File: 1701.00006.txt

package info (click to toggle)
python-pattern 2.6%2Bgit20180818-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 93,888 kB
  • sloc: python: 28,119; xml: 15,085; makefile: 194
file content (4271 lines) | stat: -rw-r--r-- 63,168 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
arXiv:1701.00006v1 [hep-th] 30 Dec 2016

Time Machines and AdS Solitons with Negative Mass
Xing-Hui Feng, Wei-Jian Geng  and H. Lu Center for Advanced Quantum Studies, Department of Physics,
Beijing Normal University, Beijing 100875, China
ABSTRACT We show that in D = 2n+1 dimensions, when mass is negative and all angular momenta are non-vanishing, Kerr and Kerr-AdS metrics describe smooth time machines, with no curvature singularity. Turning off the angular momenta appropriately can lead to static AdS solitons with negative mass. Setting zero the cosmological constant yields a class of Ricci-flat Kahler metrics in D = 2n dimensions. We also show that Euclidean-signatured AdS solitons with negative mass can also arise in odd dimensions. We then construct time machines in D = 5 minimal gauged supergravity that carry only magnetic dipole charges. Turning off the cosmological constant, the time machine becomes massless and asymptotically flat. It can be described as a constant time bundle over the Eguchi-Hanson instanton.
xhfengp@mail.bnu.edu.cn gengwj@mail.bnu.edu.cn mrhonglu@gmail.com

Contents

1 Introduction

2

2 Time machines with negative mass

4

2.1 D = 5 time machines with equal angular momenta . . . . . . . . . . . . . . 4

2.2 D = 2n + 1 time machines with equal angular momenta . . . . . . . . . . . 8

2.3 Time machines with unequal angular momenta . . . . . . . . . . . . . . . . 10

2.4 Further time machines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 AdS Solitons with negative mass

13

3.1 Cohomogeneity-one metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 First-order equations without superpotential . . . . . . . . . . . . . . . . . . 14

3.3 Higher-cohomogeneity solitons . . . . . . . . . . . . . . . . . . . . . . . . . 16

4 Ricci-flat instantons in D = 2n dimensions

19

4.1 D = 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.2 D = 2n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5 Euclidean AdS solitons with negative mass

22

6 Time machine with a dipole charge

24

6.1 Asymptotic to AdS5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

6.2 Asymptotic to flat spacetime . . . . . . . . . . . . . . . . . . . . . . . . . . 26

7 Conclusions

26

1 Introduction
This paper studies the properties of the general Kerr metrics with or without a cosmological constant, when they do not describe rotating black holes. The Kerr metric [1] of a rotating black hole that is asymptotic to four-dimensional Minkowski spacetime is far more subtle to construct than the static Schwarzschild metric [2] with spherical symmetry. The solution was generalized by Carter [3] to include a cosmological constant and the metric describes a rotating back hole in de Sitter (dS) or anti-de Sitter (AdS) spacetimes for positive or negative cosmological constants respectively. Inspired by string theory, Kerr metrics in higher dimensions were constructed in [4]. Kerr-(A)dS metric in five dimensions were constructed

2

in [5], motivated by the AdS/CFT correspondence [6]. The Kerr-(A)dS metrics in general dimensions were later constructed in [7, 8].
One fascinating feature of Riemannian geometry is that a local metric may extend onto very different manifolds in different coordinate patches. For example, a five-dimensional Kerr-AdS "over-rotating" metric is equivalent, after performing a coordinate transformation, to an under-rotating Kerr-AdS metric [9]. Kerr and particularly Kerr-AdS metrics are very complicated in general dimensions and it is quite possible that these local metrics can describe spacetimes other than rotating black holes. Indeed, we find that when the mass is negative, the local metrics in D = 2n + 1 can describe a smooth time machine, provided that all independent orthogonal angular momenta are turned on. In this paper we adopt the definition of time machine in [10]. In such a time machine, the spacetime closes off at some Euclidean pseudo horizon at the price that the real time coordinate becomes periodic. The curvature power-law singularity is outside the spacetime. The conclusion holds for both asymptotically-flat or AdS solutions.
Turning off the angular momenta appropriately, we obtain AdS solitons with negative mass. These solutions with general parameters are of multi-cohomogeneity. If the starting Kerr-AdS metrics have equal angular momenta and hence are cohomogeneity one, the corresponding AdS solitons are also cohomogeneity one, with level surfaces as S2n-1/Zk. Such a five-dimensional AdS soliton was previously constructed in [11, 12]. Ours generalize to arbitrary 2n + 1 dimensions and multi-comohogeneity.
We can set the cosmological constants of the AdS solitons to zero, and the resulting solutions are direct products of time and a class of D = 2n Ricci-flat metrics. The special case of cohomogeneity-one solutions are the Eguchi-Hanson (EH) instanton and its higherdimensional generalizations.
The paper is organized as follows. In section 2, we begin with the D = 5 example, and then demonstrate that all Kerr or Kerr-AdS metrics in odd dimensions with negative mass can have the smooth time-machine configuration when all the angular momenta are turned on. In section 3, we concentrate on Kerr-AdS metrics in odd dimensions and obtain the static limit that describes soliton configruations with negative mass. In section 4, we turn off the cosmological constant of the soliton configurations and obtain a class of Ricciflat metrics in D = 2n dimensions. In section 5, we perform Wick rotation on the Kerr metrics and find that in odd dimensions, the Euclidean-signatured solitons can also have negative mass. In section 6, we consider charged Kerr-AdS solution in five-dimensional minimal gauged supergravity and obtain the analogous limit of time machines that carry
3

magnetic dipole charges. Turning off the gauging, we obtain a massless asymptotically-flat time machine that is a constant time bundle over the EH instanton. We conclude the paper in section 7.

2 Time machines with negative mass
In this section, we consider Kerr and Kerr-AdS metrics in odd D = 2n + 1 dimensions. We show that when mass is negative, the metrics can describe smooth time machines where geodesic complete on some Euclidean Killing horizons, provided that all angular momenta are turned on. The conclusion is true for both asymptotically flat or AdS metrics. For this reason, we focus on the discussion on Kerr-AdS metrics to avoid the repetition of discussing the Kerr and Kerr-AdS metrics separately. However, since our results are applicable for both types of metrics, we shall not emphasise the word AdS.

2.1 D = 5 time machines with equal angular momenta

2.1.1 Local metrics in D = 5

We start with a class of rotating metrics in five dimensions with the level surfaces as

squashed S3 written as a U (1) bundle over S2:

ds25 f

= =

dr2 f

-

f W

dt2

+

(1 + g2r2)W -

1 4

r2

W

(3

+

)2

+

1 4

r2d22

,

 r2

,

,

W

=

1

+

 r4

,



=

2 r4W

dt .

(2.1)

Here the metric d22 and 1-form 3 are given by

d22 = d2 + sin2  d2 ,

3 = d + cos d .

(2.2)

The metric for the unit round S3 is given by

d23

=

1 4

32 + d22

.

(2.3)

Thus the metric (2.1) for constant t and r describes squashed S3 with W as the squashing

parameter. Metrics (2.1) are all Einstein with R = -4g2g , where constant 1/g is the AdS
radius. The solutions are specified by two integration constants (, ). (There should be

no confusion between (, ) as the spacetime indices and as integration constants of the

solutions.) The invariant Riemann tensor squared is

Riem2

=

40g4

+

72(

- g2)2 r8

-

384( - r10

g2)

+

384 2 r12

.

(2.4)

4

Thus there is only one power-law curvature singularity at r = 0. Depending on the values of the constants (, ), the metrics can extend smoothly onto very different manifolds. When  = 0 = , the metrics become the AdS5 vacuum in global coordinates. Thus the metrics all approach AdS asymptotically at the r   region. In particular, when  > 0 and  = 0, the metric is the well-known Schwarzschild-AdS solution. We now give the list of (, ) values for which the power-law curvature singularity at r = 0 can be either unreachable geodesically or hidden inside an event horizon
  > 0 and  > 0: Rotating black hole with equal angular momenta and positive mass, which we shall give a quick review in the next subsection 2.1.2.
  < 0 and  < 0: Time machine with equal angular momenta and negative mass, which we shall discuss in 2.1.3.
  = 0 and  < 0: AdS static soliton with negative mass, which we shall discuss in section 3.
  < 0, the metric becomes real if we make a Wick rotation t = i  , giving rise to Einstein-Riemannian geometry. We shall discuss this in section 5.

