1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271
|
arXiv:1701.00006v1 [hep-th] 30 Dec 2016
Time Machines and AdS Solitons with Negative Mass
Xing-Hui Feng, Wei-Jian Geng and H. Lu Center for Advanced Quantum Studies, Department of Physics,
Beijing Normal University, Beijing 100875, China
ABSTRACT We show that in D = 2n+1 dimensions, when mass is negative and all angular momenta are non-vanishing, Kerr and Kerr-AdS metrics describe smooth time machines, with no curvature singularity. Turning off the angular momenta appropriately can lead to static AdS solitons with negative mass. Setting zero the cosmological constant yields a class of Ricci-flat Kahler metrics in D = 2n dimensions. We also show that Euclidean-signatured AdS solitons with negative mass can also arise in odd dimensions. We then construct time machines in D = 5 minimal gauged supergravity that carry only magnetic dipole charges. Turning off the cosmological constant, the time machine becomes massless and asymptotically flat. It can be described as a constant time bundle over the Eguchi-Hanson instanton.
xhfengp@mail.bnu.edu.cn gengwj@mail.bnu.edu.cn mrhonglu@gmail.com
Contents
1 Introduction
2
2 Time machines with negative mass
4
2.1 D = 5 time machines with equal angular momenta . . . . . . . . . . . . . . 4
2.2 D = 2n + 1 time machines with equal angular momenta . . . . . . . . . . . 8
2.3 Time machines with unequal angular momenta . . . . . . . . . . . . . . . . 10
2.4 Further time machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3 AdS Solitons with negative mass
13
3.1 Cohomogeneity-one metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.2 First-order equations without superpotential . . . . . . . . . . . . . . . . . . 14
3.3 Higher-cohomogeneity solitons . . . . . . . . . . . . . . . . . . . . . . . . . 16
4 Ricci-flat instantons in D = 2n dimensions
19
4.1 D = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 D = 2n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5 Euclidean AdS solitons with negative mass
22
6 Time machine with a dipole charge
24
6.1 Asymptotic to AdS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Asymptotic to flat spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7 Conclusions
26
1 Introduction
This paper studies the properties of the general Kerr metrics with or without a cosmological constant, when they do not describe rotating black holes. The Kerr metric [1] of a rotating black hole that is asymptotic to four-dimensional Minkowski spacetime is far more subtle to construct than the static Schwarzschild metric [2] with spherical symmetry. The solution was generalized by Carter [3] to include a cosmological constant and the metric describes a rotating back hole in de Sitter (dS) or anti-de Sitter (AdS) spacetimes for positive or negative cosmological constants respectively. Inspired by string theory, Kerr metrics in higher dimensions were constructed in [4]. Kerr-(A)dS metric in five dimensions were constructed
2
in [5], motivated by the AdS/CFT correspondence [6]. The Kerr-(A)dS metrics in general dimensions were later constructed in [7, 8].
One fascinating feature of Riemannian geometry is that a local metric may extend onto very different manifolds in different coordinate patches. For example, a five-dimensional Kerr-AdS "over-rotating" metric is equivalent, after performing a coordinate transformation, to an under-rotating Kerr-AdS metric [9]. Kerr and particularly Kerr-AdS metrics are very complicated in general dimensions and it is quite possible that these local metrics can describe spacetimes other than rotating black holes. Indeed, we find that when the mass is negative, the local metrics in D = 2n + 1 can describe a smooth time machine, provided that all independent orthogonal angular momenta are turned on. In this paper we adopt the definition of time machine in [10]. In such a time machine, the spacetime closes off at some Euclidean pseudo horizon at the price that the real time coordinate becomes periodic. The curvature power-law singularity is outside the spacetime. The conclusion holds for both asymptotically-flat or AdS solutions.
Turning off the angular momenta appropriately, we obtain AdS solitons with negative mass. These solutions with general parameters are of multi-cohomogeneity. If the starting Kerr-AdS metrics have equal angular momenta and hence are cohomogeneity one, the corresponding AdS solitons are also cohomogeneity one, with level surfaces as S2n-1/Zk. Such a five-dimensional AdS soliton was previously constructed in [11, 12]. Ours generalize to arbitrary 2n + 1 dimensions and multi-comohogeneity.
We can set the cosmological constants of the AdS solitons to zero, and the resulting solutions are direct products of time and a class of D = 2n Ricci-flat metrics. The special case of cohomogeneity-one solutions are the Eguchi-Hanson (EH) instanton and its higherdimensional generalizations.
The paper is organized as follows. In section 2, we begin with the D = 5 example, and then demonstrate that all Kerr or Kerr-AdS metrics in odd dimensions with negative mass can have the smooth time-machine configuration when all the angular momenta are turned on. In section 3, we concentrate on Kerr-AdS metrics in odd dimensions and obtain the static limit that describes soliton configruations with negative mass. In section 4, we turn off the cosmological constant of the soliton configurations and obtain a class of Ricciflat metrics in D = 2n dimensions. In section 5, we perform Wick rotation on the Kerr metrics and find that in odd dimensions, the Euclidean-signatured solitons can also have negative mass. In section 6, we consider charged Kerr-AdS solution in five-dimensional minimal gauged supergravity and obtain the analogous limit of time machines that carry
3
magnetic dipole charges. Turning off the gauging, we obtain a massless asymptotically-flat time machine that is a constant time bundle over the EH instanton. We conclude the paper in section 7.
2 Time machines with negative mass
In this section, we consider Kerr and Kerr-AdS metrics in odd D = 2n + 1 dimensions. We show that when mass is negative, the metrics can describe smooth time machines where geodesic complete on some Euclidean Killing horizons, provided that all angular momenta are turned on. The conclusion is true for both asymptotically flat or AdS metrics. For this reason, we focus on the discussion on Kerr-AdS metrics to avoid the repetition of discussing the Kerr and Kerr-AdS metrics separately. However, since our results are applicable for both types of metrics, we shall not emphasise the word AdS.
2.1 D = 5 time machines with equal angular momenta
2.1.1 Local metrics in D = 5
We start with a class of rotating metrics in five dimensions with the level surfaces as
squashed S3 written as a U (1) bundle over S2:
ds25 f
= =
dr2 f
-
f W
dt2
+
(1 + g2r2)W -
1 4
r2
W
(3
+
)2
+
1 4
r2d22
,
r2
,
,
W
=
1
+
r4
,
=
2 r4W
dt .
(2.1)
Here the metric d22 and 1-form 3 are given by
d22 = d2 + sin2 d2 ,
3 = d + cos d .
(2.2)
The metric for the unit round S3 is given by
d23
=
1 4
32 + d22
.
(2.3)
Thus the metric (2.1) for constant t and r describes squashed S3 with W as the squashing
parameter. Metrics (2.1) are all Einstein with R = -4g2g , where constant 1/g is the AdS
radius. The solutions are specified by two integration constants (, ). (There should be
no confusion between (, ) as the spacetime indices and as integration constants of the
solutions.) The invariant Riemann tensor squared is
Riem2
=
40g4
+
72(
- g2)2 r8
-
384( - r10
g2)
+
384 2 r12
.
(2.4)
4
Thus there is only one power-law curvature singularity at r = 0. Depending on the values of the constants (, ), the metrics can extend smoothly onto very different manifolds. When = 0 = , the metrics become the AdS5 vacuum in global coordinates. Thus the metrics all approach AdS asymptotically at the r region. In particular, when > 0 and = 0, the metric is the well-known Schwarzschild-AdS solution. We now give the list of (, ) values for which the power-law curvature singularity at r = 0 can be either unreachable geodesically or hidden inside an event horizon
> 0 and > 0: Rotating black hole with equal angular momenta and positive mass, which we shall give a quick review in the next subsection 2.1.2.
< 0 and < 0: Time machine with equal angular momenta and negative mass, which we shall discuss in 2.1.3.
= 0 and < 0: AdS static soliton with negative mass, which we shall discuss in section 3.
< 0, the metric becomes real if we make a Wick rotation t = i , giving rise to Einstein-Riemannian geometry. We shall discuss this in section 5.
