1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 3788 3789 3790 3791 3792 3793 3794 3795 3796 3797 3798 3799 3800 3801 3802 3803 3804 3805 3806 3807 3808 3809 3810 3811 3812 3813 3814 3815 3816 3817 3818 3819 3820 3821 3822 3823 3824 3825 3826 3827 3828 3829 3830 3831 3832 3833 3834 3835 3836 3837 3838 3839 3840 3841 3842 3843 3844 3845 3846 3847 3848 3849 3850 3851 3852 3853 3854 3855 3856 3857 3858 3859 3860 3861 3862 3863 3864 3865 3866 3867 3868 3869 3870 3871 3872 3873 3874 3875 3876 3877 3878 3879 3880 3881 3882 3883 3884 3885 3886 3887 3888 3889 3890 3891 3892 3893 3894 3895 3896 3897 3898 3899 3900 3901 3902 3903 3904 3905 3906 3907 3908 3909 3910 3911 3912 3913 3914 3915 3916 3917 3918 3919 3920 3921 3922 3923 3924 3925 3926 3927 3928 3929 3930 3931 3932 3933 3934 3935 3936 3937 3938 3939 3940 3941 3942 3943 3944 3945 3946 3947 3948 3949 3950 3951 3952 3953 3954 3955 3956 3957 3958 3959 3960 3961 3962 3963 3964 3965 3966 3967 3968 3969 3970 3971 3972 3973 3974 3975 3976 3977 3978 3979 3980 3981 3982 3983 3984 3985 3986 3987 3988 3989 3990 3991 3992 3993 3994 3995 3996 3997 3998 3999 4000 4001 4002 4003 4004 4005 4006 4007 4008 4009 4010 4011 4012 4013 4014 4015 4016 4017 4018 4019 4020 4021 4022 4023 4024 4025 4026 4027 4028 4029 4030 4031 4032 4033 4034 4035 4036 4037 4038 4039 4040 4041 4042 4043 4044 4045 4046 4047 4048 4049 4050 4051 4052 4053 4054 4055 4056 4057 4058 4059 4060 4061 4062 4063 4064 4065 4066 4067 4068 4069 4070 4071 4072 4073 4074 4075 4076 4077 4078 4079 4080 4081 4082 4083 4084 4085 4086 4087 4088 4089 4090 4091 4092 4093 4094 4095 4096 4097 4098 4099 4100 4101 4102 4103 4104 4105 4106 4107 4108 4109 4110 4111 4112 4113 4114 4115 4116 4117 4118 4119 4120 4121 4122 4123 4124 4125 4126 4127 4128 4129 4130 4131 4132 4133 4134 4135 4136 4137 4138 4139 4140 4141 4142 4143 4144 4145 4146 4147 4148 4149 4150 4151 4152 4153 4154 4155 4156 4157 4158 4159 4160 4161 4162 4163 4164 4165 4166 4167 4168 4169 4170 4171 4172 4173 4174 4175 4176 4177 4178 4179 4180 4181 4182 4183 4184 4185 4186 4187 4188 4189 4190 4191 4192 4193 4194 4195 4196 4197 4198 4199 4200 4201 4202 4203 4204 4205 4206 4207 4208 4209 4210 4211 4212 4213 4214 4215 4216 4217 4218 4219 4220 4221 4222 4223 4224 4225 4226 4227 4228 4229 4230 4231 4232 4233 4234 4235 4236 4237 4238 4239 4240 4241 4242 4243 4244 4245 4246 4247 4248 4249 4250 4251 4252 4253 4254 4255 4256 4257 4258 4259 4260 4261 4262 4263 4264 4265 4266 4267 4268 4269 4270 4271 4272 4273 4274 4275 4276 4277 4278 4279 4280 4281 4282 4283 4284 4285 4286 4287 4288 4289 4290 4291 4292 4293 4294 4295 4296 4297 4298 4299 4300 4301 4302 4303 4304 4305 4306 4307 4308 4309 4310 4311 4312 4313 4314 4315 4316 4317 4318 4319 4320 4321 4322 4323 4324 4325 4326 4327 4328 4329 4330 4331 4332 4333 4334 4335 4336 4337 4338 4339 4340 4341 4342 4343 4344 4345 4346 4347 4348 4349 4350 4351 4352 4353 4354 4355 4356 4357 4358 4359 4360 4361 4362 4363 4364 4365 4366 4367 4368 4369 4370 4371 4372 4373 4374 4375 4376 4377 4378 4379 4380 4381 4382 4383 4384 4385 4386 4387 4388 4389 4390 4391 4392 4393 4394 4395 4396 4397 4398 4399 4400 4401 4402 4403 4404 4405 4406 4407 4408 4409 4410 4411 4412 4413 4414 4415 4416 4417 4418 4419 4420 4421 4422 4423 4424 4425 4426 4427 4428 4429 4430 4431 4432 4433 4434 4435 4436 4437 4438 4439 4440 4441 4442 4443 4444 4445 4446 4447 4448 4449 4450 4451 4452 4453 4454 4455 4456 4457 4458 4459 4460 4461 4462 4463 4464 4465 4466 4467 4468 4469 4470 4471 4472 4473 4474 4475 4476 4477 4478 4479 4480 4481 4482 4483 4484 4485 4486 4487 4488 4489 4490 4491 4492 4493 4494 4495 4496 4497 4498 4499 4500 4501 4502 4503 4504 4505 4506 4507 4508 4509 4510 4511 4512 4513 4514 4515 4516 4517 4518 4519 4520 4521 4522 4523 4524 4525 4526 4527 4528 4529 4530 4531 4532 4533 4534 4535 4536 4537 4538 4539 4540 4541 4542 4543 4544 4545 4546 4547 4548 4549 4550 4551 4552 4553 4554 4555 4556 4557 4558 4559 4560 4561 4562 4563 4564 4565 4566 4567 4568 4569 4570 4571 4572 4573 4574 4575 4576 4577 4578 4579 4580 4581 4582 4583 4584 4585 4586 4587 4588 4589 4590 4591 4592 4593 4594 4595 4596 4597 4598 4599 4600 4601 4602 4603 4604 4605 4606 4607 4608 4609 4610 4611 4612 4613 4614 4615 4616 4617 4618 4619 4620 4621 4622 4623 4624 4625 4626 4627 4628 4629 4630 4631 4632 4633 4634 4635 4636 4637 4638 4639 4640 4641 4642 4643 4644 4645 4646 4647 4648 4649 4650 4651 4652 4653 4654 4655 4656 4657 4658 4659 4660 4661 4662 4663 4664 4665 4666 4667 4668 4669 4670 4671 4672 4673 4674 4675 4676 4677 4678 4679 4680 4681 4682 4683 4684 4685 4686 4687 4688 4689 4690 4691 4692 4693 4694 4695 4696 4697 4698 4699 4700 4701 4702 4703 4704 4705 4706 4707 4708 4709 4710 4711 4712 4713 4714 4715 4716 4717 4718 4719 4720 4721 4722 4723 4724 4725 4726 4727 4728 4729 4730 4731 4732 4733 4734 4735 4736 4737 4738 4739 4740 4741 4742 4743 4744 4745 4746 4747 4748 4749 4750 4751 4752 4753 4754 4755 4756 4757 4758 4759 4760 4761 4762 4763 4764 4765 4766 4767 4768 4769 4770 4771 4772 4773 4774 4775 4776 4777 4778 4779 4780 4781 4782 4783 4784 4785 4786 4787 4788 4789 4790 4791 4792 4793 4794 4795 4796 4797 4798 4799 4800 4801 4802 4803 4804 4805 4806 4807 4808 4809 4810 4811 4812 4813 4814 4815 4816 4817 4818 4819 4820 4821 4822 4823 4824 4825 4826 4827 4828 4829 4830 4831 4832 4833 4834 4835 4836 4837 4838 4839 4840 4841 4842 4843 4844 4845 4846 4847 4848 4849 4850 4851 4852 4853 4854 4855 4856 4857 4858 4859 4860 4861 4862 4863 4864 4865 4866 4867 4868 4869 4870 4871 4872 4873 4874 4875 4876 4877 4878 4879 4880 4881 4882 4883 4884 4885 4886 4887 4888 4889 4890 4891 4892 4893 4894 4895 4896 4897 4898 4899 4900 4901 4902 4903 4904 4905 4906 4907 4908 4909 4910 4911 4912 4913 4914 4915 4916 4917 4918 4919 4920 4921 4922 4923 4924 4925 4926 4927 4928 4929 4930 4931 4932 4933 4934 4935 4936 4937 4938 4939 4940 4941 4942 4943 4944 4945 4946 4947 4948 4949 4950 4951 4952 4953 4954 4955 4956 4957 4958 4959 4960 4961 4962 4963 4964 4965 4966 4967 4968 4969 4970 4971 4972 4973 4974 4975 4976 4977 4978 4979 4980 4981 4982 4983 4984 4985 4986 4987 4988 4989 4990 4991 4992 4993 4994 4995 4996 4997 4998 4999 5000 5001 5002 5003 5004 5005 5006 5007 5008 5009 5010 5011 5012 5013 5014 5015 5016 5017 5018 5019 5020 5021 5022 5023 5024 5025 5026 5027 5028 5029 5030 5031 5032 5033 5034 5035 5036 5037 5038 5039 5040 5041 5042 5043 5044 5045 5046 5047 5048 5049 5050 5051 5052 5053 5054 5055 5056 5057 