2.1.2 Rotating black hole

We first consider the case with  > 0 and  > 0. The metric describes a rotating black

hole that is non-rotating asymptotically. The event horizon is located at r = r0 > 0 that is the largest real root of f (r). A necessary condition for the existence of such a root is 1 - g2/ > 0. We can express  in terms of r0 and :



=

(r04

+

)(1 r02

+

g2r02)

.

(2.5)

Following the standard technique, we obtain the thermodynamical quantities including the

mass M , angular momentum J, angular velocity +, temperature T and entropy S.

M

=

1 8

(3

+

g2

)

,

T = 2g2r06 + r04 -  . , 2r03 r04 + 

J

=

1 4



,

S

=

1 2

2r0

+

=

2

(1 + g2r02) r0 r04 + 

,

r04 +  .

(2.6)

These quantities satisfy the first law of black hole thermodynamics

dM = T dS + +dJ .

(2.7)

5

Note that in five dimensions, there are in general two independent angular momenta and

the corresponding Kerr-AdS metric was constructed in [5]. The above solution describes

the one with equal angular momenta. An important difference between the black hole and the time machine to be studied in

the next subsection is the characteristics of the Killing horizon at r = r0. The null Killing vector on the horizon, which is a degenerate surface, is given by



=

 t

+

+

 

.

(2.8)

The surface gravity  on the horizon can be obtained from the null Killing vector as

2

=

-

g

2 42

2

= (2T )2 .

(2.9)

The surface gravity defined above with a minus sign implies that the imaginary time is periodic leading to black hole temperature. It also implies that geodesics do not complete

on the event horizon and there is an interior region.

2.1.3 Time machine
The thermodynamical quantities (2.6) imply that for the metric (2.1) to describe a black hole, we must have that  and  are both non-negative. However, the local solution (2.1) is real as long as we have   0. It is thus of interest to study the global structure of (2.1) when  and  are both negative instead. Let

-  =   0 , - =   0 .

(2.10)

The solution (2.1) becomes

ds25

=

dr2 f

-

f W

dt2

+

1 4

r2W

(3

+

)2

+

1 4

r2d22

,



f

=

(1 + g2r2)W

+

 r2

,

,

W

=

1-

 r4

,



=

2  r4W

dt

.

(2.11)

The metric is still asymptotic to AdS5, but with mass and angular momentum given by

M

=

-

1 8

(3

+

g2) ,

J

=

1 4



 .

(2.12)

Thus the solution has negative mass, with no lower bound. Naively, one would expect that the metric would then have naked curvature singularity. This is indeed the case when  = 0, corresponding to the Schwarzschild-AdS solution with negative mass. However, if  is non-vanishing, the manifold described by this metric is smooth, with the local r = 0 power-law singularity outside the manifold.

6

As the radial coordinate r decreases from the asymptotic infinity, we come across a

special

point

r

=



1 4

for

which

W

=

0.

This

is

neither

coordinate

nor

curvature

singularity,

but a velocity of light surface (VLS). Inside the VLS, we have g < 0. In other words,

the periodic coordinate  becomes time like, giving rise to naked CTCs. Thus the metric

describes a time machine, with the VLS as its boundary.

As r decreases further, at r = r0 > 0, we have f (r0) = 0. This corresponds to a Killing

horizon. The null Killing vector (of zero length) is given by



=

r02 (1 + g2r02)  + 2r02(1 + g2r02)2

,

1 = 

 t

+



 





=

2  r04W (r0)

=

2

, (1 + g2r02)(+ r02(1 + g2r02)) .
r0 

(2.13)

It is easy to verify that the surface gravity  defined in (2.9) is negative, giving rise to

imaginary temperature

T

=

i 2

.

(2.14)

It is thus more natural to define a "Euclidean surface gravity" E as

2E

=

+

g

2 42

2

.

(2.15)

The Killing horizon with a real Euclidean surface gravity is called Euclidean pseudo horizon,

on which conical singularity can arise potentially.

A simplest example of Euclidean pseudo horizon occurs in two-dimensional flat space

written in polar coordinates ds2 = d2 + 2d2. The Killing vector  =  is null, i.e. having zero length, in the middle  = 0, with E = 1. The metric describes Euclidean R2 if  = 2, in which case  = 0 is just an ordinary point in R2. If  = 2, the metric is

of a cone with the tip at  = 0.

It is easy to verify that for the Killing vector 1, we have 2E = 1. Thus, for the time machine to avoid conic singularity, 1 must likewise generate 2 period. In other words, it is the real time coordinate rather than the imaginary time coordinate that must be periodic.

Once this is imposed, the geodesic completes and spacetime closes off at the Killing horizon.

The local r = 0 singularity is then outside the manifold. It should be emphasized that the

existence of the Killing horizon r = r0 is independent of whether the cosmological constant  = -4g2 vanishes or not. It follows that the above result is applicable also for the

asymptotically-flat cases.

In the standard embedding of AdS5 in the (4 + 2) flat spacetime, time t in global

coordinates

is

periodic.

The

Killing

vectors

0

=

1 g

 t

and

2

=

2

 

both

generate

2

period.

7

It follows from (2.13) that (0, 1, 2) are linearly dependent. The consistency requires that coefficients are co-prime integers, namely

n00 = n11 + n22 .

(2.16)

Comparing this to (2.13), we conclude that the dimensionless parameters (gr0, g2) or the original (g4, g2) of the asymptotically-AdS time machines can be expressed in terms of

two rational numbers. Note that the period of 1 has to be strictly 2 to avoid conic singularity. The period of  can be further divided by integer k without introducing singularity,

corresponding to AdS5/Zk. We can also divide or multiply the period t by an integer, corresponding to the quotient or multi-covering of the AdS.

When g = 0, we have an asymptotically-flat time machine with equal angular momenta.

In

this

case,

the

Killing

vector

 t

is

not

periodic

a

priori,

and

hence

there

is

no

extra

constraint such as (2.16).

It is worth commenting that in the case of the rotating black hole discussed in subsection

2.1.2, the event-horizon topology is 3-sphere. To be specific, the horizon geometry is a squashed 3-sphere, written as a U (1) bundle over S2. For the time machine discussed in

this section, the Euclidean pseudo horizon is Minkowski signatured, and it is a constant

time bundle over S2. It is also rather counterintuitive that not only the time-machine mass

is negative, it has no lower bound.

Finally it is also worth commenting that if the function f (r) had a double zero, there

would be no need for periodic identification of the real time coordinate. The resulting

spacetime is called a repulson [14]. None of the examples studied in detail in this paper

exhibits repulson-like behavior.

2.2 D = 2n + 1 time machines with equal angular momenta

The five-dimensional time machine discussed in the previous subsection can be easily gen-

eralized to all D = 2n + 1 dimensions. We start with the Kerr-AdS black holes with all

equal angular momenta. The Kerr-Schild form was given in [7]. The Boyer-Lindquist form

was presented in [16], given by

ds22n+1

=

-1

+ g2r2 

dt2

+

U dr2 V - 2m

+

r2

+ 

a2 (2

+

d2n-1)

+

2m U 2

(dt

+

a)2

,

 = d + A ,

U = (r2 + a2)n-1 ,

V

=

1 r2

(1

+

g2r2)(r2

+

a2)n

,

(2.17)

where  = 1-a2g2, and d2n-1 is the standard Fubini-Study metric on CPn-1, and the fibre 1-form is  = d + A, with dA = J being the Kahler form. The coordinate  has period 2

8

and the terms (2 + d2n-1) in the metric are nothing but the metric on the round sphere S2n-1. The mass and angular momentum are given by

M

=

m(2n - )A2n-1 8n+1

,

J

=

maA2n-1 4n+1

,

(2.18)

where Ak is the volume of a unit round Sk, given by

Ak

=

2

1 2

(k+1)

[

1 2

(k

+

1)]

.

(2.19)

It is instructive to define a new coordinate r^ that measures the radius of the S2n-1 sphere.

Thus we make a coordinate transformation

r2

+ a2 

=

r^2 .

(2.20)

The metric (2.17) can be written, after dropping the hat, as

ds22n+1

=

dr2 f

-

f W

dt2

+

r2W

(

+

)2

+

r2d2n-1

,

f

=

(1 + g2r2)W

-

 r2(n-1)

,

W

=

1+

 r2n

,

  = r2n +  dt . (2.21)

where the constants  and  are related to original (m, a) parameters as

a=

 

,

m

=

1 2



1

-

 

g2

n+1
.