2.1.2 Rotating black hole
We first consider the case with > 0 and > 0. The metric describes a rotating black
hole that is non-rotating asymptotically. The event horizon is located at r = r0 > 0 that is the largest real root of f (r). A necessary condition for the existence of such a root is 1 - g2/ > 0. We can express in terms of r0 and :
=
(r04
+
)(1 r02
+
g2r02)
.
(2.5)
Following the standard technique, we obtain the thermodynamical quantities including the
mass M , angular momentum J, angular velocity +, temperature T and entropy S.
M
=
1 8
(3
+
g2
)
,
T = 2g2r06 + r04 - . , 2r03 r04 +
J
=
1 4
,
S
=
1 2
2r0
+
=
2
(1 + g2r02) r0 r04 +
,
r04 + .
(2.6)
These quantities satisfy the first law of black hole thermodynamics
dM = T dS + +dJ .
(2.7)
5
Note that in five dimensions, there are in general two independent angular momenta and
the corresponding Kerr-AdS metric was constructed in [5]. The above solution describes
the one with equal angular momenta. An important difference between the black hole and the time machine to be studied in
the next subsection is the characteristics of the Killing horizon at r = r0. The null Killing vector on the horizon, which is a degenerate surface, is given by
=
t
+
+
.
(2.8)
The surface gravity on the horizon can be obtained from the null Killing vector as
2
=
-
g
2 42
2
= (2T )2 .
(2.9)
The surface gravity defined above with a minus sign implies that the imaginary time is periodic leading to black hole temperature. It also implies that geodesics do not complete
on the event horizon and there is an interior region.
2.1.3 Time machine
The thermodynamical quantities (2.6) imply that for the metric (2.1) to describe a black hole, we must have that and are both non-negative. However, the local solution (2.1) is real as long as we have 0. It is thus of interest to study the global structure of (2.1) when and are both negative instead. Let
- = 0 , - = 0 .
(2.10)
The solution (2.1) becomes
ds25
=
dr2 f
-
f W
dt2
+
1 4
r2W
(3
+
)2
+
1 4
r2d22
,
f
=
(1 + g2r2)W
+
r2
,
,
W
=
1-
r4
,
=
2 r4W
dt
.
(2.11)
The metric is still asymptotic to AdS5, but with mass and angular momentum given by
M
=
-
1 8
(3
+
g2) ,
J
=
1 4
.
(2.12)
Thus the solution has negative mass, with no lower bound. Naively, one would expect that the metric would then have naked curvature singularity. This is indeed the case when = 0, corresponding to the Schwarzschild-AdS solution with negative mass. However, if is non-vanishing, the manifold described by this metric is smooth, with the local r = 0 power-law singularity outside the manifold.
6
As the radial coordinate r decreases from the asymptotic infinity, we come across a
special
point
r
=
1 4
for
which
W
=
0.
This
is
neither
coordinate
nor
curvature
singularity,
but a velocity of light surface (VLS). Inside the VLS, we have g < 0. In other words,
the periodic coordinate becomes time like, giving rise to naked CTCs. Thus the metric
describes a time machine, with the VLS as its boundary.
As r decreases further, at r = r0 > 0, we have f (r0) = 0. This corresponds to a Killing
horizon. The null Killing vector (of zero length) is given by
=
r02 (1 + g2r02) + 2r02(1 + g2r02)2
,
1 =
t
+
=
2 r04W (r0)
=
2
, (1 + g2r02)(+ r02(1 + g2r02)) .
r0
(2.13)
It is easy to verify that the surface gravity defined in (2.9) is negative, giving rise to
imaginary temperature
T
=
i 2
.
(2.14)
It is thus more natural to define a "Euclidean surface gravity" E as
2E
=
+
g
2 42
2
.
(2.15)
The Killing horizon with a real Euclidean surface gravity is called Euclidean pseudo horizon,
on which conical singularity can arise potentially.
A simplest example of Euclidean pseudo horizon occurs in two-dimensional flat space
written in polar coordinates ds2 = d2 + 2d2. The Killing vector = is null, i.e. having zero length, in the middle = 0, with E = 1. The metric describes Euclidean R2 if = 2, in which case = 0 is just an ordinary point in R2. If = 2, the metric is
of a cone with the tip at = 0.
It is easy to verify that for the Killing vector 1, we have 2E = 1. Thus, for the time machine to avoid conic singularity, 1 must likewise generate 2 period. In other words, it is the real time coordinate rather than the imaginary time coordinate that must be periodic.
Once this is imposed, the geodesic completes and spacetime closes off at the Killing horizon.
The local r = 0 singularity is then outside the manifold. It should be emphasized that the
existence of the Killing horizon r = r0 is independent of whether the cosmological constant = -4g2 vanishes or not. It follows that the above result is applicable also for the
asymptotically-flat cases.
In the standard embedding of AdS5 in the (4 + 2) flat spacetime, time t in global
coordinates
is
periodic.
The
Killing
vectors
0
=
1 g
t
and
2
=
2
both
generate
2
period.
7
It follows from (2.13) that (0, 1, 2) are linearly dependent. The consistency requires that coefficients are co-prime integers, namely
n00 = n11 + n22 .
(2.16)
Comparing this to (2.13), we conclude that the dimensionless parameters (gr0, g2) or the original (g4, g2) of the asymptotically-AdS time machines can be expressed in terms of
two rational numbers. Note that the period of 1 has to be strictly 2 to avoid conic singularity. The period of can be further divided by integer k without introducing singularity,
corresponding to AdS5/Zk. We can also divide or multiply the period t by an integer, corresponding to the quotient or multi-covering of the AdS.
When g = 0, we have an asymptotically-flat time machine with equal angular momenta.
In
this
case,
the
Killing
vector
t
is
not
periodic
a
priori,
and
hence
there
is
no
extra
constraint such as (2.16).
It is worth commenting that in the case of the rotating black hole discussed in subsection
2.1.2, the event-horizon topology is 3-sphere. To be specific, the horizon geometry is a squashed 3-sphere, written as a U (1) bundle over S2. For the time machine discussed in
this section, the Euclidean pseudo horizon is Minkowski signatured, and it is a constant
time bundle over S2. It is also rather counterintuitive that not only the time-machine mass
is negative, it has no lower bound.
Finally it is also worth commenting that if the function f (r) had a double zero, there
would be no need for periodic identification of the real time coordinate. The resulting
spacetime is called a repulson [14]. None of the examples studied in detail in this paper
exhibits repulson-like behavior.
2.2 D = 2n + 1 time machines with equal angular momenta
The five-dimensional time machine discussed in the previous subsection can be easily gen-
eralized to all D = 2n + 1 dimensions. We start with the Kerr-AdS black holes with all
equal angular momenta. The Kerr-Schild form was given in [7]. The Boyer-Lindquist form
was presented in [16], given by
ds22n+1
=
-1
+ g2r2
dt2
+
U dr2 V - 2m
+
r2
+
a2 (2
+
d2n-1)
+
2m U 2
(dt
+
a)2
,
= d + A ,
U = (r2 + a2)n-1 ,
V
=
1 r2
(1
+
g2r2)(r2
+
a2)n
,
(2.17)
where = 1-a2g2, and d2n-1 is the standard Fubini-Study metric on CPn-1, and the fibre 1-form is = d + A, with dA = J being the Kahler form. The coordinate has period 2
8
and the terms (2 + d2n-1) in the metric are nothing but the metric on the round sphere S2n-1. The mass and angular momentum are given by
M
=
m(2n - )A2n-1 8n+1
,
J
=
maA2n-1 4n+1
,
(2.18)
where Ak is the volume of a unit round Sk, given by
Ak
=
2
1 2
(k+1)
[
1 2
(k
+
1)]
.
(2.19)
It is instructive to define a new coordinate r^ that measures the radius of the S2n-1 sphere.
Thus we make a coordinate transformation
r2
+ a2
=
r^2 .
(2.20)
The metric (2.17) can be written, after dropping the hat, as
ds22n+1
=
dr2 f
-
f W
dt2
+
r2W
(
+
)2
+
r2d2n-1
,
f
=
(1 + g2r2)W
-
r2(n-1)
,
W
=
1+
r2n
,
= r2n + dt . (2.21)
where the constants and are related to original (m, a) parameters as
a=
,
m
=
1 2
1
-
g2
n+1
.