5058 5059 5060 5061 5062 5063 5064 5065 5066 5067 5068 5069 5070 5071 5072 5073 5074 5075 5076 5077 5078 5079 5080 5081 5082 5083 5084 5085 5086 5087 5088 5089 5090 5091 5092 5093 5094 5095 5096 5097 5098 5099 5100 5101 5102 5103 5104 5105 5106 5107 5108 5109 5110 5111 5112 5113 5114 5115 5116 5117 5118 5119 5120 5121 5122 5123 5124 5125 5126 5127 5128 5129 5130 5131 5132 5133 5134 5135 5136 5137 5138 5139 5140 5141 5142 5143 5144 5145 5146 5147 5148 5149 5150 5151 5152 5153 5154 5155 5156 5157 5158 5159 5160 5161 5162 5163 5164 5165 5166 5167 5168 5169 5170 5171 5172 5173 5174 5175 5176 5177 5178 5179 5180 5181 5182 5183 5184 5185 5186 5187 5188 5189 5190 5191 5192 5193 5194 5195 5196 5197 5198 5199 5200 5201 5202 5203 5204 5205 5206 5207 5208 5209 5210 5211 5212 5213 5214 5215 5216 5217 5218 5219 5220 5221 5222 5223 5224 5225 5226 5227 5228 5229 5230 5231 5232 5233 5234 5235 5236 5237 5238 5239 5240 5241 5242 5243 5244 5245 5246 5247 5248 5249 5250 5251 5252 5253 5254 5255 5256 5257 5258 5259 5260 5261 5262 5263 5264 5265 5266 5267 5268 5269 5270 5271 5272 5273 5274 5275 5276 5277 5278 5279 5280 5281 5282 5283 5284 5285 5286 5287 5288 5289 5290 5291 5292 5293 5294 5295 5296 5297 5298 5299 5300 5301 5302 5303 5304 5305 5306 5307 5308 5309 5310 5311 5312 5313 5314 5315 5316 5317 5318 5319 5320 5321 5322 5323 5324 5325 5326 5327 5328 5329 5330 5331 5332 5333 5334 5335 5336 5337 5338 5339 5340 5341 5342 5343 5344 5345 5346 5347 5348 5349 5350 5351 5352 5353 5354 5355 5356 5357 5358 5359 5360 5361 5362 5363 5364 5365 5366 5367 5368 5369 5370 5371 5372 5373 5374 5375 5376 5377 5378 5379 5380 5381 5382 5383 5384 5385 5386 5387 5388 5389 5390 5391 5392 5393 5394 5395 5396 5397 5398 5399 5400 5401 5402 5403 5404 5405 5406 5407 5408 5409 5410 5411 5412 5413 5414 5415 5416 5417 5418 5419 5420 5421 5422 5423 5424 5425 5426 5427 5428 5429 5430 5431 5432 5433 5434 5435 5436 5437 5438 5439 5440 5441 5442 5443 5444 5445 5446 5447 5448 5449 5450 5451 5452 5453 5454 5455 5456 5457 5458 5459 5460 5461 5462 5463 5464 5465 5466 5467 5468 5469 5470 5471 5472 5473 5474 5475 5476 5477 5478 5479 5480 5481 5482 5483 5484 5485 5486 5487 5488 5489 5490 5491 5492 5493 5494 5495 5496 5497 5498 5499 5500 5501 5502 5503 5504 5505 5506 5507 5508 5509 5510 5511 5512 5513 5514 5515 5516 5517 5518 5519 5520 5521 5522 5523 5524 5525 5526 5527 5528 5529 5530 5531 5532 5533 5534 5535 5536 5537 5538 5539 5540 5541 5542 5543 5544 5545 5546 5547 5548 5549 5550 5551 5552 5553 5554 5555 5556 5557 5558 5559 5560 5561 5562 5563 5564 5565 5566 5567 5568 5569 5570 5571 5572 5573 5574 5575 5576 5577 5578 5579 5580 5581 5582 5583 5584 5585 5586 5587 5588 5589 5590 5591 5592 5593 5594 5595 5596 5597 5598 5599 5600 5601 5602 5603 5604 5605 5606 5607 5608 5609 5610 5611 5612 5613 5614 5615 5616 5617 5618 5619 5620 5621 5622 5623 5624 5625 5626 5627 5628 5629 5630 5631 5632 5633 5634 5635 5636 5637 5638 5639 5640 5641 5642 5643 5644 5645 5646 5647 5648 5649 5650 5651 5652 5653 5654 5655 5656 5657 5658 5659 5660 5661 5662 5663 5664 5665 5666 5667 5668 5669 5670 5671 5672 5673 5674 5675 5676 5677 5678 5679 5680 5681 5682 5683 5684 5685 5686 5687 5688 5689 5690 5691 5692 5693 5694 5695 5696 5697 5698 5699 5700 5701 5702 5703 5704 5705 5706 5707 5708 5709 5710 5711 5712 5713 5714 5715 5716 5717 5718 5719 5720 5721 5722 5723 5724 5725 5726 5727 5728 5729 5730 5731 5732 5733 5734 5735 5736 5737 5738 5739 5740 5741 5742 5743 5744 5745 5746 5747 5748 5749 5750 5751 5752 5753 5754 5755 5756 5757 5758 5759 5760 5761 5762 5763 5764 5765 5766 5767 5768 5769 5770 5771 5772 5773 5774 5775 5776 5777 5778 5779 5780 5781 5782 5783 5784 5785 5786 5787 5788 5789 5790 5791 5792 5793 5794 5795 5796 5797 5798 5799 5800 5801 5802 5803 5804 5805 5806 5807 5808 5809 5810 5811 5812 5813 5814 5815 5816 5817 5818 5819 5820 5821 5822 5823 5824 5825 5826 5827 5828 5829 5830 5831 5832 5833 5834 5835 5836 5837 5838 5839 5840 5841 5842 5843 5844 5845 5846 5847 5848 5849 5850 5851 5852 5853 5854 5855 5856 5857 5858 5859 5860 5861 5862 5863 5864 5865 5866 5867 5868 5869 5870 5871 5872 5873 5874 5875 5876 5877 5878 5879 5880 5881 5882 5883 5884 5885 5886 5887 5888 5889 5890 5891 5892 5893 5894 5895 5896 5897 5898 5899 5900 5901 5902 5903 5904 5905 5906 5907 5908 5909 5910 5911 5912 5913 5914 5915 5916 5917 5918 5919 5920 5921 5922 5923 5924 5925 5926 5927 5928 5929 5930 5931 5932 5933 5934 5935 5936 5937 5938 5939 5940 5941 5942 5943 5944 5945 5946 5947 5948 5949 5950 5951 5952 5953 5954 5955 5956 5957 5958 5959 5960 5961 5962 5963 5964 5965 5966 5967 5968 5969 5970 5971 5972 5973 5974 5975 5976 5977 5978 5979 5980 5981 5982 5983 5984 5985 5986 5987 5988 5989 5990 5991 5992 5993 5994 5995 5996 5997 5998 5999 6000 6001 6002 6003 6004 6005 6006 6007 6008 6009 6010 6011 6012 6013 6014 6015 6016 6017 6018 6019 6020 6021 6022 6023 6024 6025 6026 6027 6028 6029 6030 6031 6032 6033 6034 6035 6036 6037 6038 6039 6040 6041 6042 6043 6044 6045 6046 6047 6048 6049 6050 6051 6052 6053 6054 6055 6056 6057 6058 6059 6060 6061 6062 6063 6064 6065 6066 6067 6068 6069 6070 6071 6072 6073 6074 6075 6076 6077 6078 6079 6080 6081 6082 6083 6084 6085 6086 6087 6088 6089 6090 6091 6092 6093 6094 6095 6096 6097 6098 6099 6100 6101 6102 6103 6104 6105 6106 6107 6108 6109 6110 6111 6112 6113 6114 6115 6116 6117 6118 6119 6120 6121 6122 6123 6124 6125 6126 6127 6128 6129 6130 6131 6132 6133 6134 6135 6136 6137 6138 6139 6140 6141 6142 6143 6144 6145 6146 6147 6148 6149 6150 6151 6152 6153 6154 6155 6156 6157 6158 6159 6160 6161 6162 6163 6164 6165 6166 6167 6168 6169 6170 6171 6172 6173 6174 6175 6176 6177 6178 6179 6180 6181 6182 6183 6184 6185 6186 6187 6188 6189 6190 6191 6192 6193 6194 6195 6196 6197 6198 6199 6200 6201 6202 6203 6204 6205 6206 6207 6208 6209 6210 6211 6212 6213 6214 6215 6216 6217 6218 6219 6220 6221 6222 6223 6224 6225 6226 6227 6228 6229 6230 6231 6232 6233 6234 6235 6236 6237 6238 6239 6240 6241 6242 6243 6244 6245 6246 6247 6248 6249 6250 6251 6252 6253 6254 6255 6256 6257 6258 6259 6260 6261 6262 6263 6264 6265 6266 6267 6268 6269 6270 6271 6272 6273 6274 6275 6276 6277 6278 6279 6280 6281 6282 6283 6284 6285 6286 6287 6288 6289 6290 6291 6292 6293 6294 6295 6296 6297 6298 6299 6300 6301 6302 6303 6304 6305 6306 6307 6308 6309 6310 6311 6312 6313 6314 6315 6316 6317 6318 6319 6320 6321 6322 6323 6324 6325 6326 6327 6328 6329 6330 6331 6332 6333 6334 6335 6336 6337 6338 