(2.22)

The solutions describe rotating black holes in D = 2n + 1 dimensions when both (, ) are

positive. When n = 1, the metric reduces to the BTZ black hole [15] after making a trivial

coordinate transformation r2 + 2  r2, and hence all our statements apply also to three

dimensions. When n = 2, the solution reduces to (2.1).

As in the previous D = 5 example, when (, ) both take negative values, as in (2.10),

the corresponding metric becomes

ds22n+1

=

dr2 f

-

f W

dt2

+

r2W

(

+

)2

+

r2

d2n-1

,

f

=

(1 + g2r2)W

+

 r2(n-1)

,

W

=

1

-

 r2n

,





=

 r2nW

dt .

(2.23)

The mass and angular momentum are given by

M

=

-

A2n-1 16

((2n

-

1)

+

g2) ,

J

=

A2n-1 8

 .

(2.24)

Since  and  are positive, the solutions all have negative mass, with no lower bound. When  = 0, the solution becomes the Schwarzschild-AdS metric with negative mass,
and hence the power-law curvature singularity at r = 0 is naked. If on the other hand

9

 > 0, no matter how small or big, there is a Killing horizon at r = r0 > 0 where f (r0) = 0.

The corresponding null Killing vector takes the form



=

r0n(1 + g2r02) nr02n(1 + g2r02)2 +

r02

r02 1 + g2r02

 t

+

r02n(1

+

g2r02)

+

r02

 

.

(2.25)

The overall scaling of the Killing vector is chosen such that the Euclidean surface gravity

is unit, as in (2.15). Consequently, r = r0 is a pseudo horizon where geodesic completes

provided that  generates 2 period. It is easy to see that on the Killing horizon, g =

r0W (r0)

<

0.

In

fact,

naked

CTCs

arise

inside

the

VLS

located

r

=

1 2n

>

r0.

The

metrics

describe smooth time machines with negative mass, provided that  > 0. The geometry of

the Euclidean pseudo horizon is a constant time bundle over CPn. The conclusion is valid

for both asymptotically-flat (g2 = 0) or AdS solutions.

2.3 Time machines with unequal angular momenta

In D = 2n + 1 dimensions, there can be n independent rotations. We again start with the

Kerr-AdS metrics, but with now arbitrary non-zero rotations. The metrics were constructed in [7, 8]. In analogous notations, they are given by

ds22n+1

=

-W (1

+

g2r2)dt2

+

U dr2 V - 2m

+

2m U

dt

-

n i=1

ai2i di i

2

+

n i=1

r2

+ a2i i

d2i + 2i (di + aig2dt)2

-

(1

+

g2 g2r2)W

n i=1

r2

+ i

a2i

i

di

2
,

(2.26)

where

i 2i = 1 and

i = 1 - a2i g2 ,

W

=

n i=1

2i i

,

U

=

n i=1

2i r2 + a2i

n
(r2 + a2j ) ,
j=1

V

=

1 r2

(1

+

g2

r2)

n

(r2 + a2i ) =

U F

,

i=1

F

=

1

r2 + g2r2

n i=1

2i r2 + a2i

.

(2.27)

For positive m and i's, the metrics describe general rotating black holes with mass and angular momenta [16]

D = 2n + 1 :

M

=

m AD-2 4( j j)

n i=1

1 i

-

1 2

,

Ji

=

mai AD-2 4i( j j)

.

(2.28)

The event horizon is located at V - 2m = 0. Indeed the determinant of the sub-manifold

of constant r slice has a factor of (V - 2m), but Riemann tensor invariants are regular at

10

V - 2m = 0. These show that V - 2m = 0 gives a degenerate surface, with only coordinate

singularity.

We now consider the case with m < 0. Naively, one might expect that the solutions

have a naked power-law curvature singularity, since it is clear that V - 2m = 0 cannot

be satisfied for any real r. However, the fact is that as long as rotating parameters ai's

are all non-vanishing, the geodesic does complete at some Euclidean Killing horizon before

reaching the singularity. To see this, it is important to note that r = 0 is not a curvature

singularity when all ai = 0. Instead curvature singularities are located at r2 + a2i = 0, together with appropriate j's for each i. In other words, there is nothing special at r = 0 and the geodesic can extend further into the r2 < 0 region. Then it is easy to see that

when all ai = 0 and m is negative, no matter how small or big |m| is, there exists a pure

imaginary r0 with

- a2i < r02 < 0 , for all i = 1, 2, . . . n,

(2.29)

such that V - 2m = 0. The r = r0 surface gives rise to a Killing horizon. It is also straightforward to verify that on the Killing horizon there are CTCs. For example,

gii

i =1

=

(r02 + a2)2 2i r02

<

0,

for all i = 1, 2, . . . n.

(2.30)

This implies that the Killing horizon is a pseudo horizon where geodesic completes provided

that the appropriate null Killing vector generates 2 period, as was discussed in the case of

equal angular momenta. It is also important to note that from the definition of V in (2.27)

we conclude that the existence of the Euclidean Killing horizon is independent of whether

the cosmological constant parameter g2 vanishes or not. Hence the conclusion is applicable

for both asymptotically-flat or AdS solutions.

It is perhaps convenient to introduce n + 1 new parameters, (, 1, . . . , n), and express m and ai in terms of these parameters

ai =

i 

,

n

n+1

m=

i n ,

i=1

i

=

1

-

i 

g2

.

(2.31)

The mass and angular momenta become

M =

1
j n
j

n i=1

1 i

-

1 2

,

Ji

=

i i

1
j n .
j

(2.32)

For the metric to describe a rotating black hole, the parameters (, i) must be non-negative. However, the reality condition of the metric only requires that i  0 for all i. Thus we can take all the parameters (, i) to be negative. The solutions then describe a general

11

class of time machines with negative mass. When i =  for all i, they reduce to the cohomogeneity-one metrics discussed earlier.
The situation is very different in D = 2n even dimensions, for which there are only (n - 1) independent orthogonal rotations. The Kerr-AdS metrics are [7, 8]

ds22n

=

-W (1

+

g2r2)dt2

+

U dr2 V - 2m

+

2m U

dt

-

n-1 i=1

ai2i di i

2

+

n i=1

r2

+ i

a2i

d2i

+

n-1 i=1

r2

+ i

a2i

2i (di

+

aig2dt)2

-

(1

+

g2 g2r2)W

n i=1

r2

+ i

a2i

idi

2
,

(2.33)

where i, W and U take the same for as those in D = 2n + 1 dimensions, except that an = 0 since in D = 2n dimensions, there is no azimuthal coordinate n and hence there is no associated rotation parameter an. For positive m and 0 < i  1, the metrics describe rotating AdS black holes with mass and angular momenta [16]

D = 2n :

M

=

m AD-2 4( j j)

n-1 i=1

1 i

,

Ji

=

mai AD-2 4i( j j)

.

(2.34)

As in the case of odd dimensions, the determinant of the submanifold of constant r slice

also has a factor of (V - 2m). However, there is a crucial difference in even dimensions.

The function V is now given by

V

=

1 r

(1

+

g2r2)

n-1
(r2

+

a2i )

i=1

(2.35)

Thus in even dimensions, the coordinate r cannot be purely imaginary. The r = 0 is a

spacetime power-law curvature singularity. It follows that for m < 0, the quantity (V - 2m)

cannot vanish for any r > 0 and hence there is no degenerate surface. The singularity at

r = 0 is thus naked.

2.4 Further time machines
For the time machine metric (2.23) to be Einstein, the CPn-1 metric d2n-1 can be replaced by any Einstein-Kalher metrics, at the expense that the asymptotic regions are no longer AdS. When the base is a direct product of multiple Einstein-Kahler spaces, there is a subtlety that the period associated with the fibre 1-form  must be consistent with all these factors of the base [17]. Here we present an example in seven dimensions where d22 is

12

replaced by the metric of S2  S2:

ds2

=

dr2 f

-

f dt2 + W

1 9

r2

W

( + )2 +

1 6

r2(d12 

+

sin2

1d21

+

d22

+

sin2

2d22)

,

 = d + cos 1 d1 + cos 2d2 ,



=

 r6W

dt .

(2.36)

The metric is Einstein with R = -6g2g , provided that functions W and f are

W

=

1

-

 r6

,

f

=

(1

+

g2r2)W

+

 9r4

.

(2.37)

For this solution, the level surfaces are not of S5 but the T 1,1 space. The asymptotic region is no longer AdS7, and boundary is T  T 1,1, instead of T  S5. The Killing horizon and the period of associated null Killing vector can be easily determined.

