
# Put the binary (i.e., "libsvm.dll" or "libsvm.so") in pattern/vector/svm/.
# Windows binaries can be downloaded from:
# http://www.lfd.uci.edu/~gohlke/pythonlibs/#libsvm
# SVM extensions:
LIBSVM, LIBLINEAR = \
"libsvm", "liblinear"
# SVM type:
SVC = CLASSIFICATION = 0
SVR = REGRESSION = 3
SVO = DETECTION = 2 # One-class SVM: X belongs to the class or not?
# SVM kernels:
LINEAR = 0 # Straight line: u' * v
POLYNOMIAL = 1 # Curved line: (gamma * u' * v + coef0) ** degree
RADIAL = RBF = 2 # Curved path: exp(-gamma * |u-v| ** 2)
# The simplest way to divide two clusters is a straight line.
# If the clusters are separated by a curved line,
# separation may be easier in higher dimensions (using a kernel).
class SVM(Classifier):
def __init__(self, *args, **kwargs):
""" Support Vector Machine (SVM) is a supervised learning method
where training documents are represented as points in n-dimensional space.
The SVM constructs a number of hyperplanes that subdivide the space.
Optional parameters:
- type = CLASSIFICATION,
- kernel = LINEAR,
- degree = 3,
- gamma = 1 / len(SVM.features),
- coeff0 = 0,
- cost = 1,
- epsilon = 0.01,
- cache = 100,
- shrinking = True,
- extension = (LIBSVM, LIBLINEAR),
- train = []
"""
import svm
self._svm = svm
# Cached LIBSVM or LIBLINEAR model:
self._model = None
# SVM.extensions is a tuple of extension modules that can be used.
# By default, LIBLINEAR will be used for linear SVC (it is faster).
# If you do not want to use LIBLINEAR, use SVM(extension=LIBSVM).
self._extensions = \
kwargs.get("extensions",
kwargs.get("extension", (LIBSVM, LIBLINEAR)))
# Optional parameters are read-only:
# - cost: higher cost = less margin for error (and risk of overfitting).
# - gamma: influence ("radius") of each training example for RBF.
if len(args) > 0:
kwargs.setdefault( "train", args[0])
if len(args) > 1:
kwargs.setdefault( "type", args[1])
if len(args) > 2:
kwargs.setdefault("kernel", args[2])
for k1, k2, v in (
( "type", "s", CLASSIFICATION),
( "kernel", "t", LINEAR),
( "degree", "d", 3), # For POLYNOMIAL.
( "gamma", "g", 0), # For POLYNOMIAL + RADIAL.
( "coeff0", "r", 0), # For POLYNOMIAL.
( "cost", "c", 1), # Can be optimized with gridsearch().
( "epsilon", "p", 0.1),
( "nu", "n", 0.5),
( "cache", "m", 100), # MB
( "shrinking", "h", True)):
v = kwargs.get(k2, kwargs.get(k1, v))
setattr(self, "_"+k1, v)
# SVC/SVR/SVO alias.
if self._type == "svc":
self._type = SVC
if self._type == "svr":
self._type = SVR
if self._type == "svo":
self._type = SVO
# RBF alias.
if self._kernel == "rbf":
self._kernel = RBF
Classifier.__init__(self, train=kwargs.get("train", []), baseline=MAJORITY)
@property
def extension(self):
""" Yields the extension module used (LIBSVM or LIBLINEAR).
"""
if LIBLINEAR in self._extensions and \
self._svm.LIBLINEAR and \
self._type == CLASSIFICATION and \
self._kernel == LINEAR:
return LIBLINEAR
return LIBSVM
@property
def _extension(self):
""" Yields the extension module object,
e.g., pattern/vector/svm/3.17/libsvm-mac64.so.
"""
if self.extension == LIBLINEAR:
return self._svm.liblinear.liblinear
return self._svm.libsvm.libsvm
@property
def type(self):
return self._type
@property
def kernel(self):
return self._kernel
@property
def degree(self):
return self._degree
@property
def gamma(self):
return self._gamma
@property
def coeff0(self):
return self._coeff0
@property
def cost(self):
return self._cost
@property
def epsilon(self):
return self._epsilon
@property
def nu(self):
return self._nu
@property
def cache(self):
return self._cache
@property
def shrinking(self):
return self._shrinking
s, t, d, g, r, c, p, n, m, h = (
type, kernel, degree, gamma, coeff0, cost, epsilon, nu, cache, shrinking
)
@property
def support_vectors(self):
""" Yields the support vectors.
"""
if self._model is None:
self._train()
if self.extension == LIBLINEAR:
return []
return self._model[0].get_SV()
sv = support_vectors
def _train(self):
""" Calls libsvm.svm_train() to create a model.