6339 6340 6341 6342 6343 6344 6345 6346 6347 6348 6349 6350 6351 6352 6353 6354 6355 6356 6357 6358 6359 6360 6361 6362 6363 6364 6365 6366 6367 6368 6369 6370 6371 6372 6373 6374 6375 6376 6377 6378 6379 6380 6381 6382 6383 6384 6385 6386 6387 6388 6389 6390 6391 6392 6393 6394 6395 6396 6397 6398 6399 6400 6401 6402 6403 6404 6405 6406 6407 6408 6409 6410 6411 6412 6413 6414 6415 6416 6417 6418 6419 6420 6421 6422 6423 6424 6425 6426 6427 6428 6429 6430 6431 6432 6433 6434 6435 6436 6437 6438 6439 6440 6441 6442 6443 6444 6445 6446 6447 6448 6449 6450 6451 6452 6453 6454 6455 6456 6457 6458 6459 6460 6461 6462 6463 6464 6465 6466 6467 6468 6469 6470 6471 6472 6473 6474 6475 6476 6477 6478 6479 6480 6481 6482 6483 6484 6485 6486 6487 6488 6489 6490 6491 6492 6493 6494 6495 6496 6497 6498 6499 6500 6501 6502 6503 6504 6505 6506 6507 6508 6509 6510 6511 6512 6513 6514 6515 6516 6517 6518 6519 6520 6521 6522 6523 6524 6525 6526 6527 6528 6529 6530 6531 6532 6533 6534 6535 6536 6537 6538 6539 6540 6541 6542 6543 6544 6545 6546 6547 6548 6549 6550 6551 6552 6553 6554 6555 6556 6557 6558 6559 6560 6561 6562 6563 6564 6565 6566 6567 6568 6569 6570 6571 6572 6573 6574 6575 6576 6577 6578 6579 6580 6581 6582 6583 6584 6585 6586 6587 6588 6589 6590 6591 6592 6593 6594 6595 6596 6597 6598 6599 6600 6601 6602 6603 6604 6605 6606 6607 6608 6609 6610 6611 6612 6613 6614 6615 6616 6617 6618 6619 6620 6621 6622 6623 6624 6625 6626 6627 6628 6629 6630 6631 6632 6633 6634 6635 6636 6637 6638 6639 6640 6641 6642 6643 6644 6645 6646 6647 6648 6649 6650 6651 6652 6653 6654 6655 6656 6657 6658 6659 6660 6661 6662 6663 6664 6665 6666 6667 6668 6669 6670 6671 6672 6673 6674 6675 6676 6677 6678 6679 6680 6681 6682 6683 6684 6685 6686 6687 6688 6689 6690 6691 6692 6693 6694 6695 6696 6697 6698 6699 6700 6701 6702 6703 6704 6705 6706 6707 6708 6709 6710 6711 6712 6713 6714 6715 6716 6717 6718 6719 6720 6721 6722 6723 6724 6725 6726 6727 6728 6729 6730 6731 6732 6733 6734 6735 6736 6737 6738 6739 6740 6741 6742 6743 6744 6745 6746 6747 6748 6749 6750 6751 6752 6753 6754 6755 6756 6757 6758 6759 6760 6761 6762 6763 6764 6765 6766 6767 6768 6769 6770 6771 6772 6773 6774 6775 6776 6777 6778 6779 6780 6781 6782 6783 6784 6785 6786 6787 6788 6789 6790 6791 6792 6793 6794 6795 6796 6797 6798 6799 6800 6801 6802 6803 6804 6805 6806 6807 6808 6809 6810 6811 6812 6813 6814 6815 6816 6817 6818 6819 6820 6821 6822 6823 6824 6825 6826 6827 6828 6829 6830 6831 6832 6833 6834 6835 6836 6837 6838 6839 6840 6841 6842 6843 6844 6845 6846 6847 6848 6849 6850 6851 6852 6853 6854 6855 6856 6857 6858 6859 6860 6861 6862 6863 6864 6865 6866 6867 6868 6869 6870 6871 6872 6873 6874 6875 6876 6877 6878 6879 6880 6881 6882 6883 6884 6885 6886 6887 6888 6889 6890 6891 6892 6893 6894 6895 6896 6897 6898 6899 6900 6901 6902 6903 6904 6905 6906 6907 6908 6909 6910 6911 6912 6913 6914 6915 6916 6917 6918 6919 6920 6921 6922 6923 6924 6925 6926 6927 6928 6929 6930 6931 6932 6933 6934 6935 6936 6937 6938 6939 6940 6941 6942 6943 6944 6945 6946 6947 6948 6949 6950 6951 6952 6953 6954 6955 6956 6957 6958 6959 6960 6961 6962 6963 6964 6965 6966 6967 6968 6969 6970 6971 6972 6973 6974 6975 6976 6977 6978 6979 6980 6981 6982 6983 6984 6985 6986 6987 6988 6989 6990 6991 6992 6993 6994 6995 6996 6997 6998 6999 7000 7001 7002 7003 7004 7005 7006 7007 7008 7009 7010 7011 7012 7013 7014 7015 7016 7017 7018 7019 7020 7021 7022 7023 7024 7025 7026 7027 7028 7029 7030 7031 7032 7033 7034 7035 7036 7037 7038 7039 7040 7041 7042 7043 7044 7045 7046 7047 7048 7049 7050 7051 7052 7053 7054 7055 7056 7057 7058 7059 7060 7061 7062 7063 7064 7065 7066 7067 7068 7069 7070 7071 7072 7073 7074 7075 7076 7077 7078 7079 7080 7081 7082 7083 7084 7085 7086 7087 7088 7089 7090 7091 7092 7093 7094 7095 7096 7097 7098 7099 7100 7101 7102 7103 7104 7105 7106 7107 7108 7109 7110 7111 7112 7113 7114 7115 7116 7117 7118 7119 7120 7121 7122 7123 7124 7125 7126 7127 7128 7129 7130 7131 7132 7133 7134 7135 7136 7137 7138 7139 7140 7141 7142 7143 7144 7145 7146 7147 7148 7149 7150 7151 7152 7153 7154 7155 7156 7157 7158 7159 7160 7161 7162 7163 7164 7165 7166 7167 7168 7169 7170 7171 7172 7173 7174 7175 7176 7177 7178 7179 7180 7181 7182 7183 7184 7185 7186 7187 7188 7189 7190 7191 7192 7193 7194 7195 7196 7197 7198 7199 7200 7201 7202 7203 7204 7205 7206 7207 7208 7209 7210 7211 7212 7213 7214 7215 7216 7217 7218 7219 7220 7221 7222 7223 7224 7225 7226 7227 7228 7229 7230 7231 7232 7233 7234 7235 7236 7237 7238 7239 7240 7241 7242 7243 7244 7245 7246 7247 7248 7249 7250 7251 7252 7253 7254 7255 7256 7257 7258 7259 7260 7261 7262 7263 7264 7265 7266 7267 7268 7269 7270 7271 7272 7273 7274 7275 7276 7277 7278 7279 7280 7281 7282 7283 7284 7285 7286 7287 7288 7289 7290 7291 7292 7293 7294 7295 7296 7297 7298 7299 7300 7301 7302 7303 7304 7305 7306 7307 7308 7309 7310 7311 7312 7313 7314 7315 7316 7317 7318 7319 7320 7321 7322 7323 7324 7325 7326 7327 7328 7329 7330 7331 7332 7333 7334 7335 7336 7337 7338 7339 7340 7341 7342 7343 7344 7345 7346 7347 7348 7349 7350 7351 7352 7353 7354 7355 7356 7357 7358 7359 7360 7361 7362 7363 7364 7365 7366 7367 7368 7369 7370 7371 7372 7373 7374 7375 7376 7377 7378 7379 7380 7381 7382 7383 7384 7385 7386 7387 7388 7389 7390 7391 7392 7393 7394 7395 7396 7397 7398 7399 7400 7401 7402 7403 7404 7405 7406 7407 7408 7409 7410 7411 7412 7413 7414 7415 7416 7417 7418 7419 7420 7421 7422 7423 7424 7425 7426 7427 7428 7429 7430 7431 7432 7433 7434 7435 7436 7437 7438 7439 7440 7441 7442 7443 7444 7445 7446 7447 7448 7449 7450 7451 7452 7453 7454 7455 7456 7457 7458 7459 7460 7461 7462 7463 7464 7465 7466 7467 7468 7469 7470 7471 7472 7473 7474 7475 7476 7477 7478 7479 7480 7481 7482 7483 7484 7485 7486 7487 7488 7489 7490 7491 7492 7493 7494 7495 7496 7497 7498 7499 7500 7501 7502 7503 7504 7505 7506 7507 7508 7509 7510 7511 7512 7513 7514 7515 7516 7517 7518 7519 7520 7521 7522 7523 7524 7525 7526 7527 7528 7529 7530 7531 7532 7533 7534 7535 7536 7537 7538 7539 7540 7541 7542 7543 7544 7545 7546 7547 7548 7549 7550 7551 7552 7553 7554 7555 7556 7557 7558 7559 7560 7561 7562 7563 7564 7565 7566 7567 7568 7569 7570 7571 7572 7573 7574 7575 7576 7577 7578 7579 7580 7581 7582 7583 7584 7585 7586 7587 7588 7589 7590 7591 7592 7593 7594 7595 7596 7597 7598 7599 7600 7601 7602 7603 7604 7605 7606 7607 7608 7609 7610 7611 7612 7613 7614 7615 7616 7617 7618 7619 7620 