3 AdS Solitons with negative mass
In the previous sections, we find that in odd dimensions, when mass is negative, Kerr or Kerr-AdS metrics with all angular momenta turned on describe smooth time machines. We now consider the possibility of turning off all the angular momenta. There are two ways of doing this. The trivial way leads simply to the Schwarzschild metrics with negative mass. An alternative limit can lead to static solitons. Negative mass solitons emerge only when there is a cosmological constant. When the cosmological constant is zero, the mass vanishes, and we shall study this in section 4.

3.1 Cohomogeneity-one metrics

In the typical way of writing Kerr-AdS black holes, the mass M and angular momentum J are expressed in terms of m and a. Turning off the angular momentum parameter a has the effect of reducing the metric to the Schwarzschild black hole. In our parametrization (2.6), we can have two manifest ways of turning off the angular momentum. The first is to set  = 0, corresponding to setting a = 0, giving rise to the usual Schwarzschild black hole. The alternative is to set  = 0, corresponding to setting a  , and we have a new non-trivial static configuration. It follows from (2.1) that when  = 0 and  = - is negative, we obtain a static soliton in five dimensions. For general dimensions, we start with the time-machine solution (2.23) and set  = 0, we have

ds2

=

dr2 (1 + g2r2)W

- (1 + g2r2)dt2

+ r2W 2 + r2d2n-1 ,

W

=

1

-

 r2n

,

(3.1)

13

where the 1-form  and the metric d2n-1 are defined under (2.17). For positive , the

metric

becomes

singular

at

r

=

r0

=



1 2n

.

The

absence

of

the

conical

singularity

requires

a

specific period for coordinate  associated with , namely

 = n

2 g2r02

+

1

.

(3.2)

On the other hand, for the metric (2 + d2n-1) to describe a round S2n-1, the period for  is 2. If we consider instead more general S2n-1/Zk, then we have



=

2 k

.

(3.3)

This implies that

g2r02

=

k2 n2

-1,





=

1 g2n

k2 n2

-

1

n
.

(3.4)

Thus we have k > n and the mass of the soliton is discretized and negative, given by

M

=

-

A2n-1 16g2(n-1)

k

k2 n2

-

1

2
.

(3.5)

Note that when n = k, the solution becomes simply the AdS vacuum and  = 2. As k  , the mass reaches a negative lower bound.
In five dimensions, the metric can be written as

ds2

= -(g2r2 + 1)dt2 +

dr2 (g2r2 + 1)W

+

1 4

W

r232

+

1 4

r2d22

,

W

=

1

-

 r4

.

(3.6)

This solution was first obtained in [11, 12]. (The local metric with a positive cosmological constant in Euclidean signature was constructed earlier in [18], which can describe smooth compact manifolds.) When the cosmological constant vanish, i.e. g = 0, the metric is a direct product of time and the EH instanton [13]. The global analysis for (3.6) was performed and descretized negative mass was obtained. The negativeness of the soliton mass was demonstrated also using holographic stress energy in [11, 12] and the Noether procedure [19]. In our approach, the solutions were obtained in some special limit of KerrAdS metrics, and hence the mass formula is a direct consequence of that of Kerr-AdS black holes.

3.2 First-order equations without superpotential
It is well-known that EH instanton can be obtained from a set of first-order equations associated with some superpotential. It turns out that the solitons (3.1) in general odd dimensions can also arise from a set of first-order equations. For simplicity, we demonstrate
14

this explicitly in five dimensions and show that the static soliton (3.6) can arise as solutions

of some first-order differential equations, instead of Einstein's second-order equations of

motion. However, we also demonstrate that there is no superpotential associated with this

first-order system.

The most general ansatz for static metrics with the SU (2)  U (1) isometry of squashed

S3 is

ds2 = d2 - a2dt2 + b232 + c2d22 ,

(3.7)

where the metric d2 and 1-form 3 are given in (2.2) and (a, b, c) are functions of the radial

coordinate . A dot denotes a derivative with respect to . For the metric to be Einstein

with R + 4g2g = 0, the (a, b, c) functions satisfy

-

a a

-

b b

-

2c c

=

4g2

,

a a

+

2a c ac

+

a b ab

=

4g2 ,

b b

+

2b c bc

+

a b ab

-

b2 2c4

=

4g2 ,

c c

+

c2 c2

+

b c bc

+

a c ac

-

1 c2

+

b2 2c4

=

4g2 ,

(3.8)

We find that there exists a set of first-order equations that can solve the above second-order

equations of motion, namely

a = 2g2ab , 1 + 4g2c2

b

=

(2c2

-

b2) 1 2c2

+

4g2 c2

,

c = b

1

+ 4g2c2 2c

.

(3.9)

It is easy to verify that these first-order equations yield precisely the soliton solution (3.6).

We now demonstrate that this first-order system is not associated with any superpo-

tential. To see this, it is convenient to define a new radial coordinate , related to  by

d = abc2d. In this system, the effective Lagrangian is given by L = T - V where

T

=

2ab 2ab

+

4ac ac

+

4bc bc

+

2c2 c2

,

V

=

1 2

a2b2

(b2

-

4c2

-

24g2c4)

.

(3.10)

Here a prime denotes a derivative with respect to . Thus we have abc2f = f  for any

function f . Following the prescription of [20], we may define Xi = (a, b, c) and write the

kinetic

energy

as

T

=

1 2

gij

X

i

X

j

.

If

there

would

exist

a

superpotential

U

=

U (a, b, c)

such

that

V

=

1 2

gij

U U Xi Xj

,

(3.11)

then there would be a first-order system

abc2

X i

=

gij

U Xj

.

(3.12)

15

Substituting the first-order equations (3.9) into the above, and we find

U = (b2 + 2c2) 1 + 4c2g2 , a

U b

=

2ab(1 + 6c2g2) , 1 + 4c2g2

U c

=

4ac

1 + 2(b2 + 2c2)g2 1 + 4c2g2

.

(3.13)

It is easy to verify that the above equations do not satisfy the integrability condition unless g = 0, in which case we have U = a(b2 + 2c2). This is precisely the superpotential for generating the EH instanton. For non-vanishing g, on the other hand, although we have the first-order equation (3.9), there is no superpotential associated with the system.

3.3 Higher-cohomogeneity solitons

3.3.1 D = 5

The local solutions of the static solitons were obtained by taking a limit from Kerr-AdS metrics such that the two equal angular momenta vanish whilst the mass is non-vanishing. Such a limit typically leads to the Schwarzschild-AdS black holes. However, as we have shown in the previous subsection, there can be an alternative limit. This new limit can be performed also for the Kerr-AdS metrics with two general angular momenta. We start with the five-dimensional Kerr-AdS black hole constructed in [5], which involves three parameters, (m, a, b). Since we shall use the exact convention for the metric presented in [5], we shall not give it here. The mass and angular momenta are given by [16]

M

=

m(2a

+ 2b - 42a2b

ab)

,

Ja

=

ma 22ab

,

Jb

=

mb 22b a

,

(3.14)

where a = 1 - a2g2 and b = 1 - b2g2. Setting a = b = 0 turns off the angular momenta

and

gives

rise

to

the

Schwarzschild-AdS

black

hole

of

mass

M

=

3 4

m.

We would like

instead to send a, b, m to infinity such that we have Ja, Jb  0 while keeping M finite and

non-vanishing. To be specific, we scale the parameters

a = a~ ,

b = ~b

m

=

1 2

4

g6

a~2~b2



,

(3.15)

and then send   . The mass and angular momenta become

M

=

-

1 8

g2

,

Ja = Jb = 0 .

(3.16)

16

Thus we arrive at a static solution with negative mass. Making a coordinate transformation

r = ir~, (with   ,), the Kerr-AdS metric of [5] becomes

ds25

=

-

r2  dt2 a2b2

+

2d2 g2

+

2dr2 r

+

r g22

sin2



d1 ag

+

cos2



d2 bg

2

+

sin2

 cos2 2



(r2

-

a2)

d1 ag

-

(r2

-

b2

)

d2 bg

2
,

r = g2 (r2 - a2)(r2 - b2) - a2b2g4 ,  = a2 cos2  + b2 sin2  ,

2 = r2 -  .

(3.17)

Here we have dropped all the tildes. If we set the parameter  = 0, the metric is exact AdS.