(2.22)
The solutions describe rotating black holes in D = 2n + 1 dimensions when both (, ) are
positive. When n = 1, the metric reduces to the BTZ black hole [15] after making a trivial
coordinate transformation r2 + 2 r2, and hence all our statements apply also to three
dimensions. When n = 2, the solution reduces to (2.1).
As in the previous D = 5 example, when (, ) both take negative values, as in (2.10),
the corresponding metric becomes
ds22n+1
=
dr2 f
-
f W
dt2
+
r2W
(
+
)2
+
r2
d2n-1
,
f
=
(1 + g2r2)W
+
r2(n-1)
,
W
=
1
-
r2n
,
=
r2nW
dt .
(2.23)
The mass and angular momentum are given by
M
=
-
A2n-1 16
((2n
-
1)
+
g2) ,
J
=
A2n-1 8
.
(2.24)
Since and are positive, the solutions all have negative mass, with no lower bound. When = 0, the solution becomes the Schwarzschild-AdS metric with negative mass,
and hence the power-law curvature singularity at r = 0 is naked. If on the other hand
9
> 0, no matter how small or big, there is a Killing horizon at r = r0 > 0 where f (r0) = 0.
The corresponding null Killing vector takes the form
=
r0n(1 + g2r02) nr02n(1 + g2r02)2 +
r02
r02 1 + g2r02
t
+
r02n(1
+
g2r02)
+
r02
.
(2.25)
The overall scaling of the Killing vector is chosen such that the Euclidean surface gravity
is unit, as in (2.15). Consequently, r = r0 is a pseudo horizon where geodesic completes
provided that generates 2 period. It is easy to see that on the Killing horizon, g =
r0W (r0)
<
0.
In
fact,
naked
CTCs
arise
inside
the
VLS
located
r
=
1 2n
>
r0.
The
metrics
describe smooth time machines with negative mass, provided that > 0. The geometry of
the Euclidean pseudo horizon is a constant time bundle over CPn. The conclusion is valid
for both asymptotically-flat (g2 = 0) or AdS solutions.
2.3 Time machines with unequal angular momenta
In D = 2n + 1 dimensions, there can be n independent rotations. We again start with the
Kerr-AdS metrics, but with now arbitrary non-zero rotations. The metrics were constructed in [7, 8]. In analogous notations, they are given by
ds22n+1
=
-W (1
+
g2r2)dt2
+
U dr2 V - 2m
+
2m U
dt
-
n i=1
ai2i di i
2
+
n i=1
r2
+ a2i i
d2i + 2i (di + aig2dt)2
-
(1
+
g2 g2r2)W
n i=1
r2
+ i
a2i
i
di
2
,
(2.26)
where
i 2i = 1 and
i = 1 - a2i g2 ,
W
=
n i=1
2i i
,
U
=
n i=1
2i r2 + a2i
n
(r2 + a2j ) ,
j=1
V
=
1 r2
(1
+
g2
r2)
n
(r2 + a2i ) =
U F
,
i=1
F
=
1
r2 + g2r2
n i=1
2i r2 + a2i
.
(2.27)
For positive m and i's, the metrics describe general rotating black holes with mass and angular momenta [16]
D = 2n + 1 :
M
=
m AD-2 4( j j)
n i=1
1 i
-
1 2
,
Ji
=
mai AD-2 4i( j j)
.
(2.28)
The event horizon is located at V - 2m = 0. Indeed the determinant of the sub-manifold
of constant r slice has a factor of (V - 2m), but Riemann tensor invariants are regular at
10
V - 2m = 0. These show that V - 2m = 0 gives a degenerate surface, with only coordinate
singularity.
We now consider the case with m < 0. Naively, one might expect that the solutions
have a naked power-law curvature singularity, since it is clear that V - 2m = 0 cannot
be satisfied for any real r. However, the fact is that as long as rotating parameters ai's
are all non-vanishing, the geodesic does complete at some Euclidean Killing horizon before
reaching the singularity. To see this, it is important to note that r = 0 is not a curvature
singularity when all ai = 0. Instead curvature singularities are located at r2 + a2i = 0, together with appropriate j's for each i. In other words, there is nothing special at r = 0 and the geodesic can extend further into the r2 < 0 region. Then it is easy to see that
when all ai = 0 and m is negative, no matter how small or big |m| is, there exists a pure
imaginary r0 with
- a2i < r02 < 0 , for all i = 1, 2, . . . n,
(2.29)
such that V - 2m = 0. The r = r0 surface gives rise to a Killing horizon. It is also straightforward to verify that on the Killing horizon there are CTCs. For example,
gii
i =1
=
(r02 + a2)2 2i r02
<
0,
for all i = 1, 2, . . . n.
(2.30)
This implies that the Killing horizon is a pseudo horizon where geodesic completes provided
that the appropriate null Killing vector generates 2 period, as was discussed in the case of
equal angular momenta. It is also important to note that from the definition of V in (2.27)
we conclude that the existence of the Euclidean Killing horizon is independent of whether
the cosmological constant parameter g2 vanishes or not. Hence the conclusion is applicable
for both asymptotically-flat or AdS solutions.
It is perhaps convenient to introduce n + 1 new parameters, (, 1, . . . , n), and express m and ai in terms of these parameters
ai =
i
,
n
n+1
m=
i n ,
i=1
i
=
1
-
i
g2
.
(2.31)
The mass and angular momenta become
M =
1
j n
j
n i=1
1 i
-
1 2
,
Ji
=
i i
1
j n .
j
(2.32)
For the metric to describe a rotating black hole, the parameters (, i) must be non-negative. However, the reality condition of the metric only requires that i 0 for all i. Thus we can take all the parameters (, i) to be negative. The solutions then describe a general
11
class of time machines with negative mass. When i = for all i, they reduce to the cohomogeneity-one metrics discussed earlier.
The situation is very different in D = 2n even dimensions, for which there are only (n - 1) independent orthogonal rotations. The Kerr-AdS metrics are [7, 8]
ds22n
=
-W (1
+
g2r2)dt2
+
U dr2 V - 2m
+
2m U
dt
-
n-1 i=1
ai2i di i
2
+
n i=1
r2
+ i
a2i
d2i
+
n-1 i=1
r2
+ i
a2i
2i (di
+
aig2dt)2
-
(1
+
g2 g2r2)W
n i=1
r2
+ i
a2i
idi
2
,
(2.33)
where i, W and U take the same for as those in D = 2n + 1 dimensions, except that an = 0 since in D = 2n dimensions, there is no azimuthal coordinate n and hence there is no associated rotation parameter an. For positive m and 0 < i 1, the metrics describe rotating AdS black holes with mass and angular momenta [16]
D = 2n :
M
=
m AD-2 4( j j)
n-1 i=1
1 i
,
Ji
=
mai AD-2 4i( j j)
.
(2.34)
As in the case of odd dimensions, the determinant of the submanifold of constant r slice
also has a factor of (V - 2m). However, there is a crucial difference in even dimensions.
The function V is now given by
V
=
1 r
(1
+
g2r2)
n-1
(r2
+
a2i )
i=1
(2.35)
Thus in even dimensions, the coordinate r cannot be purely imaginary. The r = 0 is a
spacetime power-law curvature singularity. It follows that for m < 0, the quantity (V - 2m)
cannot vanish for any r > 0 and hence there is no degenerate surface. The singularity at
r = 0 is thus naked.
2.4 Further time machines
For the time machine metric (2.23) to be Einstein, the CPn-1 metric d2n-1 can be replaced by any Einstein-Kalher metrics, at the expense that the asymptotic regions are no longer AdS. When the base is a direct product of multiple Einstein-Kahler spaces, there is a subtlety that the period associated with the fibre 1-form must be consistent with all these factors of the base [17]. Here we present an example in seven dimensions where d22 is
12
replaced by the metric of S2 S2:
ds2
=
dr2 f
-
f dt2 + W
1 9
r2
W
( + )2 +
1 6
r2(d12
+
sin2
1d21
+
d22
+
sin2
2d22)
,
= d + cos 1 d1 + cos 2d2 ,
=
r6W
dt .