7621 7622 7623 7624 7625 7626 7627 7628 7629 7630 7631 7632 7633 7634 7635 7636 7637 7638 7639 7640 7641 7642 7643 7644 7645 7646 7647 7648 7649 7650 7651 7652 7653 7654 7655 7656 7657 7658 7659 7660 7661 7662 7663 7664 7665 7666 7667 7668 7669 7670 7671 7672 7673 7674 7675 7676 7677 7678 7679 7680 7681 7682 7683 7684 7685 7686 7687 7688 7689 7690 7691 7692 7693 7694 7695 7696 7697 7698 7699 7700 7701 7702 7703 7704 7705 7706 7707 7708 7709 7710 7711 7712 7713 7714 7715 7716 7717 7718 7719 7720 7721 7722 7723 7724 7725 7726 7727 7728 7729 7730 7731 7732 7733 7734 7735 7736 7737 7738 7739 7740 7741 7742 7743 7744 7745 7746 7747 7748 7749 7750 7751 7752 7753 7754 7755 7756 7757 7758 7759 7760 7761 7762 7763 7764 7765 7766 7767 7768 7769 7770 7771 7772 7773 7774 7775 7776 7777 7778 7779 7780 7781 7782 7783 7784 7785 7786 7787 7788 7789 7790 7791 7792 7793 7794 7795 7796 7797 7798 7799 7800 7801 7802 7803 7804 7805 7806 7807 7808 7809 7810 7811 7812 7813 7814 7815 7816 7817 7818 7819 7820 7821 7822 7823 7824 7825 7826 7827 7828 7829 7830 7831 7832 7833 7834 7835 7836 7837 7838 7839 7840 7841 7842 7843 7844 7845 7846 7847 7848 7849 7850 7851 7852 7853 7854 7855 7856 7857 7858 7859 7860 7861 7862 7863 7864 7865 7866 7867 7868 7869 7870 7871 7872 7873 7874 7875 7876 7877 7878 7879 7880 7881 7882 7883 7884 7885 7886 7887 7888 7889 7890 7891 7892 7893 7894 7895 7896 7897 7898 7899 7900 7901 7902 7903 7904 7905 7906 7907 7908 7909 7910 7911 7912 7913 7914 7915 7916 7917 7918 7919 7920 7921 7922 7923 7924 7925 7926 7927 7928 7929 7930 7931 7932 7933 7934 7935 7936 7937 7938 7939 7940 7941 7942 7943 7944 7945 7946 7947 7948 7949 7950 7951 7952 7953 7954 7955 7956 7957 7958 7959 7960 7961 7962 7963 7964 7965 7966 7967 7968 7969 7970 7971 7972 7973 7974 7975 7976 7977 7978 7979 7980 7981 7982 7983 7984 7985 7986 7987 7988 7989 7990 7991 7992 7993 7994 7995 7996 7997 7998 7999 8000 8001 8002 8003 8004 8005 8006 8007 8008 8009 8010 8011 8012 8013 8014 8015 8016 8017 8018 8019 8020 8021 8022 8023 8024 8025 8026 8027 8028 8029 8030 8031 8032 8033 8034 8035 8036 8037 8038 8039 8040 8041 8042 8043 8044 8045 8046 8047 8048 8049 8050 8051 8052 8053 8054 8055 8056 8057 8058 8059 8060 8061 8062 8063 8064 8065 8066 8067 8068 8069 8070 8071 8072 8073 8074 8075 8076 8077 8078 8079 8080 8081 8082 8083 8084 8085 8086 8087 8088 8089 8090 8091 8092 8093 8094 8095 8096 8097 8098 8099 8100 8101 8102 8103 8104 8105 8106 8107 8108 8109 8110 8111 8112 8113 8114 8115 8116 8117 8118 8119 8120 8121 8122 8123 8124 8125 8126 8127 8128 8129 8130 8131 8132 8133 8134 8135 8136 8137 8138 8139 8140 8141 8142 8143 8144 8145 8146 8147 8148 8149 8150 8151 8152 8153 8154 8155 8156 8157 8158 8159 8160 8161 8162 8163 8164 8165 8166 8167 8168 8169 8170 8171 8172 8173 8174 8175 8176 8177 8178 8179 8180 8181 8182 8183 8184 8185 8186 8187 8188 8189 8190 8191 8192 8193 8194 8195 8196 8197 8198 8199 8200 8201 8202 8203 8204 8205 8206 8207 8208 8209 8210 8211 8212 8213 8214 8215 8216 8217 8218 8219 8220 8221 8222 8223 8224 8225 8226 8227 8228 8229 8230 8231 8232 8233 8234 8235 8236 8237 8238 8239 8240 8241 8242 8243 8244 8245 8246 8247 8248 8249 8250 8251 8252 8253 8254 8255 8256 8257 8258 8259 8260 8261 8262 8263 8264 8265 8266 8267 8268 8269 8270 8271 8272 8273 8274 8275 8276 8277 8278 8279 8280 8281 8282 8283 8284 8285 8286 8287 8288 8289 8290 8291 8292 8293 8294 8295 8296 8297 8298 8299 8300 8301 8302 8303 8304 8305 8306 8307 8308 8309 8310 8311 8312 8313 8314 8315 8316 8317 8318 8319 8320 8321 8322 8323 8324 8325 8326 8327 8328 8329 8330 8331 8332 8333 8334 8335 8336 8337 8338 8339 8340 8341 8342 8343 8344 8345 8346 8347 8348 8349 8350 8351 8352 8353 8354 8355 8356 8357 8358 8359 8360 8361 8362 8363 8364 8365 8366 8367 8368 8369 8370 8371 8372 8373 8374 8375 8376 8377 8378 8379 8380 8381 8382 8383 8384 8385 8386 8387 8388 8389 8390 8391 8392 8393 8394 8395 8396 8397 8398 8399 8400 8401 8402 8403 8404 8405 8406 8407 8408 8409 8410 8411 8412 8413 8414 8415 8416 8417 8418 8419 8420 8421 8422 8423 8424 8425 8426 8427 8428 8429 8430 8431 8432 8433 8434 8435 8436 8437 8438 8439 8440 8441 8442 8443 8444 8445 8446 8447 8448 8449 8450 8451 8452 8453 8454 8455 8456 8457 8458 8459 8460 8461 8462 8463 8464 8465 8466 8467 8468 8469 8470 8471 8472 8473 8474 8475 8476 8477 8478 8479 8480 8481 8482 8483 8484 8485 8486 8487 8488 8489 8490 8491 8492 8493 8494 8495 8496 8497 8498 8499 8500 8501 8502 8503 8504 8505 8506 8507 8508 8509 8510 8511 8512 8513 8514 8515 8516 8517 8518 8519 8520 8521 8522 8523 8524 8525 8526 8527 8528 8529 8530 8531 8532 8533 8534 8535 8536 8537 8538 8539 8540 8541 8542 8543 8544 8545 8546 8547 8548 8549 8550 8551 8552 8553 8554 8555 8556 8557 8558 8559 8560 8561 8562 8563 8564 8565 8566 8567 8568 8569 8570 8571 8572 8573 8574 8575 8576 8577 8578 8579 8580 8581 8582 8583 8584 8585 8586 8587 8588 8589 8590 8591 8592 8593 8594 8595 8596 8597 8598 8599 8600 8601 8602 8603 8604 8605 8606 8607 8608 8609 8610 8611 8612 8613 8614 8615 8616 8617 8618 8619 8620 8621 8622 8623 8624 8625 8626 8627 8628 8629 8630 8631 8632 8633 8634 8635 8636 8637 8638 8639 8640 8641 8642 8643 8644 8645 8646 8647 8648 8649 8650 8651 8652 8653 8654 8655 8656 8657 8658 8659 8660 8661 8662 8663 8664 8665 8666 8667 8668 8669 8670 8671 8672 8673 8674 8675 8676 8677 8678 8679 8680 8681 8682 8683 8684 8685 8686 8687 8688 8689 8690 8691 8692 8693 8694 8695 8696 8697 8698 8699 8700 8701 8702 8703 8704 8705 8706 8707 8708 8709 8710 8711 8712 8713 8714 8715 8716 8717 8718 8719 8720 8721 8722 8723 8724 8725 8726 8727 8728 8729 8730 8731 8732 8733 8734 8735 8736 8737 8738 8739 8740 8741 8742 8743 8744
|
arXiv:1701.00009v4 [hep-th] 30 Nov 2017
Generalization of FaddeevPopov Rules in YangMills Theories: N=3,4
BRST Symmetries
Alexander Reshetnyak Institute of Strength Physics and Materials Science of Siberian Branch of RAS,
634055, Tomsk, Russia
Abstract