At large r, the -term in the metric can be neglected. Thus the metric with non-vanishing

 is asymptotic to the AdS spacetime. The Riemann tensor squared is given by

Riem2

=

40g4

+

242 a4 b4 g12 12

(r2

+

3a2

cos2



+

3b2

sin2

)(3r2

+

a2

cos2



+

b2

sin2

)

,

(3.18)

indicating the metric has a curvature singularity at  = 0. We shall see presently that

this curvature singularity is outside the soliton manifold. When b = a, we make a further

coordinate transformation

1

=

1 2

(

-

) ,

2

=

1 2

(

+

) ,

r2 - a2 a2g2



r2 ,





1 2



.

(3.19)

the metric (3.17) reduces precisely to (3.6).

The power-law curvature singularity  = 0 can be avoided for  > 0 because there is a

Euclidean Killing horizon at r = r0 > max{a, b} for which r(r0) = 0. The condition for

existing such r0 is that



>

-

(a2 - b2)2 4a2b2g4

,



M

<

(a2 - b2)2 32a2b2g2

.

(3.20)

If the inequality is saturated, (r) has a double zero and the metric has a power-law

curvature singularity at r = (a2 + b2)/2 and  = /4. It is of interest to note that not

only the mass can be negative, but also there is no lower bound.

The metric (3.17) is degenerated at three places with three null Killing vectors



=

1 2



:

=0:

r = r0 :

1

=

 1

,

2

=

 2

,

3

=

r0(2r02

1 - a2

- b2)

a(r02

-

b2

)

 1

+

b(r02

-

a2)

 2

.

(3.21)

All three Killing vectors must generate 2 period in order to avoid conical singularity. On

the other hand, 3, 1, 2 are linearly dependent. Therefore they must satisfy

n33 = n11 + n22 , where n1, n2, n3 are co-prime integers

(3.22)

17

Thus

 r0 n2x - n1 = b x(n2 - n1x) ,

n3

=

n1

+ n2x bx

r0

,

(3.23)

where

x



a b

.

With

this

parametrization,

the

mass

parameter

m

becomes



=

n1n2(x2 - 1)2 g4x(n2x - n1)2

.

(3.24)

We shall not classify all possible (n1, n2, n3) that could arise. Instead, we present an exam-

ple: (n1, n2, n3) = (1, 2, 5), which implies that a = 0.713b and m = 3.77/g4 and r0 = 1.47b.

In fact there is a further subtle conic singularity. As was noted in [21], the Killing vectors

(1, 3)

and

(2, 3)

can

be

simultaneously

null

at

(r,

)

=

(r0,

1 2

)

or

(r0, 0)

respectively.

In

Euclidean signature, any linear combination of two null Killing vectors is also null, and

hence (n33 - n11) or (n33 - n22) must generate also 2 period. The consistency then

requires that n1 = n2 = 1. This corresponds to the cohomogeneity-one solutions with

a = b, discussed earlier. The example of (n1, n2, n3) = (1, 2, 5) still have a conic singularity

of

ADE

type

at

(r, )

=

(r0, 

=

1 2

).

The

cone

is

not

2-dimensional

like

d2 + 2d2,

but

four dimensional with d2 + 2d~ 2, where d~ 2 is not a round S3, but a lens space. For the

specific (n1, n2, n3) = (1, 2, 5) example, the lens space is S3/Z2, giving rise to the R4/Z2

orbifold singularity. Such singularity can be resolved by an EH instanton whose asymptotic

region is precisely R4/Z2 [22].

3.3.2 D = 2n + 1

We obtain some non-trivial static soliton solutions from Kerr-AdS5 metrics by taking some

appropriate limit (3.15). Under this limit, all angular momenta vanish, whilst the mass

becomes a finite negative number. The resulting metric is specified by three integration

constants. This procedure can be generalized to general odd dimensions. Kerr-AdS metrics

in general dimensions were constructed in [7, 8], involving a mass parameter m and n =

[(D - 1)/2] parameters ai for angular momenta. The mass and angular momenta are given

in (2.28) and (2.34) for odd and even dimensions.

We can turn off the angular momenta by setting ai = 0, leading to the Schwarzschild-

AdS black hole. We now would like to turn off the angular momenta while keeping mass

constant by sending ai   and hence i  -. This is not possible in even dimensions

because of the relation

n i=1

Ji ai

=M,

(3.25)

which can be derived from (2.34). In odd dimensions, this can be achieved indeed, because

there

is

the

less

convergent

"

1 2

"

term

in

(2.28)

in

this

limit.

Thus, following the D = 5

18

example, we make the constant scaling of the parameters

ai = a~i ,

n

m

=

1 2

(-2)ng2



(a~ig)2 ,

i

(3.26)

and then take the    limit. Dropping the tildes, we find that the Kerr-AdS metric (2.26) becomes

where

ds22n+1 = -r2

n 2i i=1 a2i

dt2

+

X Y

dr2

+

n i=1

r2 - a2i a2i g2

(d2i

+

2i d2i )

-

1 r2Z

n i=1

r2 - a2i a2i g2

i

di

2

-

g2 X

(

n

(aig)2)

i=1

n 2i di i=1 aig2

2
,

n i

u2i

=

1

and

X=

n
(r2 - a2i )
i=1

n i=1

2i r2 - a2i

,

n

n

Y = g2 (r2 - a2i ) - g2 (aig)2 ,

i=1

i=1

Z

=

n i=1

2i a2i g2

.

(3.27) (3.28)

The metrics are static and hence there is no angular momentum. The mass of the soliton

is negative, given by

M

=

-

AD-2 16

g2



.

(3.29)

We shall not discuss the global structure of this general class of AdS solitons in this paper.

4 Ricci-flat instantons in D = 2n dimensions
In the previous section, we obtained large classes of static AdS solitons in D = 2n + 1 dimensions. For the cohomogeneity-one metrics (3.1), it can be easily seen that in the g = 0 limit, the resulting spacetime is a direct product of time and the D = 2n gravitational instanton that is a higher-dimensional generalization of the EH instanton. The metric (3.1) was generalized to multi-cohomogeneity metrics (3.17) in D = 5 and (3.27) in D = 2n + 1. In this section, we perform a further g = 0 limit on (3.17) and (3.27) and obtain Ricci-flat gravitational instantons in D = 2n dimensions.

19

4.1 D = 4

We start with the five-dimensional Einstein metric (3.17) and reparameterize the (a, b, ) constants as

a2 = a20(1 - g22) ,

b2 = a20(1 + g22) ,

   - 4 .

(4.1)

Making first the coordinate transformation,

1

=

1 2

(

-

) ,

2

=

1 2

(

+

) ,

r2 - a20 a20g2



r2 ,





1 2



.

(4.2)

and then sending g  0, we obtain a smooth limit of (3.17), whose D = 4 spatial section is

ds24

=

U dr2 W

+

W 4U

r2

(d

+

cos

d)2

+

1 4

r2

U d2

+

1 U

sin2



d -

2 r2

d

2

,

W

=

1-

 r4

,

U

=

1

+

2 cos  r2

.

(4.3)

Note that the constant a0 is trivial and drops out. The metric is Ricci-flat and Kahler. The Kahler structure can be easily seen by constructing the covariant Kahler 2-form

J = e0  e3 + e1  e2 ,

(4.4)

where the vielbein are

e0 =

U W

dr ,

e1

=



1 2

r

U d ,

e3 =

W 4U

r

(d

+

cos

d)

,

e2 = - r sin  2U

d

-

2 r2

d

.

(4.5)

Thus the metric is the Ricci-flat and BPS limit of the general Plebanski solutions [23].

When  = 0, the metric is the EH instanton. For  = 0, the curvature singularity is located

at

U

=

0,

which

can

be

avoided

if



<



1 4

.

There

are

three

degenerate

surfaces

whose

null

Killing vectors are

=0:

=:

r

=



1 4

:

1

=

 

-

 

,

2

=

 

+

 

,

3

=

 

+

2 

 

,

(4.6)

all of which have unit Euclidean surface gravity E . When 2/ = p/q < 1 is a rational

number, then we have

2q3 = (q - p)1 + (q + p)2 .

(4.7)

20

It follows from (3.22) that n1 = (q - p), n2 = q + p and n3 = 2q. Further regularity conditions follow the same procedure described in subsection 3.3.1. The existence of the ADE-type conical codimension-3 singularity, albeit may be resolved, suggests that these metrics are outside the classes of Gibbons-Hawking instantons [24, 25]. Furthermore, the relation (4.7) implies that the asymptotic regions are cones of more general lens spaces, rather than the S3/Zk+1 for k number of EH instantons.