(2.36)
The metric is Einstein with R = -6g2g , provided that functions W and f are
W
=
1
-
r6
,
f
=
(1
+
g2r2)W
+
9r4
.
(2.37)
For this solution, the level surfaces are not of S5 but the T 1,1 space. The asymptotic region is no longer AdS7, and boundary is T T 1,1, instead of T S5. The Killing horizon and the period of associated null Killing vector can be easily determined.
3 AdS Solitons with negative mass
In the previous sections, we find that in odd dimensions, when mass is negative, Kerr or Kerr-AdS metrics with all angular momenta turned on describe smooth time machines. We now consider the possibility of turning off all the angular momenta. There are two ways of doing this. The trivial way leads simply to the Schwarzschild metrics with negative mass. An alternative limit can lead to static solitons. Negative mass solitons emerge only when there is a cosmological constant. When the cosmological constant is zero, the mass vanishes, and we shall study this in section 4.
3.1 Cohomogeneity-one metrics
In the typical way of writing Kerr-AdS black holes, the mass M and angular momentum J are expressed in terms of m and a. Turning off the angular momentum parameter a has the effect of reducing the metric to the Schwarzschild black hole. In our parametrization (2.6), we can have two manifest ways of turning off the angular momentum. The first is to set = 0, corresponding to setting a = 0, giving rise to the usual Schwarzschild black hole. The alternative is to set = 0, corresponding to setting a , and we have a new non-trivial static configuration. It follows from (2.1) that when = 0 and = - is negative, we obtain a static soliton in five dimensions. For general dimensions, we start with the time-machine solution (2.23) and set = 0, we have
ds2
=
dr2 (1 + g2r2)W
- (1 + g2r2)dt2
+ r2W 2 + r2d2n-1 ,
W
=
1
-
r2n
,
(3.1)
13
where the 1-form and the metric d2n-1 are defined under (2.17). For positive , the
metric
becomes
singular
at
r
=
r0
=
1 2n
.
The
absence
of
the
conical
singularity
requires
a
specific period for coordinate associated with , namely
= n
2 g2r02
+
1
.
(3.2)
On the other hand, for the metric (2 + d2n-1) to describe a round S2n-1, the period for is 2. If we consider instead more general S2n-1/Zk, then we have
=
2 k
.
(3.3)
This implies that
g2r02
=
k2 n2
-1,
=
1 g2n
k2 n2
-
1
n
.
(3.4)
Thus we have k > n and the mass of the soliton is discretized and negative, given by
M
=
-
A2n-1 16g2(n-1)
k
k2 n2
-
1
2
.
(3.5)
Note that when n = k, the solution becomes simply the AdS vacuum and = 2. As k , the mass reaches a negative lower bound.
In five dimensions, the metric can be written as
ds2
= -(g2r2 + 1)dt2 +
dr2 (g2r2 + 1)W
+
1 4
W
r232
+
1 4
r2d22
,
W
=
1
-
r4
.
(3.6)
This solution was first obtained in [11, 12]. (The local metric with a positive cosmological constant in Euclidean signature was constructed earlier in [18], which can describe smooth compact manifolds.) When the cosmological constant vanish, i.e. g = 0, the metric is a direct product of time and the EH instanton [13]. The global analysis for (3.6) was performed and descretized negative mass was obtained. The negativeness of the soliton mass was demonstrated also using holographic stress energy in [11, 12] and the Noether procedure [19]. In our approach, the solutions were obtained in some special limit of KerrAdS metrics, and hence the mass formula is a direct consequence of that of Kerr-AdS black holes.
3.2 First-order equations without superpotential
It is well-known that EH instanton can be obtained from a set of first-order equations associated with some superpotential. It turns out that the solitons (3.1) in general odd dimensions can also arise from a set of first-order equations. For simplicity, we demonstrate
14
this explicitly in five dimensions and show that the static soliton (3.6) can arise as solutions
of some first-order differential equations, instead of Einstein's second-order equations of
motion. However, we also demonstrate that there is no superpotential associated with this
first-order system.
The most general ansatz for static metrics with the SU (2) U (1) isometry of squashed
S3 is
ds2 = d2 - a2dt2 + b232 + c2d22 ,
(3.7)
where the metric d2 and 1-form 3 are given in (2.2) and (a, b, c) are functions of the radial
coordinate . A dot denotes a derivative with respect to . For the metric to be Einstein
with R + 4g2g = 0, the (a, b, c) functions satisfy
-
a a
-
b b
-
2c c
=
4g2
,
a a
+
2a c ac
+
a b ab
=
4g2 ,
b b
+
2b c bc
+
a b ab
-
b2 2c4
=
4g2 ,
c c
+
c2 c2
+
b c bc
+
a c ac
-
1 c2
+
b2 2c4
=
4g2 ,
(3.8)
We find that there exists a set of first-order equations that can solve the above second-order
equations of motion, namely
a = 2g2ab , 1 + 4g2c2
b
=
(2c2
-
b2) 1 2c2
+
4g2 c2
,
c = b
1
+ 4g2c2 2c
.
(3.9)
It is easy to verify that these first-order equations yield precisely the soliton solution (3.6).
We now demonstrate that this first-order system is not associated with any superpo-
tential. To see this, it is convenient to define a new radial coordinate , related to by
d = abc2d. In this system, the effective Lagrangian is given by L = T - V where
T
=
2ab 2ab
+
4ac ac
+
4bc bc
+
2c2 c2
,
V
=
1 2
a2b2
(b2
-
4c2
-
24g2c4)
.
(3.10)
Here a prime denotes a derivative with respect to . Thus we have abc2f = f for any
function f . Following the prescription of [20], we may define Xi = (a, b, c) and write the
kinetic
energy
as
T
=
1 2
gij
X
i
X
j
.
If
there
would
exist
a
superpotential
U
=
U (a, b, c)
such
that
V
=
1 2
gij
U U Xi Xj
,
(3.11)
then there would be a first-order system
abc2
X i
=
gij
U Xj
.
(3.12)
15
Substituting the first-order equations (3.9) into the above, and we find
U = (b2 + 2c2) 1 + 4c2g2 , a
U b
=
2ab(1 + 6c2g2) , 1 + 4c2g2
U c
=
4ac
1 + 2(b2 + 2c2)g2 1 + 4c2g2
.
(3.13)
It is easy to verify that the above equations do not satisfy the integrability condition unless g = 0, in which case we have U = a(b2 + 2c2). This is precisely the superpotential for generating the EH instanton. For non-vanishing g, on the other hand, although we have the first-order equation (3.9), there is no superpotential associated with the system.
3.3 Higher-cohomogeneity solitons
3.3.1 D = 5
The local solutions of the static solitons were obtained by taking a limit from Kerr-AdS metrics such that the two equal angular momenta vanish whilst the mass is non-vanishing. Such a limit typically leads to the Schwarzschild-AdS black holes. However, as we have shown in the previous subsection, there can be an alternative limit. This new limit can be performed also for the Kerr-AdS metrics with two general angular momenta. We start with the five-dimensional Kerr-AdS black hole constructed in [5], which involves three parameters, (m, a, b). Since we shall use the exact convention for the metric presented in [5], we shall not give it here. The mass and angular momenta are given by [16]
M
=
m(2a
+ 2b - 42a2b
ab)
,
Ja
=
ma 22ab
,
Jb
=
mb 22b a
,
(3.14)
where a = 1 - a2g2 and b = 1 - b2g2. Setting a = b = 0 turns off the angular momenta
and
gives
rise
to
the
Schwarzschild-AdS
black
hole
of
mass
M
=
3 4
m.
We would like
instead to send a, b, m to infinity such that we have Ja, Jb 0 while keeping M finite and
non-vanishing. To be specific, we scale the parameters
a = a~ ,
b = ~b
m
=
1 2
4
g6
a~2~b2
,
(3.15)
and then send . The mass and angular momenta become
M
=
-
1 8
g2
,
Ja = Jb = 0 .