The FaddeevPopov rules for a local and Poincare-covariant procedure of Lagrangian quantization for a gauge theory with gauge group are generalized to the case of an invariance of the respective quantum actions, S(N), with respect to N -parametric Abelian SUSY transformations with odd-valued parameters p, p = 1, ..., N and anticommuting generators sp: spsq + sqsp = 0, for N = 3, 4, implying the substitution of an N -plet of ghost fields , Cp, instead of the parameter, , of the infinitesimal gauge transformations: = Cpp. The total configuration spaces of field variables for a quantum theory of the same classical model coincide in the N = 3 and N = 4 symmetric cases. For the N = 3-parametric SUSY transformations the superspace of the irreducible representation includes, in addition to YangMills fields A, also 3 ghost odd-valued fields Cp, as well as 3 new even-valued Bpq = -Bqp and 1 odd-valued B fields for p, q = 1, 2, 3. It is shown, that in order to construct the quantum action, S(3) a gauge-fixing procedure achieved by adding to the classical action of an N = 3-exact gauge-fixing term (without introduction of non-degenerate odd supermatrix) additionally requires a 1 antighost field C, 3 even-valued Bp and 3 odd-valued Bpq fields, as well as the NakanishiLautrup field B. The action of N = 3 transformations in the space of additional fields, (3) = (C, Bp, Bpq, B), not being entangled with the fields (3) of N = 3-irreducible representation space is realized as well. These transformations are the N = 3 BRST symmetry transformations for the vacuum functional, Z3(0) = d(3)d(3) exp{(i/h)S(3)}. It is shown that the total configuration space of the fields ((3), (3)), as the space of reducible N = 3 BRST symmetry transformations, proves to be the space of an irreducible representation of the fields (4) for N = 4-parametric SUSY transformations, which contains, in addition to A the (4 + 6 + 4 + 1) ghost-antighost, Cr = (Cp, C), new even-valued, Brs = -Bsr = (Bpq, Bp4 = Bp), odd-valued Br = (B, Bpq) fields and B for r, s = 1, 2, 3, 4, r = (p, 4). The quantum action S(4) is constructed by adding to the classical action an N = 4-exact gauge-fixing term with a gauge boson, F(4) as the sr-potential as compared to a gauge fermion (3) for N = 3 case. It is proved that the N = 4-parametric SUSY transformations are by N = 4 BRST transformations for the vacuum functional, Z4(0) = d(4) exp{(i/h)S(4)}. The procedures are valid for any admissible gauge. The equivalence with N = 1 and N = 2 BRSTinvariant quantization methods are explicitly established. The finite N = 3, 4 BRST transformations are derived from the algebraic SUSY transformations. The Jacobians for a change of variables related to finite N = 3, 4 SUSY transformations with field-dependent parameters in the respective path integral are calculated. The Jacobians imply the presence of a corresponding modified Ward identity which reduces to a new form of the standard Ward identities in the case of constant parameters and describe the problem of a gauge-dependence. The gauge-independent Gribov-Zwanziger models with local N = 3, 4 BRST symmetries are proposed An introduction into diagrammatic Feynman techniques for N = 3, 4 BRST invariant quantum actions for YangMills theory is suggested. A generalization to the case of N = 2K - 1 and N = 2K, K > 2 BRST transformations is discussed1.
e-mail address: reshet@ispms.tsc.ru 1The paper is dedicated to the memory of the outstanding Soviet and Russian theoretical physicist and mathematician, Academician Ludwig Dmitrievich Faddeev (1934-2017)
1
1 Introduction
The problem of Lorentz-covariant quantization for gauge theories with a non-Abelian gauge group [1] is a long-standing one, starting with the lecture of R. Feynman [2], showing that the naive one-loop diagram calculation within perturbative techniques with a propagator constructed, according to quantum electrodynamic, for the photon field A in the form
G (k)
=
k2
1 + i0
-
kk k2
+
(k)
kk k2
,
(1.1)
turns out to be incorrect2. A modification of calculations for reconstructing the one-loop contribution from the tree diagrams, using unitarity and analyticity [2], makes it possible to interpret the additional contributions as an input from a scalar particle, which should be, however, considered as a fermion due to the "-" sign before this summand. The solution of this problem was found by L. Faddeev and V. Popov in their celebrated work [3] by means of a trick known as the insertion of unity, providing the existence of a path integral for YangMills fields, A(x) = Am (x)tm, given in Minkowski space-time R1,3 and taking values in a compact Lie group G, with generators tm for its Lie algebra G, in the form
Z0L = Z0F =
dA(A) det M (A) exp
i h
S0(A)
,
dAdB det M (A) exp
i h
S0(A)
+
d4x A + g2B B 3,
(1.2) (1.3)
respectively, for the Landau gauge, (A) = 0, (A) = A, and then with the use of the proposal of 't Hooft [5] for the Feynman gauge (A, B), (A, B) = A + g2B, with an arbitrary field B = Bmtm
known as Nakanishi-Lautrup field [6, 7]. This representation, with a gauge-invariant classical action S0 , in comparison with the case of an Abelian U (1) gauge group, essentially includes a determinant of an
non-degenerated operator M (A):
M (A) = D = - [A, ] 4
(1.4)
known as the FaddeevPopov operator (having multiple zero-mode eigenfunctions as compared to the Abelian case, known as Gribov copies [8]). In [9] (see the review [10]), it was shown, with the use of F. Berezin [11] generalization of the Gaussian integral over Grassmann variables, that the representations (1.2), (1.3) may be equivalently presented in a local form by using fictitious scalar Grassman-odd fields C(x), C(x) = Cm(x), Cm(x) tm
Z0L =
dAdCdCdB exp
i h
SFLP
(A,
C,
C
,
B
)
with SFLP = S0 +
d4x CM (A)C + (A)B , (1.5)
and similarly for Z0F , where, instead of the quantum action SFLP = SFLP (A, C, C, B), one should use the action SFFP = SFLP (A)(A,B) given in the Feynman gauge. Independently. the development of the diagrammatic technique without using Grassmann-odd fictitious fields was suggested by B. DeWitt
[4]. The representation (1.5) allows one to replace gauge transformations for YangMills fields with arbitrary scalar functions (x) = m(x)tm by global transformations in the total configuration space Mtot of fields A = (A, C, C, B), with a constant Grassmann-odd parameter , 2 = 0 by the rule
(x) = C(x), being an invariance transformation for the quantum action and for the integral measure
in (1.5), which is known as a BRST symmetry transformation [12, 13]. The BRST symmetry allows
2Let us point out that the elements of the scattering matrix, among the physical states, do not depend on the value of
(k)
3Because of the integration in (1.3) in powers of B is gaussian, the only way to get after integration the gauge-fixed
term:
-
1 2g2
A
2 to restore coupling constant in the Feynman gauge as it was done above through field B.