4.2 D = 2n

For general even dimensions, we start with the Einstein metric (3.27) and reparameterize the integration constants

a2i = a20(1 + g2b2i ) ,

n
b2i = 0 .
i=1

(4.8)

(Note that the resulting metric is real as long as bi's are either real or purely imaginary numbers.) Making a coordinate transformation

r2 - a20 a20g2



r2 ,

(4.9)

and then sending the cosmological constant parameter g to zero, we find that the metric

(3.27) has a smooth limit and it is a direct product of time and a D = 2n Ricci-flat metric

ds22n

=

U W

r2

dr2

+

n
(r2 - b2i )(d2i + 2i d2i ) -
i=1

 U

(

n i=1

2i di)2

,

n
W = (r2 - b2i ) -  ,
i=1

U

=

n
(r2
i=1

-

b2i )

n j=1

2j r2 - b2j

.

(4.10)

The curvature power-law singularity is at U = 0, which can be avoided if the geodesics complete in the r region r  [r0, ) where W (r0) = 0. There are n + 1 degenerate surfaces and the corresponding null Killing vectors are

r = r0 : i = 0 :

0

=

n i=1

j(r02 - b2j ) P (r0)(r02 - b2i )

 i

,

i

=

 i

,

i = 1, 2, . . . , n .

(4.11)

Here P (r0) is an 2(n - 1)-order polynomial of r0 with the leading term as nr02(n-1). For

example, we have P

= 2r02

for n = 2 and P

=

3r04

+

1 2

(b41

+

b42

+

b43)

for

n

=

3.

All these

Killing vectors are scaled such that they have unit Euclidean surface gravity. Therefore

they must all generate 2 period to avoid conical singularities. We shall study the global

21

structure of these metrics in a future publication since these massless solutions are outside the scope of this paper. We expect all these metrics are Ricci-flat Kaher, locally the same as those BPS limits of Kerr-AdS-NUT solutions obtained in [26]. In particular when all bi's vanish, the metric reduces to the spatial section of (3.1) with g = 0, which is on a smooth manifold of Ricci-flat Kahler. In general, the metrics are cones of Einstein-Sasaki spaces in the asymptotic regions and isolated examples smooth metrics with higher cohomogeneity were found in [27, 28].

5 Euclidean AdS solitons with negative mass

For a Schwarzschild black hole, we can Wick rotate the time coordinate t so that the solution becomes a Euclidean-signatured soliton that is asymptotic to RD-1 S. For Kerr metrics or Kerr-(A)dS metrics, the reality condition requires that the rotation parameters ai become pure imaginary after the Wick rotation. In other words, we must have

t = i  , ai  i ai .

(5.1)

For positive cosmological constant, the resulting metric becomes compact and the absence of conical singularities on the Euclidean Killing horizons put strong constraints on the parameter spaces. Consequently the complete manifolds are classified by a set of integer values. This was done in general for Kerr-dS metrics in [7]. Einstein-Sasaki metrics Y pq [29] and more general Lpqr [30, 31] can also be constructed in this procedure.
In this section, we consider a negative or zero cosmological constant, and hence the manifolds are non-compact. An interesting phenomenon occurs in odd dimensions. Before the Wick rotation, we have 0 < i  1 for i, it follows from (2.34) and (2.28) that the mass are positive definite, provided that m > 0. Under ai  iai, we have

i = 1 + a2i g2  1 .

(5.2)

It follows from (2.28) that the mass for even dimensions remain positive definite. However,

in odd dimensions, the mass for Euclidean solitons can become negative provided that none

of the ai vanishes and they are all sufficiently large so that

n i=1

1 i

<

1 2

.

(5.3)

When the above bound is saturated, we obtain a massless soliton. Of course, when the

above bound is violated, we get solitons with positive mass. It is clear that the cosmological

22

constant g2 plays a crucial role in the above discussion and hence the solitons can only have negative mass for asymptotic AdS spacetimes.
To demonstrate this explicitly, we start with the cohomogeneity-one Kerr-AdS metric with all equal angular momenta. In five dimensions, the metric can be written as (2.1). We can perform Wick rotation and choose the parameters

t = i ,  = b > 0 ,  = -a < 0 .

(5.4)

In general D = 2n + 1 dimensions, we can start with (2.23) and perform Wick rotation and

set  = -b and  = a, we find that the Euclidean soliton is

ds2

=

dr2 f

+

f W

d 2

+

r2W





+

ab r2nW

d

2 + r2d2n-1 ,

f

=

(1 + g2r2)W

-

b r2(n-1)

,

W

=

1-

a r2n

,

(5.5)

where a > 0 and b > 0. If follows from (2.24) that we can define the "Euclidean mass",

given by

M

=

A2n-1 16

(2n - 1)b - g2a

.

(5.6)

The metric has a Killing horizon at r = r0 which is the largest real root of f . We can express b in terms of (r0, a), given by

b

=

1 r02

(1

+

g2r02)(r02n

-

a) .

(5.7)

The coordinate  then must have period



=

4 W (r0) f (r0)

,

(5.8)

 provided that we let    - ab/(r0W (r0)) d . Note that the condition b  0 implies

a  r02(n-1). It follows that there is a lower bound of the mass

M



-

A2n-1 16

g2r02n

.

(5.9)

(This should be compared to the Minkowski-signatured AdS soliton, whose mass has an

upper bound (3.20).) Thus mass can be also negative for Euclidean AdS solitons in odd

dimensions. In particular, the parameter region

(2n - 1)(1 + g2r02) 2n(1 + g2r02) - 1



a r02n



1

(5.10)

corresponds to 0  M  -g2r02n. Thus when the lower bound is saturated we have a massless soliton. When a is sufficiently small so that the above lower bound is violated,

23

then the mass becomes positive. It is worth commenting that in the extremal case where f has a double root, the mass is positive.
The existence of negative mass in Euclidean-signatured space is not uncommon. The Atiyah-Hitchin metric is a solution of the Euclidean Taub-NUT with negative mass [32,33], where the asymptotic region is R3  S. Analogous solutions exist also in higher dimensions [34].

6 Time machine with a dipole charge
In the previous sections, we have focused on the Einstein metrics with R = -2ng2 g in D = 2n + 1 dimensions. We now consider charged rotating solutions. Exact solutions of charged Kerr-AdS black holes in higher dimensions are known only in supergravities. In five dimensions, notable examples include ones in supergravities [35] and gauged supergravities [36, 37]. BPS solutions are somewhat simpler and global analysis indicates that both black holes or time machines can arise, see e.g. [10,3842]. In this section we consider the charged Kerr-AdS black hole in minimal gauged supergravity in five dimensions [36]. Soliton limits of this solution were studied in [43]. We consider a very different limit such that the resulting solution carries no electric charge, but only the magnetic dipole charge.

6.1 Asymptotic to AdS5

We follow the same parametrization of [36], and make redefinitions on the parameters as well as the coordinate r

a = a~ ,

b = ~b ,

m

=

1 2

4a~2~b2g6

,

q = -3gq~,

r = ir~ .

(6.1)

We then send the scaling parameter    and find that the charged Kerr-AdS metric

of [36] has a smooth limit. Dropping all the tildes, the solution can be written as

ds2

=

2 r

dr2

+

2 g2

d2

-

(abq - gr22dt)2 a2b2g2r24

+

r g22

2

A

=

+ sin2 

 cos2 2

3q 2



,

 

(r2

-

a2)

d1 ag

-

(r2

-

b2)

d2 bg

=

sin2 ag



d1

+

cos2 bg



d2

,

2
,

(6.2)

where

r = g2

(r2

-

a2)(r2

-

b2)

-

a2b2g4

-

q2 r2

,

 = a2 cos2  + b2 sin2  , 2 = r2 -  .

(6.3)

24

Under the limit (6.1) with   , the electric charge vanishes, but mass, angular momenta

are given by

M

=

-

1 8

g2

,

Ja

=

q 4ab2g3

,

Jb

=

q 4a2bg3

.

(6.4)

The rotating is generated by the magnetic flux whose strength is characterized by the

parameter q. When q = 0, the solution becomes static and reduces to (3.17). There is a

Euclidean Killing horizon at r = r0 for which r(r0) = 0 and the corresponding null vector



=

q2

+

abqr0 r04(2r02 - a2

-

b2)

1 g

 t

+

r02(r02 - bq

b2)

 1

+

r02(r02 - aq

a2)

 2

,

(6.5)

must generate 2 period to avoid conical singularity. The existence of naked CTCs can

be seen, for example,

from g11

which is obviously negative at r = r0

and  =

1 2

.