(3.16)
16
Thus we arrive at a static solution with negative mass. Making a coordinate transformation
r = ir~, (with ,), the Kerr-AdS metric of [5] becomes
ds25
=
-
r2 dt2 a2b2
+
2d2 g2
+
2dr2 r
+
r g22
sin2
d1 ag
+
cos2
d2 bg
2
+
sin2
cos2 2
(r2
-
a2)
d1 ag
-
(r2
-
b2
)
d2 bg
2
,
r = g2 (r2 - a2)(r2 - b2) - a2b2g4 , = a2 cos2 + b2 sin2 ,
2 = r2 - .
(3.17)
Here we have dropped all the tildes. If we set the parameter = 0, the metric is exact AdS.
At large r, the -term in the metric can be neglected. Thus the metric with non-vanishing
is asymptotic to the AdS spacetime. The Riemann tensor squared is given by
Riem2
=
40g4
+
242 a4 b4 g12 12
(r2
+
3a2
cos2
+
3b2
sin2
)(3r2
+
a2
cos2
+
b2
sin2
)
,
(3.18)
indicating the metric has a curvature singularity at = 0. We shall see presently that
this curvature singularity is outside the soliton manifold. When b = a, we make a further
coordinate transformation
1
=
1 2
(
-
) ,
2
=
1 2
(
+
) ,
r2 - a2 a2g2
r2 ,
1 2
.
(3.19)
the metric (3.17) reduces precisely to (3.6).
The power-law curvature singularity = 0 can be avoided for > 0 because there is a
Euclidean Killing horizon at r = r0 > max{a, b} for which r(r0) = 0. The condition for
existing such r0 is that
>
-
(a2 - b2)2 4a2b2g4
,
M
<
(a2 - b2)2 32a2b2g2
.
(3.20)
If the inequality is saturated, (r) has a double zero and the metric has a power-law
curvature singularity at r = (a2 + b2)/2 and = /4. It is of interest to note that not
only the mass can be negative, but also there is no lower bound.
The metric (3.17) is degenerated at three places with three null Killing vectors
=
1 2
:
=0:
r = r0 :
1
=
1
,
2
=
2
,
3
=
r0(2r02
1 - a2
- b2)
a(r02
-
b2
)
1
+
b(r02
-
a2)
2
.
(3.21)
All three Killing vectors must generate 2 period in order to avoid conical singularity. On
the other hand, 3, 1, 2 are linearly dependent. Therefore they must satisfy
n33 = n11 + n22 , where n1, n2, n3 are co-prime integers
(3.22)
17
Thus
r0 n2x - n1 = b x(n2 - n1x) ,
n3
=
n1
+ n2x bx
r0
,
(3.23)
where
x
a b
.
With
this
parametrization,
the
mass
parameter
m
becomes
=
n1n2(x2 - 1)2 g4x(n2x - n1)2
.
(3.24)
We shall not classify all possible (n1, n2, n3) that could arise. Instead, we present an exam-
ple: (n1, n2, n3) = (1, 2, 5), which implies that a = 0.713b and m = 3.77/g4 and r0 = 1.47b.
In fact there is a further subtle conic singularity. As was noted in [21], the Killing vectors
(1, 3)
and
(2, 3)
can
be
simultaneously
null
at
(r,
)
=
(r0,
1 2
)
or
(r0, 0)
respectively.
In
Euclidean signature, any linear combination of two null Killing vectors is also null, and
hence (n33 - n11) or (n33 - n22) must generate also 2 period. The consistency then
requires that n1 = n2 = 1. This corresponds to the cohomogeneity-one solutions with
a = b, discussed earlier. The example of (n1, n2, n3) = (1, 2, 5) still have a conic singularity
of
ADE
type
at
(r, )
=
(r0,
=
1 2
).
The
cone
is
not
2-dimensional
like
d2 + 2d2,
but
four dimensional with d2 + 2d~ 2, where d~ 2 is not a round S3, but a lens space. For the
specific (n1, n2, n3) = (1, 2, 5) example, the lens space is S3/Z2, giving rise to the R4/Z2
orbifold singularity. Such singularity can be resolved by an EH instanton whose asymptotic
region is precisely R4/Z2 [22].
3.3.2 D = 2n + 1
We obtain some non-trivial static soliton solutions from Kerr-AdS5 metrics by taking some
appropriate limit (3.15). Under this limit, all angular momenta vanish, whilst the mass
becomes a finite negative number. The resulting metric is specified by three integration
constants. This procedure can be generalized to general odd dimensions. Kerr-AdS metrics
in general dimensions were constructed in [7, 8], involving a mass parameter m and n =
[(D - 1)/2] parameters ai for angular momenta. The mass and angular momenta are given
in (2.28) and (2.34) for odd and even dimensions.
We can turn off the angular momenta by setting ai = 0, leading to the Schwarzschild-
AdS black hole. We now would like to turn off the angular momenta while keeping mass
constant by sending ai and hence i -. This is not possible in even dimensions
because of the relation
n i=1
Ji ai
=M,
(3.25)
which can be derived from (2.34). In odd dimensions, this can be achieved indeed, because
there
is
the
less
convergent
"
1 2
"
term
in
(2.28)
in
this
limit.
Thus, following the D = 5
18
example, we make the constant scaling of the parameters
ai = a~i ,
n
m
=
1 2
(-2)ng2
(a~ig)2 ,
i
(3.26)
and then take the limit. Dropping the tildes, we find that the Kerr-AdS metric (2.26) becomes
where
ds22n+1 = -r2
n 2i i=1 a2i
dt2
+
X Y
dr2
+
n i=1
r2 - a2i a2i g2
(d2i
+
2i d2i )
-
1 r2Z
n i=1
r2 - a2i a2i g2
i
di
2
-
g2 X
(
n
(aig)2)
i=1
n 2i di i=1 aig2
2
,
n i
u2i
=
1
and
X=
n
(r2 - a2i )
i=1
n i=1
2i r2 - a2i
,
n
n
Y = g2 (r2 - a2i ) - g2 (aig)2 ,
i=1
i=1
Z
=
n i=1
2i a2i g2
.
(3.27) (3.28)
The metrics are static and hence there is no angular momentum. The mass of the soliton
is negative, given by
M
=
-
AD-2 16
g2
.
(3.29)
We shall not discuss the global structure of this general class of AdS solitons in this paper.
4 Ricci-flat instantons in D = 2n dimensions
In the previous section, we obtained large classes of static AdS solitons in D = 2n + 1 dimensions. For the cohomogeneity-one metrics (3.1), it can be easily seen that in the g = 0 limit, the resulting spacetime is a direct product of time and the D = 2n gravitational instanton that is a higher-dimensional generalization of the EH instanton. The metric (3.1) was generalized to multi-cohomogeneity metrics (3.17) in D = 5 and (3.27) in D = 2n + 1. In this section, we perform a further g = 0 limit on (3.17) and (3.27) and obtain Ricci-flat gravitational instantons in D = 2n dimensions.
19
4.1 D = 4
We start with the five-dimensional Einstein metric (3.17) and reparameterize the (a, b, ) constants as
a2 = a20(1 - g22) ,
b2 = a20(1 + g22) ,
- 4 .
(4.1)
Making first the coordinate transformation,
1
=
1 2
(
-
) ,
2
=
1 2
(
+
) ,
r2 - a20 a20g2
r2 ,
1 2
.
(4.2)
and then sending g 0, we obtain a smooth limit of (3.17), whose D = 4 spatial section is
ds24
=
U dr2 W
+
W 4U
r2
(d
+
cos
d)2
+
1 4
r2
U d2
+
1 U
sin2
d -
2 r2
d
2
,
W
=
1-
r4
,
U
=
1
+
2 cos r2
.
(4.3)
Note that the constant a0 is trivial and drops out. The metric is Ricci-flat and Kahler. The Kahler structure can be easily seen by constructing the covariant Kahler 2-form
J = e0 e3 + e1 e2 ,
(4.4)
where the vielbein are
e0 =
U W
dr ,
e1
=
1 2
r
U d ,
e3 =
W 4U
r
(d
+
cos
d)
,
e2 = - r sin 2U
d
-
2 r2
d
.