4Here the notation for M (A) introduced in [3] was used. In what follows we will use the definition of the covariant
derivative D with opposite sign: D = + [A, ].
2
one to prove the gauge-invariant renormalizability of a quantum YangMills theory [14], [15], as well as the path integral independence from a choice of the gauge condition for small variations. This also makes it possible to obtain the Ward identities for generating functionals of Green's functions [16]. In [17, 18] it was shown that the FaddeevPopov representation (1.2), (1.3) admits the form (1.5) for an antiBRST symmetry transformation with another Grassmann parameter, : (x) = C(x)5, which may be considered within the N = 2 BRST ( BRSTantiBRST) symmetry [19] for YangMills theories, describing ghost and antighost fields as an Sp(2)-doublet Cma(x) of fields: (Cm1, Cm2) = (Cm, Cm), as well as the parameters (, ) = (1, 2), which follows from the substitution m(x) = Cma(x)a (with summation over repeated indices). The lifting of N = 1, 2 BRST symmetry transformations, given originally in an infinitesimal algebraic form, to a finite group-like form, with finite field-dependent parameters (), a() has been introduced for N = 1 case in [23], [24] (for gauge theories with a closed algebra and general gauge theories, see [25]),for N = 2 case in [26] (as well as for constrained dynamical systems and general gauge theories in [28, 29, 30, 31] with references therein), which allows one to establish that the path integral in different gauges, such as (1.2) and (1.3), assume the same value.
Recently [27], we have examined special SUSY (distinct from space-time SUSY) transformations with m Grassmann-odd generators that form an Abelian superalgebra Gm leaving the classical action (in a certain class of field-theoretic models) invariant and realizing a lifting of Gm to an Abelian supergroup Gm, with finite parameters and respective group-like elements being functionals of field variables. We have studied some physical consequences of these transformations at the path integral level. As a consequence, we are interested in the following question.
Is it possible to find a general solution for the non-local FaddeevPopov path integral representations (1.2), (1.3) in a local form which admits an extended N = k global SUSY transformation with k 3 Grassmann-odd parameters, such as those realized by N = 1, 2 BRST symmetries? In the case of a positive solution, which depends on a possibility to realize on an appropriate N = k SUSY irreducible representation space the N = k-invariant gauge-fixing procedure to construct N = k-invariant quantum action, S(N), we are interested in investigating such physical consequences as gauge-dependence, unitarity, renormalizability and Ward identities for the Feynman diagrams in the corresponding path integral with local N = 3 and N = 4-BRST invariant quantum actions.
The paper is devoted to the solution of the problem in question and is organized as follows. In Section 2, we expound a generalization of the non-local FaddeevPopov path integral to an N = k BRST symmetry realization in Subsection 2.2, starting from the review of N = 1, 2 cases in Subsection 2.1. We derive a local FaddeevPopov path integral, Z(3), over fields composing total configuration space, which is the reducible representation superspace of N = 3 SUSY transformations being explicitly constructed both for the fields of N = 3 irreducible representation superspace and for auxiliary fields from nonminimal sector in Subsection 2.3 so as to formulate an N = 3 BRST invariant gauge-fixing procedure without a special odd supermatrix. In Section 3 we consider the fields of N = 3 irreducible and additional representation superspaces on equal footing within explicitly constructed N = 4 SUSY transformations, and formulate N = 4 SUSY invariant gauge-fixing procedure for local path integral, Z(4), in Section 4, for which these transformations are N = 4 BRST symmetry transformations. In Section 5, we determine infinitesimal and finite group-like N = k BRST symmetry transformations, for k = 3, 4, with constant and field-dependent parameters and compute respective Jacobians for changes of variables in the path integrals. In Section 6, we apply the results concerning the Jacobians so as to relate the respective path integral in different gauges, and to obtain new Ward identities, accompanied by the study of gauge dependence and gauge-invariant GribovZwanziger formulation both within N = 3 and N = 4 BRST local quantum actions for YangMills theories. The introduction into Feynman diagrammatic technique in N = 3, N = 4 BRST quantum perturbative formulations for YangMills theory is the basic point of Section 7. The results are summarized in Conclusions. The proof of an impossibility to realize N = 3 BRST invariant gauge-fixing on the configuration space consisting of only the fields of N = 3 irreducible representation superspace without an odd nondegenerate supermatrix (based on an explicit construction of quantum action and N = 3 BRST transformations) is given in Appendix A.The details of derivation
5For superfield and geometrical interpretation of anti-BRST symmetry see e.g.[20], [21], [22] and references therein
3
of N = 4 BRST invariant quantum gauge-fixed action in R-like gauges is considered in Appendix B.
We use the DeWitt condensed notation [32]. We denote by (F ) the value of Grassmann parity of a quantity F and also use = diag(-, +, ..., +) for the metric tensor of a d-dimensional Minkowski space-time (generalizing the case of d = 4), with the Lorentz indices , = 0, 1, ..., d - 1. A local =oforrt-hro1i2gnhomtrnm(.laeDlftbe)raidsvieasrtitivmvaetsiinvwetishtheanrsdeesmp-ie-csA(Jitm)tpofoletrhLleeifefiteaolldgneevbsa.rraiaTGbhleeosfsGymAismanneotdrrimszoeaudlrizcaeendsdJbaAynttahirseeymKdeminlleointtrgeidzmebdeytirni-c pAtam(-n,dtAnq) products of the tensor quantities, F p and Gq are denoted as: F {pGq}, F {pGq} = F pGq + F qGp; F [pGq], F [pGq] = F pGq - F qGp. The raising and lowering of Sp (2) indices, -s a, -s a = ab-s b, ab-s b , is carried out by a constant antisymmetric tensor ab, accb = ba, 12 = 1.
2 Generalization of the FaddeevPopov method
Let us consider a configuration space of fields Ai = A(x) = An(x)tn in R1`,d-1, taking their values An(x) in a Lie algebra G= su(N^ ) of a gauge group G = SU (N^ ) for n = 1, ..., N^ 2 - 1, with an action
S0(A) invariant under gauge transformations, in the condensed notations in finite and infinitesimal form Ai = Ri (A), with the generators Ri (A) of the gauge transformations:
S0(A)
=
1 2g2
ddx tr G (x)G (x), G (x) = [A](x) + A(x), A (x) ,
(2.1)
A(x) A (x) = (x)A(x)-1(x) + (x)-1(x) G G = G -1, SU (N^ ),(2.2)
S0(A)
=
-
1 4g2
ddxGm (x)Gm (x), G (x) = Gm (x)tm, Gm = [Am ] + f mnlAnAl ,
(2.3)
Am (x) = Dmn(x)n(x) = ddy Rmn(x; y)n(y) , where i = (, m, x), = (n, y).
(2.4)
Here G (x), (x), g and Dmn(x) = mn + f monAo(x) are by the field strength, arbitrary gauge function taking theirs values in SU (N^ ), (dimensionless for d = 4) coupling constant, covariant derivative with completely antisymmetric structural constants f mno: [tm, tn] = gf mnoto of su(N^ ) and local generators of
gauge transformations, Rmn(x; y) = Dmn(x)(x - y), whereas for the infinitesimal gauge transformations (2.4) the representation, (x) = 1 + m(x)tm holds.