For

non-vanshing q, the existence of the Killing horizon is independent of the value and sign of

the constant . It follows (6.4) that the mass can be either positive or negative, without

upper or lower bounds. On the Killing horizon, there is a magnetic dipole charge, given by

D

=

1 8



F

=

1 8

3q

r0

1 ag(r02 -

b2)

+

2 bg(r02 -

a2)

.

(6.6)

The reason why dipole charge is consistent with a time machine is that the topology of the

Killing horizon is a time bundle over S2.

The solution becomes much simpler when b = a. Making coordinate transformations

1

=

1 2

(

- ) ,

2

=

1 2

(

+

) ,

r2 - a2 a2g2

=

r~2 ,



=

1 2

~

,

q = a3g3q~, (6.7)

and then dropping the tildes, we have

ds2 = -g2r2dt2 -

dt

+

q 2r2

3

2

+

dr2 f

+

1 4

W

r2

32

+

1 4

r2d22

,

W

=

1-

 r4

,

f

=

(1

+

g2r2)W

-

g2q2 r4

.



A=

3q 2r2

3

,

(6.8)

Mass and angular momentum are

M

=

-

1 8

g2

,

J

=

1 4

q

.

(6.9)

The solution reduces to the static soliton (3.6) when q = 0. In order for the spacetime to avoid curvature singularity at r = 0, there should be a Killing horizon at some r0 > 0 such that f (r0) = 0. Such a Killing horizon is guaranteed to exist if we have  > -g2q2). It follows that for given q, the mass of the solution has an upper bound, but no lower bound

M

<

1 8

g4

q2

.

(6.10)

25

This upper bound is analogous to (3.20).

It is clear that at the Killing horizon at f = 0, we must have W > 0. It follows that

there must be naked CTCs since

g

=

1 4g2

(f

-

W)

=

1 4

r2W

-

q2 r4

.

(6.11)

The manifold closes off at the Killing horizon provided that the null Killing vector on the

horizon



=

2r02(1

1 + g2r02 + g2r02)2 +

g4q2

q

 t

+

2r02(1

+

g2r02)

 

,

(6.12)

generates 2 period. Note that in this time machine, then mass can be both positive and

negative. The electric charge vanishes, but there is a magnetic dipole charge on the Killing

horizon



1

3q

D=

F=

8 r0

4r02

.

(6.13)

6.2 Asymptotic to flat spacetime

We can turn off the cosmological constant and the solution becomes

ds2 = -

dt

-

q 2r2

3

2

+

dr2 W

+

1 4

W

r232

+

1 4

r2d22

,



A

=

-

3q 2r2

3

.

(6.14)

This is a solution to field equations of five-dimensional minimal supergravity. The solution has zero mass but non-vanishing angular momentum

M = 0,

J

=

1 4

q

.

(6.15)

The dipole charge takes the same form as (6.13). The metric describes a constant time

bundle

over

the

EH

instanton,

where

the

null

Killing

vector

at

r

=

r0

=



1 4

,

namely



=

q 2r02

 t

+

 

,

(6.16)

must generate 2 period. Thus the spatial section is not asymptotic R4, but R4/Z2.

7 Conclusions
In this paper, we studied the properties of Kerr and Kerr-AdS metrics in D = 2n + 1 dimensions when they do not describe rotating black holes. We found that when the mass was negative and all angular momenta turned on, the metrics could describe smooth time machines where spacetime closes off on some Euclidean pseudo horizon, which is Minkowski signatured, a time bundle over some base space. The absence of conical singularity of
26

the degenerate surface of the horizon requires the periodic identification of the real time coordinate. Such negative-mass time machines can arise for both asymptotically-flat or AdS spacetimes. We also constructed analogous time machines in gauged and ungauged minimal supergravity in five dimensions, where the time machines carry no electric but dipole charges.
Turning off the angular momenta appropriately, the aforementioned AdS time machines reduce to static solitons with negative mass. Furthermore, Euclideanization of Kerr-AdS metrics in odd dimensions can also lead to solitons with negative mass. For those that are solutions to Einstein's vacuum field equations with or without a cosmological constant, the absence of any singularity implies that the origin of the spacetime curvature is purely gravitational without any matter energy-momentum tensor. This is very different from Schwarzschild or Kerr black holes where singular matter source is located at the singularity. Thus our solutions are the manifestations of pure-gravity states. Such states are not unusual in Euclidean signatured gravity; they are described by gravitational instantons. Our work demonstrates that pure gravitational states can arise in Minkowski signatured gravity in D = 2n + 1. In addition, we find that taking the cosmological constant to zero, the AdS solitons solutions reduce to a class of Ricci-flat Kahler metrics in D = 2n dimensions.
Time machines are not unusual in supergravities where BPS time machines have been constructed. What is unusual is perhaps that all these solutions carry negative energies. It is thus of interest to examine the positive-mass conjecture. Having naked CTCs can be perfectly consistent with the energy conditions. In fact the naked CTCs in Godel-type metrics [44] emerge precisely because of the null-energy condition [45].
Positive-mass conjecture states that mass of asymptotically Minkowski spacetime is nonnegative. In our time-machine solutions, the time is required to be periodic. Although the asymptotic spacetime is flat for the  = 0 solutions, it is not quite Minkowski, where time is isomorphic to a real line. For the AdS solitons with negative mass, the EH instaton-like requirement of the period of  coordinate implies that the asymptotic spacetime is AdS/Zk rather than AdS.
Concrete examples of violating the positive-mass conjecture are perhaps those negativemass AdS time machines. This is because in the flat-spacetime embedding of AdS, time in global coordinates are already periodic. The further periodic identification of the null Killing vector on the Euclidean pseudo horizon can be perfectly consistent with the time period of global AdS provided that the constraint (2.16) is satisfied. This implies that the mass and angular momenta are discretized and are functions of rational numbers. This
27

phenomenon is analogous to the discretization of compact manifolds. It can be argued that in the "real world setting," spacetime configurations with discretized mass and angular momentum are so fine tuned and hence it is unlikely for the time machine to be created. Of course, one can hardly call the AdS2n+1 spacetime as the real world. On the other hand, the discrete nature of the time-machine configurations suggests topological structures that imply that these solutions, although having negative mass, are stable.1 It is of great interest to investigate the corresponding states in the boundary conformal field theory.
Acknowledgement
We are grateful to Jianxin Lu, Chris Pope, Yi Wang, Zhao-Long Wang and Yu-Liang Wu for useful discussions. The work is supported in part by NSFC grants NO. 11475024, NO. 11175269 and NO. 11235003.
References
[1] R.P. Kerr, Gravitational field of a spinning mass as an example of algebraically special metrics, Phys. Rev. Lett. 11, 237 (1963). doi:10.1103/PhysRevLett.11.237
[2] K. Schwarzschild, On the gravitational field of a mass point according to Einstein's theory, Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys. ) 1916, 189 (1916) [physics/9905030].
[3] B. Carter, Hamilton-Jacobi and Schrodinger separable solutions of Einstein's equations, Commun. Math. Phys. 10, 280 (1968).
[4] R.C. Myers and M.J. Perry, Black holes in higher dimensional space-times, Annals Phys. 172, 304 (1986). doi:10.1016/0003-4916(86)90186-7
[5] S.W. Hawking, C.J. Hunter and M. Taylor, Rotation and the AdS/CFT correspondence, Phys. Rev. D 59, 064005 (1999) doi:10.1103/PhysRevD.59.064005 [hep-th/9811056].
[6] J.M. Maldacena, The Large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)] doi:10. 1023/A:1026654312961 [hep-th/9711200].
1We are grateful to Yi Wang for pointing this out.
28