(4.5)
Thus the metric is the Ricci-flat and BPS limit of the general Plebanski solutions [23].
When = 0, the metric is the EH instanton. For = 0, the curvature singularity is located
at
U
=
0,
which
can
be
avoided
if
<
1 4
.
There
are
three
degenerate
surfaces
whose
null
Killing vectors are
=0:
=:
r
=
1 4
:
1
=
-
,
2
=
+
,
3
=
+
2
,
(4.6)
all of which have unit Euclidean surface gravity E . When 2/ = p/q < 1 is a rational
number, then we have
2q3 = (q - p)1 + (q + p)2 .
(4.7)
20
It follows from (3.22) that n1 = (q - p), n2 = q + p and n3 = 2q. Further regularity conditions follow the same procedure described in subsection 3.3.1. The existence of the ADE-type conical codimension-3 singularity, albeit may be resolved, suggests that these metrics are outside the classes of Gibbons-Hawking instantons [24, 25]. Furthermore, the relation (4.7) implies that the asymptotic regions are cones of more general lens spaces, rather than the S3/Zk+1 for k number of EH instantons.
4.2 D = 2n
For general even dimensions, we start with the Einstein metric (3.27) and reparameterize the integration constants
a2i = a20(1 + g2b2i ) ,
n
b2i = 0 .
i=1
(4.8)
(Note that the resulting metric is real as long as bi's are either real or purely imaginary numbers.) Making a coordinate transformation
r2 - a20 a20g2
r2 ,
(4.9)
and then sending the cosmological constant parameter g to zero, we find that the metric
(3.27) has a smooth limit and it is a direct product of time and a D = 2n Ricci-flat metric
ds22n
=
U W
r2
dr2
+
n
(r2 - b2i )(d2i + 2i d2i ) -
i=1
U
(
n i=1
2i di)2
,
n
W = (r2 - b2i ) - ,
i=1
U
=
n
(r2
i=1
-
b2i )
n j=1
2j r2 - b2j
.
(4.10)
The curvature power-law singularity is at U = 0, which can be avoided if the geodesics complete in the r region r [r0, ) where W (r0) = 0. There are n + 1 degenerate surfaces and the corresponding null Killing vectors are
r = r0 : i = 0 :
0
=
n i=1
j(r02 - b2j ) P (r0)(r02 - b2i )
i
,
i
=
i
,
i = 1, 2, . . . , n .
(4.11)
Here P (r0) is an 2(n - 1)-order polynomial of r0 with the leading term as nr02(n-1). For
example, we have P
= 2r02
for n = 2 and P
=
3r04
+
1 2
(b41
+
b42
+
b43)
for
n
=
3.
All these
Killing vectors are scaled such that they have unit Euclidean surface gravity. Therefore
they must all generate 2 period to avoid conical singularities. We shall study the global
21
structure of these metrics in a future publication since these massless solutions are outside the scope of this paper. We expect all these metrics are Ricci-flat Kaher, locally the same as those BPS limits of Kerr-AdS-NUT solutions obtained in [26]. In particular when all bi's vanish, the metric reduces to the spatial section of (3.1) with g = 0, which is on a smooth manifold of Ricci-flat Kahler. In general, the metrics are cones of Einstein-Sasaki spaces in the asymptotic regions and isolated examples smooth metrics with higher cohomogeneity were found in [27, 28].
5 Euclidean AdS solitons with negative mass
For a Schwarzschild black hole, we can Wick rotate the time coordinate t so that the solution becomes a Euclidean-signatured soliton that is asymptotic to RD-1 S. For Kerr metrics or Kerr-(A)dS metrics, the reality condition requires that the rotation parameters ai become pure imaginary after the Wick rotation. In other words, we must have
t = i , ai i ai .
(5.1)
For positive cosmological constant, the resulting metric becomes compact and the absence of conical singularities on the Euclidean Killing horizons put strong constraints on the parameter spaces. Consequently the complete manifolds are classified by a set of integer values. This was done in general for Kerr-dS metrics in [7]. Einstein-Sasaki metrics Y pq [29] and more general Lpqr [30, 31] can also be constructed in this procedure.
In this section, we consider a negative or zero cosmological constant, and hence the manifolds are non-compact. An interesting phenomenon occurs in odd dimensions. Before the Wick rotation, we have 0 < i 1 for i, it follows from (2.34) and (2.28) that the mass are positive definite, provided that m > 0. Under ai iai, we have
i = 1 + a2i g2 1 .
(5.2)
It follows from (2.28) that the mass for even dimensions remain positive definite. However,
in odd dimensions, the mass for Euclidean solitons can become negative provided that none
of the ai vanishes and they are all sufficiently large so that
n i=1
1 i
<
1 2
.
(5.3)
When the above bound is saturated, we obtain a massless soliton. Of course, when the
above bound is violated, we get solitons with positive mass. It is clear that the cosmological
22
constant g2 plays a crucial role in the above discussion and hence the solitons can only have negative mass for asymptotic AdS spacetimes.
To demonstrate this explicitly, we start with the cohomogeneity-one Kerr-AdS metric with all equal angular momenta. In five dimensions, the metric can be written as (2.1). We can perform Wick rotation and choose the parameters
t = i , = b > 0 , = -a < 0 .
(5.4)
In general D = 2n + 1 dimensions, we can start with (2.23) and perform Wick rotation and
set = -b and = a, we find that the Euclidean soliton is
ds2
=
dr2 f
+
f W
d 2
+
r2W
+
ab r2nW
d
2 + r2d2n-1 ,
f
=
(1 + g2r2)W
-
b r2(n-1)
,
W
=
1-
a r2n
,
(5.5)
where a > 0 and b > 0. If follows from (2.24) that we can define the "Euclidean mass",
given by
M
=
A2n-1 16
(2n - 1)b - g2a
.
(5.6)
The metric has a Killing horizon at r = r0 which is the largest real root of f . We can express b in terms of (r0, a), given by
b
=
1 r02
(1
+
g2r02)(r02n
-
a) .
(5.7)
The coordinate then must have period
=
4 W (r0) f (r0)
,
(5.8)
provided that we let - ab/(r0W (r0)) d . Note that the condition b 0 implies
a r02(n-1). It follows that there is a lower bound of the mass
M
-
A2n-1 16
g2r02n
.
(5.9)
(This should be compared to the Minkowski-signatured AdS soliton, whose mass has an
upper bound (3.20).) Thus mass can be also negative for Euclidean AdS solitons in odd
dimensions. In particular, the parameter region
(2n - 1)(1 + g2r02) 2n(1 + g2r02) - 1
a r02n
1
(5.10)
corresponds to 0 M -g2r02n. Thus when the lower bound is saturated we have a massless soliton. When a is sufficiently small so that the above lower bound is violated,
23
then the mass becomes positive. It is worth commenting that in the extremal case where f has a double root, the mass is positive.
The existence of negative mass in Euclidean-signatured space is not uncommon. The Atiyah-Hitchin metric is a solution of the Euclidean Taub-NUT with negative mass [32,33], where the asymptotic region is R3 S. Analogous solutions exist also in higher dimensions [34].
6 Time machine with a dipole charge
In the previous sections, we have focused on the Einstein metrics with R = -2ng2 g in D = 2n + 1 dimensions. We now consider charged rotating solutions. Exact solutions of charged Kerr-AdS black holes in higher dimensions are known only in supergravities. In five dimensions, notable examples include ones in supergravities [35] and gauged supergravities [36, 37]. BPS solutions are somewhat simpler and global analysis indicates that both black holes or time machines can arise, see e.g. [10,3842]. In this section we consider the charged Kerr-AdS black hole in minimal gauged supergravity in five dimensions [36]. Soliton limits of this solution were studied in [43]. We consider a very different limit such that the resulting solution carries no electric charge, but only the magnetic dipole charge.
6.1 Asymptotic to AdS5
We follow the same parametrization of [36], and make redefinitions on the parameters as well as the coordinate r
a = a~ ,
b = ~b ,
m
=
1 2
4a~2~b2g6
,
q = -3gq~,
r = ir~ .