2.1 Review of N = 1, 2 BRST symmetry
In the case of usual BRST symmetry, the path integral, be it in Landau (1.2), Feynman (1.3), or arbitrary
admissible gauges, may be uniquely presented using a local quantum action, S = S() in the space M(toNt=1) Mtot of fields A:
Z =
d exp
i h
S
()
,
with S = S0 + ()-s = S0 +
CM (A)C + (A, B)B ,
(2.5)
for M (A) = dy A(y)(A, B) D, with the help of a gauge fermion (), encoding the gauge by a gauge function (A, B) linear in the fields A, B:
() = C(A, B) + (), () = 1, for deg. > 2, deg(A, B) = 1
(2.6)
with the use, first, the condensed notations in (2.5) and (2.6), implying the integration over some region in R1,d-1 and trace over su(N^ ) indices, second, of a nilpotent Grassmann-odd "right-hand" (left-hand) Slavnov generator -s (s), -s 2 = 0, [15] of N = 1 BRST transformations acting on the local coordinates
4
of Mtot, as well as on a functional K(), by the rule [12, 13]
A-s =
A, C, C, B -s =
DC,
1 2
[C,
C],
B,
0
An, Cn, Cn, Bn -s =
Dno C o ,
1 2
f
nop
C
o
C
p
,
Bn,
0
,
sK() = (sA)- AK and K()-s = K-A(A-s ) s A, K = - (-1)AA, (-1)(K)KP -s .(2.7)
The quantum action S and the integration measure d are invariant under BRST transformations A A with a constant parameter ,
A = A(1 + -s ) : A = A-s = S = 0, sdet (/) = 1,
(2.8)
providing the invariance of the integrand in Z with respect to these transformations. In turn, for the generating functionals of Green's functions, as well as of correlated and one-particle irreducible Green's functions (known as well as, the effective action ( A )), depending, respectively, on the external sources JA, (JA) = A and mean fields, A , we have
Z(J) =
d exp
i h
S
()
+
JA
A
= exp
i h
W
(J
)
,
( A ) = W (J ) - JA A
(2.9)
by means of a Legendre transformation of W (J) with respect to JA, for A = - A(J)W and JA = -(/ A ). N = 1 BRST transformations lead to the presence of respective Ward identities:
JA A-s ,J = 0,
JA
A-s
,J = 0,
A
A-s , = 0,
(2.10)
with respective normalized average expectation values L ,J , L ,J , L , for a functional L =
L() calculated using Z(J), W (J), for a given gauge fermion , with the external sources JA and A .
The infinitesimal field-dependent (FD) N = 1 BRST transformations with a functional parameter
() = (i/h) allow one to establish gauge-independence for the path integral Z under an infinitesimal
variation of of variables
the gauge (2.8), sdet
conAdi-tioBn,
=
+ , due to 1 - ()-s , in the
an input from the superdeterminant integrand of Z+:
of
the
change
Z+ =
dsdet A-B
exp
i h
S+
()
= Z.
(2.11)
In turn, finite FD N = 1 BRST transformations, whose set enlarges the Abelian supergroup, G(1) =
{g() g~() :
: g() = 1 + -s }, acting g~() = 1 + -s ()} with
in Mtot and g~(1)g~(2) =
providing an g~(1-s 2) =
non-Abelian supergroup, g~(2-s 1) = g~(2)g~(1),
G(1)= {g~() : introduced for
the first time in [23], allow one to obtain a new form of the Ward identities, depending on an FD
parameter, and to establish gauge-independence for the path integral Z under a finite change of the
gsdaeutge, A-B
+ : = (1 +
Z = Z+. In this case, the superdeterminant of a ()-s )-1, calculated in [24] see also [25] for general
change of variables (2.8), gauge theories implies a
modified Ward identity:
exp
i h
JA
A-s (
)
(1 + ()-s ) -1
= 1,
,J
for
()
=
i h
g(y),
y, g(y) = i/h)-s , 1 - exp{y}/y ,
(2.12) (2.13)
and leads to a solution of the gauge dependence problem for the generating functional Z(J):
Z+ (J )
-
Z(J )
=
i h
JA
A-s (| - ,J
Z+ (J ) - Z(J ) |J=0 = 0.
(2.14)
5
For an N = 2 BRST symmetry realization for the quantum local action we, once again, follow the FaddeevPopov proposal (1.2), where, instead of the gauge function (A), a Grassmann-even gauge functional Y (A), (Y ) = 0, is utilized:
Z0L=
dA Y (A) det M (A) exp
i h
S0
(A)
,
for Y (A)
=
Y A
D
=
A
Y
=
YiRi (2.15)
(for Yi Y /Ai, Ai = A(x)) which leads to a local representation for the path integral in the same configuration space M(toNt=2) = M(toNt=1) of fields A, arranged into Sp(2)-doublet as A = (A, Ca, B) = (Am , Cma, Bm)tm
ZY =
d exp
i h
SY
()
,
with SY
=
S0
-
1 2
Y
-s a-s a
and
-
1 2
Y
-s a-s a
=
()-s .
(2.16)
The functional (2.16), in the Feynman gauge condition, providing a particular representative (for = 1) from the class of R-gauges, A + g2B (Landau gauge for = 0), takes the form
ZY =
d exp
i h
SY
()
for
Y ()
=
1 2
ddx tr - AA + g2abCaCb ,
SY ()
=
S0
-
1 2
Y
-s a-s a
=
S0
+
Sgf
+
Sgh
+
Sadd,
(2.17) (2.18)
where the gauge-fixing term Sgf and the ghost term Sgh coincide with N = 1 BRST exact term ()-s
in the N = 1 BRST invariant quantum action S , for = 1, whereas the interaction term Sadd, quartic in ghosts Csa, specific for the N = 2 BRST symmetry, is given by
Sgf + Sgh = ddx
Sadd
=
-
g2 24
Am + g2Bm
Bm
+
1 2
ddx (Cma) DmnCnbab ,
ddx f mnlf lrsCsaCrcCnbCmdabcd6.
(2.19) (2.20)
The quantum action and integration measure are invariant with respect N = 2 BRST symmetry transformations at the algebraic level, with right-hand Grassmann-odd generators -s a satisfying the algebra -s a-s b + -s b-s a = 0, a, b = 1, 2
for A A = A(1 + -s aa) :
A, Cb, B -s a =
DCa, baB
+
1 2
[C
b
,
C
a
],
1 2
[B,
Ca]
+
1 6
[C
c
,
[C
b,
C a ]]cb
.
(2.21)
As in the N = 1 BRST case, this invariance, for the corresponding generating functionals of Green's functions, ZY (J) = exp{(i/h)WY (J)}, Y ( ) constructed by the rules (2.9) with a given gauge condition Y (), leads to the presence of an Sp(2)-doublet of Ward identities:
JA A-s a Y,J = 0,
JA
A-s a
Y,J = 0,
Y A
A-s a Y, = 0,
(2.22)
with respective normalized average expectation values L Y,J , L Y,J , L Y, for a functional L = L() calculated using ZY (J), WY (J), Y for a given gauge boson Y in the presence of external sources JA and mean fields A . The gauge independence of the path integral ZY (0) under an infinitesimal
variation of the gauge condition, Y Y + Y , is established using the infinitesimal field-dependent (FD) 1tNh-e=su2ap(BerR)dS-seTtae,rtmarasinnfsoaflnolotrmwfosar:ttiohnesc[h3a3n, g3e4]owf vitahritahbelefsun(2c.t8io)nmaladpearianmtehteerinsteag(ran)d=o(fiZ/2Yh+)YY,-ssdaetwhicAh-inBduc=e
ZY +Y =
d sdet A-B
exp
i h
SY
+Y
()
= ZY .
(2.23)
6 For
g
=
1,
the
expressions
for
Sgf
(2.19)
and
Sadd
(2.20)
coincide
with
ones
in
[26]
after
rescaling
1 2
.