Vector classes and features are mapped to integers.
"""
# Note: LIBLINEAR feature indices start from 1 (not 0).
M = [v for type, v in self._vectors] # List of vectors.
H1 = dict((w, i+1) for i, w in enumerate(self.features)) # Feature => integer hash.
H2 = dict((w, i+1) for i, w in enumerate(self.classes)) # Class => integer hash.
H3 = dict((i+1, w) for i, w in enumerate(self.classes)) # Class reversed hash.
x = map(lambda v: dict(map(lambda k: (H1[k], v[k]), v)), M) # Hashed vectors.
y = map(lambda v: H2[v[0]], self._vectors) # Hashed classes.
# For linear SVC, use LIBLINEAR which is faster.
# For kernel SVC, use LIBSVM.
if self.extension == LIBLINEAR:
f = self._svm.liblinearutil.train
o = "-s 1 -c %s -p %s -q" % (
self._cost, # -c
self._epsilon # -p
)
else:
f = self._svm.libsvmutil.svm_train
o = "-s %s -t %s -d %s -g %s -r %s -c %s -p %s -n %s -m %s -h %s -b %s -q" % (
self._type, # -s
self._kernel, # -t
self._degree, # -d
self._gamma, # -g
self._coeff0, # -r
self._cost, # -c
self._epsilon, # -p
self._nu, # -n
self._cache, # -m
int(self._shrinking), # -h
int(self._type != DETECTION), # -b
)
# Cache the model and the feature hash.
# SVM.train() will remove the cached model (since it needs to be retrained).
self._model = (f(y, x, o), H1, H2, H3)
def _classify(self, document, probability=False):
""" Calls libsvm.svm_predict() with the cached model.
For CLASSIFICATION, returns the predicted class.
For CLASSIFICATION with probability=True, returns a list of (weight, class)-tuples.
For REGRESSION, returns a float.
"""
if self._model is None:
return None
M = self._model[0]
H1 = self._model[1]
H2 = self._model[2]
H3 = self._model[3]
n = len(H1)
v = self._vector(document)[1]
v = dict(map(lambda k: (H1.get(k[1], k[0] + n + 1), v[k[1]]), enumerate(v)))
# For linear SVC, use LIBLINEAR which is 10x faster.
# For kernel SVC, use LIBSVM.
if self.extension == LIBLINEAR:
f = self._svm.liblinearutil.predict
o = "-b 0 -q"
else:
f = self._svm.libsvmutil.svm_predict
o = "-b %s -q" % int(probability)
p = f([0], [v], M, o)
# Note: LIBLINEAR does not currently support probabilities for classification.
if self._type == CLASSIFICATION and probability is True and self.extension == LIBLINEAR:
return {}
if self._type == CLASSIFICATION and probability is True:
return defaultdict(float, ((H3[i], w) for i, w in enumerate(p[2][0])))
if self._type == CLASSIFICATION:
return H3.get(int(p[0][0]))
if self._type == REGRESSION:
return p[0][0]
if self._type == DETECTION:
return p[0][0] > 0 # -1 = outlier => return False
return p[0][0]
def train(self, document, type=None):
""" Trains the classifier with the given document of the given type (i.e., class).
A document can be a Document, Vector, dict, list or string.
If no type is given, Document.type will be used instead.
"""
Classifier.train(self, document, type)
self._model = None
def classify(self, document, discrete=True):
""" Returns the type with the highest probability for the given document.
If the classifier has been trained on LSA concept vectors
you need to supply LSA.transform(document).
"""
if self._model is None:
self._train()
return self._classify(document, probability=not discrete)
def save(self, path, final=False):
if self._model is None:
self._train()
if self.extension == LIBSVM:
self._svm.libsvmutil.svm_save_model(path, self._model[0])
if self.extension == LIBLINEAR:
self._svm.liblinearutil.save_model(path, self._model[0])
# Save LIBSVM/LIBLINEAR model as a string.
# Unlink LIBSVM/LIBLINEAR binaries for cPickle.
svm, model = self._svm, self._model
self._svm = None
self._model = (open(path, "rb").read(),) + model[1:]
Classifier.save(self, path, final)
self._svm = svm
self._model = model
@classmethod
def load(cls, path):
return Classifier.load(path)
def _on_load(self, path):