(6.1)
We then send the scaling parameter and find that the charged Kerr-AdS metric
of [36] has a smooth limit. Dropping all the tildes, the solution can be written as
ds2
=
2 r
dr2
+
2 g2
d2
-
(abq - gr22dt)2 a2b2g2r24
+
r g22
2
A
=
+ sin2
cos2 2
3q 2
,
(r2
-
a2)
d1 ag
-
(r2
-
b2)
d2 bg
=
sin2 ag
d1
+
cos2 bg
d2
,
2
,
(6.2)
where
r = g2
(r2
-
a2)(r2
-
b2)
-
a2b2g4
-
q2 r2
,
= a2 cos2 + b2 sin2 , 2 = r2 - .
(6.3)
24
Under the limit (6.1) with , the electric charge vanishes, but mass, angular momenta
are given by
M
=
-
1 8
g2
,
Ja
=
q 4ab2g3
,
Jb
=
q 4a2bg3
.
(6.4)
The rotating is generated by the magnetic flux whose strength is characterized by the
parameter q. When q = 0, the solution becomes static and reduces to (3.17). There is a
Euclidean Killing horizon at r = r0 for which r(r0) = 0 and the corresponding null vector
=
q2
+
abqr0 r04(2r02 - a2
-
b2)
1 g
t
+
r02(r02 - bq
b2)
1
+
r02(r02 - aq
a2)
2
,
(6.5)
must generate 2 period to avoid conical singularity. The existence of naked CTCs can
be seen, for example,
from g11
which is obviously negative at r = r0
and =
1 2
.
For
non-vanshing q, the existence of the Killing horizon is independent of the value and sign of
the constant . It follows (6.4) that the mass can be either positive or negative, without
upper or lower bounds. On the Killing horizon, there is a magnetic dipole charge, given by
D
=
1 8
F
=
1 8
3q
r0
1 ag(r02 -
b2)
+
2 bg(r02 -
a2)
.
(6.6)
The reason why dipole charge is consistent with a time machine is that the topology of the
Killing horizon is a time bundle over S2.
The solution becomes much simpler when b = a. Making coordinate transformations
1
=
1 2
(
- ) ,
2
=
1 2
(
+
) ,
r2 - a2 a2g2
=
r~2 ,
=
1 2
~
,
q = a3g3q~, (6.7)
and then dropping the tildes, we have
ds2 = -g2r2dt2 -
dt
+
q 2r2
3
2
+
dr2 f
+
1 4
W
r2
32
+
1 4
r2d22
,
W
=
1-
r4
,
f
=
(1
+
g2r2)W
-
g2q2 r4
.
A=
3q 2r2
3
,
(6.8)
Mass and angular momentum are
M
=
-
1 8
g2
,
J
=
1 4
q
.
(6.9)
The solution reduces to the static soliton (3.6) when q = 0. In order for the spacetime to avoid curvature singularity at r = 0, there should be a Killing horizon at some r0 > 0 such that f (r0) = 0. Such a Killing horizon is guaranteed to exist if we have > -g2q2). It follows that for given q, the mass of the solution has an upper bound, but no lower bound
M
<
1 8
g4
q2
.
(6.10)
25
This upper bound is analogous to (3.20).
It is clear that at the Killing horizon at f = 0, we must have W > 0. It follows that
there must be naked CTCs since
g
=
1 4g2
(f
-
W)
=
1 4
r2W
-
q2 r4
.
(6.11)
The manifold closes off at the Killing horizon provided that the null Killing vector on the
horizon
=
2r02(1
1 + g2r02 + g2r02)2 +
g4q2
q
t
+
2r02(1
+
g2r02)
,
(6.12)
generates 2 period. Note that in this time machine, then mass can be both positive and
negative. The electric charge vanishes, but there is a magnetic dipole charge on the Killing
horizon
1
3q
D=
F=
8 r0
4r02
.
(6.13)
6.2 Asymptotic to flat spacetime
We can turn off the cosmological constant and the solution becomes
ds2 = -
dt
-
q 2r2
3
2
+
dr2 W
+
1 4
W
r232
+
1 4
r2d22
,
A
=
-
3q 2r2
3
.
(6.14)
This is a solution to field equations of five-dimensional minimal supergravity. The solution has zero mass but non-vanishing angular momentum
M = 0,
J
=
1 4
q
.
(6.15)
The dipole charge takes the same form as (6.13). The metric describes a constant time
bundle
over
the
EH
instanton,
where
the
null
Killing
vector
at
r
=
r0
=
1 4
,
namely
=
q 2r02
t
+
,
(6.16)
must generate 2 period. Thus the spatial section is not asymptotic R4, but R4/Z2.
7 Conclusions
In this paper, we studied the properties of Kerr and Kerr-AdS metrics in D = 2n + 1 dimensions when they do not describe rotating black holes. We found that when the mass was negative and all angular momenta turned on, the metrics could describe smooth time machines where spacetime closes off on some Euclidean pseudo horizon, which is Minkowski signatured, a time bundle over some base space. The absence of conical singularity of
26
the degenerate surface of the horizon requires the periodic identification of the real time coordinate. Such negative-mass time machines can arise for both asymptotically-flat or AdS spacetimes. We also constructed analogous time machines in gauged and ungauged minimal supergravity in five dimensions, where the time machines carry no electric but dipole charges.
Turning off the angular momenta appropriately, the aforementioned AdS time machines reduce to static solitons with negative mass. Furthermore, Euclideanization of Kerr-AdS metrics in odd dimensions can also lead to solitons with negative mass. For those that are solutions to Einstein's vacuum field equations with or without a cosmological constant, the absence of any singularity implies that the origin of the spacetime curvature is purely gravitational without any matter energy-momentum tensor. This is very different from Schwarzschild or Kerr black holes where singular matter source is located at the singularity. Thus our solutions are the manifestations of pure-gravity states. Such states are not unusual in Euclidean signatured gravity; they are described by gravitational instantons. Our work demonstrates that pure gravitational states can arise in Minkowski signatured gravity in D = 2n + 1. In addition, we find that taking the cosmological constant to zero, the AdS solitons solutions reduce to a class of Ricci-flat Kahler metrics in D = 2n dimensions.
Time machines are not unusual in supergravities where BPS time machines have been constructed. What is unusual is perhaps that all these solutions carry negative energies. It is thus of interest to examine the positive-mass conjecture. Having naked CTCs can be perfectly consistent with the energy conditions. In fact the naked CTCs in Godel-type metrics [44] emerge precisely because of the null-energy condition [45].
Positive-mass conjecture states that mass of asymptotically Minkowski spacetime is nonnegative. In our time-machine solutions, the time is required to be periodic. Although the asymptotic spacetime is flat for the = 0 solutions, it is not quite Minkowski, where time is isomorphic to a real line. For the AdS solitons with negative mass, the EH instaton-like requirement of the period of coordinate implies that the asymptotic spacetime is AdS/Zk rather than AdS.
Concrete examples of violating the positive-mass conjecture are perhaps those negativemass AdS time machines. This is because in the flat-spacetime embedding of AdS, time in global coordinates are already periodic. The further periodic identification of the null Killing vector on the Euclidean pseudo horizon can be perfectly consistent with the time period of global AdS provided that the constraint (2.16) is satisfied. This implies that the mass and angular momenta are discretized and are functions of rational numbers. This
27
phenomenon is analogous to the discretization of compact manifolds. It can be argued that in the "real world setting," spacetime configurations with discretized mass and angular momentum are so fine tuned and hence it is unlikely for the time machine to be created. Of course, one can hardly call the AdS2n+1 spacetime as the real world. On the other hand, the discrete nature of the time-machine configurations suggests topological structures that imply that these solutions, although having negative mass, are stable.1 It is of great interest to investigate the corresponding states in the boundary conformal field theory.
Acknowledgement
We are grateful to Jianxin Lu, Chris Pope, Yi Wang, Zhao-Long Wang and Yu-Liang Wu for useful discussions. The work is supported in part by NSFC grants NO. 11475024, NO. 11175269 and NO. 11235003.