[7] G.W. Gibbons, H. Lu, D.N. Page and C.N. Pope, The General Kerr-de Sitter metrics in all dimensions, J. Geom. Phys. 53, 49 (2005) doi:10.1016/j.geomphys.2004.05.001 [hep-th/0404008].
[8] G.W. Gibbons, H. Lu, D.N. Page and C.N. Pope, Rotating black holes in higher dimensions with a cosmological constant, Phys. Rev. Lett. 93, 171102 (2004) doi:10.1103/PhysRevLett.93.171102 [hep-th/0409155].
[9] W. Chen, H. Lu and C.N. Pope, Kerr-de Sitter black holes with NUT charges, Nucl. Phys. B 762, 38 (2007) doi:10.1016/j.nuclphysb.2006.07.022 [hep-th/0601002].
[10] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Rotating black holes in gauged supergravities: Thermodynamics, supersymmetric limits, topological solitons and time machines," hep-th/0504080.
[11] R. Clarkson and R.B. Mann, Eguchi-Hanson solitons in odd dimensions, Class. Quant. Grav. 23, 1507 (2006) doi:10.1088/0264-9381/23/5/005 [hep-th/0508200].
[12] R. Clarkson and R.B. Mann, Soliton solutions to the Einstein equations in five dimensions, Phys. Rev. Lett. 96, 051104 (2006) doi:10.1103/PhysRevLett.96.051104 [hep-th/0508109].
[13] T. Eguchi and A.J. Hanson, Asymptotically flat selfdual solutions to Euclidean gravity, Phys. Lett. 74B, 249 (1978). doi:10.1016/0370-2693(78)90566-X
[14] G.W. Gibbons and C.A.R. Herdeiro, Supersymmetric rotating black holes and causality violation, Class. Quant. Grav. 16, 3619 (1999) doi:10.1088/0264-9381/16/11/311 [hep-th/9906098].
[15] M. Banados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett. 69, 1849 (1992) doi:10.1103/PhysRevLett.69.1849 [hep-th/9204099].
[16] G.W. Gibbons, M.J. Perry and C.N. Pope, The First law of thermodynamics for Kerr-anti-de Sitter black holes, Class. Quant. Grav. 22, 1503 (2005) doi:10.1088/02649381/22/9/002 [hep-th/0408217].
[17] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Supersymmetric nonsingular fractional D2-branes and NS-NS 2-branes, Nucl. Phys. B 606, 18 (2001) doi:10.1016/S05503213(01)00236-X [hep-th/0101096].
29

[18] H. Lu, D.N. Page and C.N. Pope, New inhomogeneous Einstein metrics on sphere bundles over Einstein-Kahler manifolds, Phys. Lett. B 593, 218 (2004) doi:10.1016/ j.physletb.2004.04.068 [hep-th/0403079].
[19] H. Cebeci, O. Sarioglu and B. Tekin, Negative mass solitons in gravity, Phys. Rev. D 73, 064020 (2006) doi:10.1103/PhysRevD.73.064020 [hep-th/0602117].
[20] M. Cvetic, G.W. Gibbons, H. Lu and C.N. Pope, Ricci flat metrics, harmonic forms and brane resolutions, Commun. Math. Phys. 232, 457 (2003) doi:10.1007/s00220-0020730-3 [hep-th/0012011].
[21] D. Martelli and J. Sparks, Toric Sasaki-Einstein metrics on S2  S3, Phys. Lett. B 621, 208 (2005) doi:10.1016/j.physletb.2005.06.059 [hep-th/0505027].
[22] D.N. Page, A physical picture of the K3 gravitational instanton, Phys. Lett. 80B, 55 (1978). doi:10.1016/0370-2693(78)90305-2
[23] J.F. Plebanski, A class of solutions of Einstein-Maxwell equations, Ann. Phys. 90, 196 (1975).
[24] G.W. Gibbons and S.W. Hawking, Gravitational multi-instantons, Phys. Lett. 78B, 430 (1978). doi:10.1016/0370-2693(78)90478-1
[25] G.W. Gibbons and S.W. Hawking, Classification of gravitational instanton symmetries, Commun. Math. Phys. 66, 291 (1979). doi:10.1007/BF01197189
[26] W. Chen, H. Lu and C.N. Pope, General Kerr-NUT-AdS metrics in all dimensions, Class. Quant. Grav. 23, 5323 (2006), hep-th/0604125 doi:10.1088/0264-9381/23/17/ 013.
[27] T. Oota and Y. Yasui, Explicit toric metric on resolved Calabi-Yau cone, Phys. Lett. B 639, 54 (2006) doi:10.1016/j.physletb.2006.06.021 [hep-th/0605129].
[28] H. Lu and C.N. Pope, Resolutions of cones over Einstein-Sasaki spaces, Nucl. Phys. B 782, 171 (2007) doi:10.1016/j.nuclphysb.2007.04.017 [hep-th/0605222].
[29] J.P. Gauntlett, D. Martelli, J. Sparks and D. Waldram, Sasaki-Einstein metrics on S2S3, Adv. Theor. Math. Phys. 8, no. 4, 711 (2004) doi:10.4310/ATMP.2004.v8.n4.a3 [hep-th/0403002].
30

[30] M. Cvetic, H. Lu, D.N. Page and C.N. Pope, New Einstein-Sasaki spaces in five and higher dimensions, Phys. Rev. Lett. 95, 071101 (2005) doi:10.1103/PhysRevLett. 95.071101 [hep-th/0504225].
[31] M. Cvetic, H. Lu, D.N. Page and C.N. Pope, New Einstein-Sasaki and Einstein spaces from Kerr-de Sitter, JHEP 0907, 082 (2009) doi:10.1088/1126-6708/2009/07/082 [hep-th/0505223].
[32] M.F. Atiyah and N.J. Hitchin, Low-energy scattering of nonabelian monopoles, Phys. Lett. A 107, 21 (1985). doi:10.1016/0375-9601(85)90238-5
[33] G.W. Gibbons and N.S. Manton, Classical and quantum dynamics of BPS monopoles, Nucl. Phys. B 274, 183 (1986). doi:10.1016/0550-3213(86)90624-3
[34] M. Cvetic, G.W. Gibbons, H. Lu and C. N. Pope, Orientifolds and slumps in G2 and spin(7) metrics, Annals Phys. 310, 265 (2004) doi:10.1016/j.aop.2003.10.004 [hep-th/0111096].
[35] M. Cvetic and D. Youm, General rotating five-dimensional black holes of toroidally compactified heterotic string, Nucl. Phys. B 476, 118 (1996) doi:10.1016/0550-3213(96) 00355-0 [hep-th/9603100].
[36] Z.-W. Chong, M. Cvetic, H. Lu and C. N. Pope, General non-extremal rotating black holes in minimal five-dimensional gauged supergravity, Phys. Rev. Lett. 95, 161301 (2005) doi:10.1103/PhysRevLett.95.161301 [hep-th/0506029].
[37] S.Q. Wu, General nonextremal rotating charged AdS black holes in five-dimensional U (1)3 gauged supergravity: a simple construction method, Phys. Lett. B 707, 286 (2012) doi:10.1016/j.physletb.2011.12.031 [arXiv:1108.4159 [hep-th]].
[38] J.C. Breckenridge, R.C. Myers, A.W. Peet and C. Vafa, D-branes and spinning black holes, Phys. Lett. B 391, 93 (1997) doi:10.1016/S0370-2693(96)01460-8 [hep-th/9602065].
[39] D. Klemm and W.A. Sabra, Charged rotating black holes in 5-D Einstein-Maxwell (A)dS gravity, Phys. Lett. B 503, 147 (2001) doi:10.1016/S0370-2693(01)00181-2 [hep-th/0010200].
[40] D. Klemm and W.A. Sabra, General (anti-)de Sitter black holes in five-dimensions, JHEP 0102, 031 (2001) doi:10.1088/1126-6708/2001/02/031 [hep-th/0011016].
31

[41] J.P. Gauntlett, J.B. Gutowski, C.M. Hull, S. Pakis and H.S. Reall, All supersymmetric solutions of minimal supergravity in five-dimensions, Class. Quant. Grav. 20, 4587 (2003) doi:10.1088/0264-9381/20/21/005 [hep-th/0209114].
[42] J.B. Gutowski and H.S. Reall, Supersymmetric AdS5 black holes, JHEP 0402, 006 (2004) doi:10.1088/1126-6708/2004/02/006 [hep-th/0401042].
[43] G. Compere, K. Copsey, S. de Buyl and R.B. Mann, Solitons in five-dimensional minimal supergravity: local charge, exotic ergoregions, and violations of the BPS bound, JHEP 0912, 047 (2009) doi:10.1088/1126-6708/2009/12/047 [arXiv:0909.3289 [hepth]].
[44] K. Godel, An example of a new type of cosmological solutions of Einstein's field equations of graviation, Rev. Mod. Phys. 21, 447 (1949). doi:10.1103/RevModPhys.21.447
[45] S.L. Li, X.H. Feng, H. Wei and H. Lu, Godel universe from string theory, arXiv:1612. 02069 [hep-th].
32