# Called from Classifier.load().
# The actual SVM model was stored as a string.
# 1) Import pattern.vector.svm.
# 2) Extract the model string and save it as a temporary file.
# 3) Use pattern.vector.svm's LIBSVM or LIBLINEAR to load the file.
# 4) Delete the temporary file.
import svm # 1
self._svm = svm
if self._model is not None:
f = tempfile.NamedTemporaryFile("r+b")
f.write(self._model[0]) # 2
f.seek(0)
if self.extension == LIBLINEAR and not svm.LIBLINEAR:
raise ImportError("can't import liblinear")
if self.extension == LIBLINEAR:
m = self._svm.liblinearutil.load_model(f.name)
if self.extension == LIBSVM:
m = self._svm.libsvmutil.svm_load_model(f.name)
self._model = (m,) + self._model[1:] # 3
f.close() # 4
def finalize(self):
""" Removes training data from memory, keeping only the LIBSVM/LIBLINEAR trained model,
reducing file size with Classifier.save() (e.g., 15MB => 3MB).
"""
if self._model is None:
self._train()
self._vectors = []
#---------------------------------------------------------------------------------------------------
# "Nothing beats SVM + character n-grams."
# Character n-grams seem to capture all information: morphology, context, frequency, ...
# SVM will discover the most informative features.
# Each row in the CSV is a score (positive = +1, negative = –1) and a Dutch book review.
# Can we learn from this dataset to predict sentiment? Yes we can!
# The following script demonstrates sentiment analysis for Dutch book reviews,
# with 90% accuracy, in 10 lines of Python code:
#from pattern.db import CSV
#from pattern.vector import SVM, chngrams, kfoldcv
#
#def v(s):
# return chngrams(s, n=4)
#
#data = CSV.load(os.path.join("..", "..", "test", "corpora", "polarity-nl-bol.com.csv"))
#data = map(lambda p, review: (v(review), int(p) > 0), data)
#
#print(kfoldcv(SVM, data, folds=3))
#---------------------------------------------------------------------------------------------------
# I hate to spoil your party..." by Lars Buitinck.
# As pointed out by Lars Buitinck, words + word-level bigrams with TF-IDF can beat the 90% boundary:
#from pattern.db import CSV
#from pattern.en import ngrams
#from pattern.vector import Model, SVM, gridsearch
#
#def v(s):
# return count(words(s) + ngrams(s, n=2))
#
#data = CSV.load(os.path.join("..", "..", "test", "corpora", "polarity-nl-bol.com.csv"))
#data = map(lambda p, review: Document(v(review), type=int(p) > 0), data)
#data = Model(data, weight="tf-idf")
#
#for p in gridsearch(SVM, data, c=[0.1, 1, 10], folds=3):
# print(p)
# This reports 92% accuracy for the best run (c=10).
# Of course, it's optimizing for the same cross-validation
# that it's testing on, so this is easy to overfit.
# In scikit-learn it will run faster (4 seconds <=> 20 seconds), see: http://goo.gl/YqlRa
#### GENETIC ALGORITHM #############################################################################
class GeneticAlgorithm(object):
def __init__(self, candidates=[], **kwargs):
""" A genetic algorithm is a stochastic search method based on natural selection.
Each generation, the fittest candidates are selected and recombined into a new generation.
With each new generation the system converges towards an optimal fitness.
"""
self.population = candidates
self.generation = 0
# Set GA.fitness(), crossover(), mutate() from function.
for f in ("fitness", "combine", "mutate"):
if f in kwargs:
setattr(self, f, types.MethodType(kwargs[f], self))
def fitness(self, candidate):
""" Must be implemented in a subclass, returns 0.0-1.0.
"""
return 1.0
def combine(self, candidate1, candidate2):
""" Must be implemented in a subclass, returns a new candidate.
"""
return None
def mutate(self, candidate):
""" Must be implemented in a subclass, returns a new candidate.
"""
return None or candidate
def update(self, top=0.5, mutation=0.5):
""" Updates the population by selecting the top fittest candidates,
and recombining them into a new generation.
"""
# 1) Selection.
# Choose the top fittest candidates.
# Including weaker candidates can be beneficial (diversity).
p = sorted(self.population, key=self.fitness, reverse=True)
p = p[:max(2, int(round(len(p) * top)))]
# 2) Reproduction.
# Choose random parents for crossover.
# Mutation avoids local optima by maintaining genetic diversity.
g = []
n = len(p)
for candidate in self.population:
i = randint(0, n-1)
j = choice([x for x in xrange(n) if x != i]) if n > 1 else 0
g.append(self.combine(p[i], p[j]))
if random() <= mutation:
g[-1] = self.mutate(g[-1])
self.population = g
self.generation += 1
@property
def avg(self):
# Average fitness is supposed to increase each generation.
return float(sum(map(self.fitness, self.population))) / len(self.population)
average_fitness = avg
GA = GeneticAlgorithm
|