References
[1] R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963). doi:10.1103/PhysRevLett.11.237
[2] K. Schwarzschild, On the gravitational field of a mass point according to Einstein's theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916, 189 (1916) [physics/9905030].
[3] B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations, Commun. Math. Phys. 10, 280 (1968).
[4] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172, 304 (1986). doi:10.1016/0003-4916(86)90186-7
[5] S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59, 064005 (1999) doi:10.1103/PhysRevD.59.064005 [hep-th/9811056].
[6] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] doi:10. 1023/A:1026654312961 [hep-th/9711200].
1We are grateful to Yi Wang for pointing this out.
28
[7] G.W. Gibbons, H. Lu, D.N. Page and C.N. Pope, The General Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53, 49 (2005) doi:10.1016/j.geomphys.2004.05.001 [hep-th/0404008].
[8] G.W. Gibbons, H. Lu, D.N. Page and C.N. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93, 171102 (2004) doi:10.1103/PhysRevLett.93.171102 [hep-th/0409155].
[9] W. Chen, H. Lu and C.N. Pope, Kerr-de Sitter black holes with NUT charges, Nucl. Phys. B 762, 38 (2007) doi:10.1016/j.nuclphysb.2006.07.022 [hep-th/0601002].
[10] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Rotating black holes in gauged supergravities: Thermodynamics, supersymmetric limits, topological solitons and time machines," hep-th/0504080.
[11] R. Clarkson and R.B. Mann, Eguchi-Hanson solitons in odd dimensions, Class. Quant. Grav. 23, 1507 (2006) doi:10.1088/0264-9381/23/5/005 [hep-th/0508200].
[12] R. Clarkson and R.B. Mann, Soliton solutions to the Einstein equations in five dimensions, Phys. Rev. Lett. 96, 051104 (2006) doi:10.1103/PhysRevLett.96.051104 [hep-th/0508109].
[13] T. Eguchi and A.J. Hanson, Asymptotically flat selfdual solutions to Euclidean gravity, Phys. Lett. 74B, 249 (1978). doi:10.1016/0370-2693(78)90566-X
[14] G.W. Gibbons and C.A.R. Herdeiro, Supersymmetric rotating black holes and causality violation, Class. Quant. Grav. 16, 3619 (1999) doi:10.1088/0264-9381/16/11/311 [hep-th/9906098].
[15] M. Banados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69, 1849 (1992) doi:10.1103/PhysRevLett.69.1849 [hep-th/9204099].
[16] G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22, 1503 (2005) doi:10.1088/02649381/22/9/002 [hep-th/0408217].
[17] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Supersymmetric nonsingular fractional D2-branes and NS-NS 2-branes, Nucl. Phys. B 606, 18 (2001) doi:10.1016/S05503213(01)00236-X [hep-th/0101096].
29
[18] H. Lu, D.N. Page and C.N. Pope, New inhomogeneous Einstein metrics on sphere bundles over Einstein-Kahler manifolds, Phys. Lett. B 593, 218 (2004) doi:10.1016/ j.physletb.2004.04.068 [hep-th/0403079].
[19] H. Cebeci, O. Sarioglu and B. Tekin, Negative mass solitons in gravity, Phys. Rev. D 73, 064020 (2006) doi:10.1103/PhysRevD.73.064020 [hep-th/0602117].
[20] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Ricci flat metrics, harmonic forms and brane resolutions, Commun. Math. Phys. 232, 457 (2003) doi:10.1007/s00220-0020730-3 [hep-th/0012011].
[21] D. Martelli and J. Sparks, Toric Sasaki-Einstein metrics on S2 S3, Phys. Lett. B 621, 208 (2005) doi:10.1016/j.physletb.2005.06.059 [hep-th/0505027].
[22] D.N. Page, A physical picture of the K3 gravitational instanton, Phys. Lett. 80B, 55 (1978). doi:10.1016/0370-2693(78)90305-2
[23] J.F. Plebanski, A class of solutions of Einstein-Maxwell equations, Ann. Phys. 90, 196 (1975).
[24] G.W. Gibbons and S.W. Hawking, Gravitational multi-instantons, Phys. Lett. 78B, 430 (1978). doi:10.1016/0370-2693(78)90478-1
[25] G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries, Commun. Math. Phys. 66, 291 (1979). doi:10.1007/BF01197189
[26] W. Chen, H. Lu and C.N. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav. 23, 5323 (2006), hep-th/0604125 doi:10.1088/0264-9381/23/17/ 013.
[27] T. Oota and Y. Yasui, Explicit toric metric on resolved Calabi-Yau cone, Phys. Lett. B 639, 54 (2006) doi:10.1016/j.physletb.2006.06.021 [hep-th/0605129].
[28] H. Lu and C.N. Pope, Resolutions of cones over Einstein-Sasaki spaces, Nucl. Phys. B 782, 171 (2007) doi:10.1016/j.nuclphysb.2007.04.017 [hep-th/0605222].
[29] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2S3, Adv. Theor. Math. Phys. 8, no. 4, 711 (2004) doi:10.4310/ATMP.2004.v8.n4.a3 [hep-th/0403002].
30
[30] M. Cvetic, H. Lu, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95, 071101 (2005) doi:10.1103/PhysRevLett. 95.071101 [hep-th/0504225].
[31] M. Cvetic, H. Lu, D.N. Page and C.N. Pope, New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter, JHEP 0907, 082 (2009) doi:10.1088/1126-6708/2009/07/082 [hep-th/0505223].
[32] M.F. Atiyah and N.J. Hitchin, Low-energy scattering of nonabelian monopoles, Phys. Lett. A 107, 21 (1985). doi:10.1016/0375-9601(85)90238-5
[33] G.W. Gibbons and N.S. Manton, Classical and quantum dynamics of BPS monopoles, Nucl. Phys. B 274, 183 (1986). doi:10.1016/0550-3213(86)90624-3
[34] M. Cvetic, G.W. Gibbons, H. Lu and C. N. Pope, Orientifolds and slumps in G2 and spin(7) metrics, Annals Phys. 310, 265 (2004) doi:10.1016/j.aop.2003.10.004 [hep-th/0111096].
[35] M. Cvetic and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476, 118 (1996) doi:10.1016/0550-3213(96) 00355-0 [hep-th/9603100].
[36] Z.-W. Chong, M. Cvetic, H. Lu and C. N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95, 161301 (2005) doi:10.1103/PhysRevLett.95.161301 [hep-th/0506029].
[37] S.Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U (1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707, 286 (2012) doi:10.1016/j.physletb.2011.12.031 [arXiv:1108.4159 [hep-th]].
[38] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391, 93 (1997) doi:10.1016/S0370-2693(96)01460-8 [hep-th/9602065].
[39] D. Klemm and W.A. Sabra, Charged rotating black holes in 5-D Einstein-Maxwell (A)dS gravity, Phys. Lett. B 503, 147 (2001) doi:10.1016/S0370-2693(01)00181-2 [hep-th/0010200].
[40] D. Klemm and W.A. Sabra, General (anti-)de Sitter black holes in five-dimensions, JHEP 0102, 031 (2001) doi:10.1088/1126-6708/2001/02/031 [hep-th/0011016].
31
[41] J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20, 4587 (2003) doi:10.1088/0264-9381/20/21/005 [hep-th/0209114].
[42] J.B. Gutowski and H.S. Reall, Supersymmetric AdS5 black holes, JHEP 0402, 006 (2004) doi:10.1088/1126-6708/2004/02/006 [hep-th/0401042].
[43] G. Compere, K. Copsey, S. de Buyl and R.B. Mann, Solitons in five-dimensional minimal supergravity: local charge, exotic ergoregions, and violations of the BPS bound, JHEP 0912, 047 (2009) doi:10.1088/1126-6708/2009/12/047 [arXiv:0909.3289 [hepth]].
[44] K. Godel, An example of a new type of cosmological solutions of Einstein's field equations of graviation, Rev. Mod. Phys. 21, 447 (1949). doi:10.1103/RevModPhys.21.447
[45] S.L. Li, X.H. Feng, H. Wei and H. Lu, Godel universe from string theory, arXiv:1612. 02069 [hep-th].
32
|