1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
|
Source: python-pattern
Section: python
Priority: optional
Maintainer: Miriam Ruiz <miriam@debian.org>
Build-Depends:
debhelper (>= 9), quilt, wordnet-base, dh-python,
python-all, python-setuptools, python-future, python-liblinear, python-libsvm, python-nltk,
python-bs4, python-feedparser, python-simplejson, python-numpy, python-backports.csv,
python3-all, python3-setuptools, python3-liblinear, python3-nltk, python3-bs4,
python3-feedparser, python3-simplejson, python3-numpy
Standards-Version: 4.2.1.2
Homepage: http://www.clips.ua.ac.be/pages/pattern
Package: python-pattern
Architecture: all
Depends: ${misc:Depends}, ${python:Depends}, ${shlibs:Depends},
python-future, python-liblinear, python-libsvm, python-feedparser, python-bs4, python-nltk,
python-simplejson, python-numpy, python-backports.csv, wordnet-base
Recommends: python-pdfminer
Description: web mining module for Python
Pattern is a web mining module for the Python programming language. It has
tools for data mining (Google, Twitter and Wikipedia API, a web crawler,
a HTML DOM parser), natural language processing (part-of-speech taggers,
n-gram search, sentiment analysis, WordNet), machine learning (vector space
model, clustering, SVM), network analysis and <canvas> visualization.
.
The module is free, well-document and bundled with 50+ examples and
350+ unit tests.
Package: python3-pattern
Architecture: all
Depends: ${misc:Depends}, ${python3:Depends}, ${shlibs:Depends},
python3-liblinear, python3-feedparser, python3-bs4, python3-nltk,
python3-simplejson, python3-numpy, wordnet-base
Recommends: python3-pdfminer
Description: web mining module for Python 3
Pattern is a web mining module for the Python programming language. It has
tools for data mining (Google, Twitter and Wikipedia API, a web crawler,
a HTML DOM parser), natural language processing (part-of-speech taggers,
n-gram search, sentiment analysis, WordNet), machine learning (vector space
model, clustering, SVM), network analysis and <canvas> visualization.
.
The module is free, well-document and bundled with 50+ examples and
350+ unit tests.
|