6
The finite N = 2 BRST transformations acting in Mtot, whose set forms an Abelian supergroup,
G(2) =
g(a)
:
g(a)
=
1
+
-s aa
+
1 4
-s a
-s abb
=
exp
(-s aa)
,
(2.24)
are restored from the algebraic N = 2 BRST transformations according to [26]:
{K (g(a)) = K () and K-s a = 0} g (a) = exp {-s aa} ,
(2.25)
where K = K () is an arbitrary regular functional, and -s a, -s 2 -s a-s a are the generators of BRSTantiBRST and mixed BRST-antiBRST transformations in the space of A. These finite transformations,
in a manifest form [26], for A = A - A, read as follows:
A
=
D C a a
-
1 2
DB
+
1 2
[C
a
,
DC
b ]ab
2 ,
B
=
1 2
[B,
Ca]
+
1 6
[C
c,
[Cb, Ca]]cb
a ,
Cb =
baB
+
1 2
[C
b,
Ca]
a
+
1 2
[B,
Cb]
+
1 [Cc, 6
[C a ,
C b ]]ca
2 ,
(2.26) (2.27)
(2.28)
and cannot be presented as group elements (in terms of an exp-like relation) which is not closed under BRST-antiBRST transformations: a()-s b = 0. N = 2 BRST transformations with functionally-dependent parameters a =
for an Sp(2)-doublet a() Once again, the finite FD -s a allow one to derive a
new form of the Ward identities, depending on FD parameters, and to study gauge-independence for the
pgN(1ea(onr-wae|r,mY21ateth)ti(nee=grs)sf2uu-sihpnaagec(rt-sydio)laeeYn)ta-aedrl,2ssm,f,otcierona.galyac.n,utmZlaofY(todie(r/idJfi4a)heind)acYn[hW2da6-asnZ]rg2Yde,,si[odu3efee0nn]dva,teali[srt3royi1aa][dbfi3eln1ep]iste:fenodcrhignAaegnngoeernaoltfhgteAhauep=gageraautmhgAeeeo,gtreY(yrsaa(nadY)()Yg+,eY)nsde=er, atZ2lihYfgo=A(rym-)ZYoBYf+-sFY=Da,.
1
+
i h
JAA
-s aa()
+
1 4
-s 22()
-
1 4
i h
2JAA-s aJB
B-s a 2()
1
-
1 2
-s 2
-2 Y,J = 1,
ZY +Y (J ) - ZY (J ) =
i h
JA
A
-s aa
(|
-
Y
)
+
1 4
-s 22
(|
-
Y
)
- (-1)B
i 2h
2 JB JA
A-s a
B-s a 2 (| - Y )
,
Y,J
(2.29) (2.30)
vanishing on the mass shell determining by the hypersurface JA = 0.
Now, we have all the things prepared to generalize the FaddeevPopov procedure in order to realize a more general case of N = 3 BRST symmetry for an appropriate local quantum action depending on the entire set of fields, on which the latter symmetry transformations are defined.
2.2 Proposal for non-local FaddeevPopov path integral with N = 3 BRST symmetry
There are many ways to present the functionals (1.2), (1.3) without using a determinant and a functional -function within perturbation techniques. In the case of Landau and Feynman gauges, we generalize the path integral (1.2), 1.3 by the rule
Z0L = Z0F =
dA (A) det M (A)detkM (A) det-kM (A) exp
i h
S0(A)
, k 0,
(2.31)
dAdB det M (A)detkM (A) det-kM (A) exp
i h
S0
(A)
+
d4x A + g2B B .(2.32)
7
The path integral formulations with local quantum action exist for any k N0 as follows, e.g. for (2.31):
Z0L =
k
k
dAdB dCldCl dBldBl exp
i h
S
L (k)
A, C0, C0, C[k], C[k], B[k], B[k], B
l=0
l=1
k
with
S
L (k)
=
S0
+
ddx
ClM (A)Cl + BlM (A)Bl + C0M (A)C0 + (A)B ,
l=1
for D[k] = (D1, ..., Dk), D {C, C, B, B}, (C0, C0) (C, C),
(2.33) (2.34) (2.35)
where odd-valued fields C[k], C[k] and even-valued fields B[k], B[k] taking values in Lie group G, whose numbers coincide.
However, it is not for any k that there exists a local representation for the path integral (2.33) such that the total set of fields, (k), (k) = (A, C0, C0, C[k], C[k], B[k], B[k], B) forms the representation space of Abelian group of SUSY transformations, like N = 1, 2 BRST symmetry, for k = 0, but with larger numbers of N 3, so that the Grassmann-odd: with Cl, Cl; Grassmann-even : with Bl, Bl ghost actions with Faddeev-Popov operator and gauge-fixed term with (A)B would be generated as the exact terms with respect to the action of being searched N -parametric generators of BRST symmetry transformations.
More exactly, the fact holds that
Statement 1: In order the action functional SL(k), (2.34) to be given on the configuration space of fields (k) = (A, C0, C0, C[k], C[k], B[k], B[k], B) permitting the local presentation for the path integral, ZL(0), (2.31) in the form (2.33) will be invariant with respect to N = N (k)-parametric Abelian SUSY transformations with Grassmann-odd generators -s pk : -s pk -s qk + -s qk -s pk = 0, qk, pk = 1, ..., N , and will be presented in the form:
S(LN(k))((N(k))) = S0(A) -
(-1)N N!
F(N
(k))
(N (k))
N
-s pek p1kp2k...pN k , (F(N (k))) = N ,
e=1
(2.36)
with completely antisymmetric N (k)-rank (Levi-Civita) tensors , p1kp2k...pN k p1kp2k...pN k normalized as,
p1kp2k...pN k p1kp2k...pN k = N ! for k > 2,
(2.37)
with some gauge-fixing functional, F(N(k)) corresponding to the Landau gauge, so that the fields (N(k))7 should parameterize the irreducible representation superspace of the Abelian superalgebra G(N (k)) of
N (k)-parametric SUSY transformations, the spectra of integer k = k(N ) should be found as:
1) k(1) = 0, k(N ) = 2N-2 - 1, for N 2 .
(2.38)
If in addition, the gauge-fixing functional F(N(k)) should be determined without introducing auxiliary Grassmann-odd scalar or supermatrix the spectra of integer k = ku(N ) is determined by the relation:
2)
ku(1) = 0,
ku(N
)
=
22[
N -1 2
]
-
1,
for
N
2,
(2.39)
for integer part, [x], of real x.
Note, the local path integral ZFL(N(k)) (0) = d(N(k)) exp{(i/h)S(LN(k))((N(k)))} = Z0L for N (k) > 2 due to the presence of possible additional vertexes in fictitious fields in S(LN(k)). In addition, in the second case
7When the exponential index k in the representations (2.31), (2.32) is related to N = N (k)-parametric SUSY transformations we will denote the fields parameterizing configuration space, the quantum action and gauge-fixing functional as, (N(k)), S(LN(k)), F(N(k)) in opposite case we add "tilde" over it: (k), S(Lk), F(k) so that for N (k) = k in general: (N(k)) = (k), S(LN(k)) = S(Lk).
8
the requirement of the irreducibility of the G(N (k)) (finite-dimensional) representations for each N (k) is weakened. The irreducibility will be hold only for even N : N = 2K, K N.
Indeed, this leads, for N = 1, k(1) = 0, to the standard FaddeevPopov representation (1.5) with the BRST symmetry, whereas, for k(2) = 0, this leads to the N = 2 BRST symmetry with a local path integral (2.16).
For N = 3, k(3) = 1, there arises a first non-trivial case for the case 1 (2.38) and ku(3) = 3 for the case 2 (2.39) of the Statement. For N = 4 for both cases we have from (2.38), (2.39): k(4) = ku(4) = 3.
The validity of the first part (2.38) follows from the simple fact that any field finite-dimensional
irreducible tensor representation superspace of the Abelian superalgebra G(N ) with Grassmann-odd gen-
erators -s p:
N +1 l=1
-s pl
=
0,
contains
in
addition
to
the
gauge
fields
A,
on
which
the
infinitesimal
gauge
transformations, are changed on the global transformations with constant Grassmann-odd parameters,
p, (p) = 1:
A(x) = D(x) = DCp(x)p = A(x) = A(x)-s pp;
(2.40)
(where the summation with respect to repeating indices, p, is implied) the N -plet of Grassmann-odd fields,
Cp,
1 2
N
(N
- 1)
new
Grassmann-even
fields,
B1p1p2 ,
and
so
on
up
to
N -plet
of
new
fields,
Bp1p2...pN-1 ,
((Bp1p2...pN-1) = N - 1) and new single field, B(N), ((B(N)) = N ). All the new fields take theirs values
in su(N^ ) and appear from the chain:
A-s p = DCp,
Cp1 -s p2 = Bp1p2 + O(CB), . . . ,
(2.41)
............, Bp1p2...pN-2 -s pN-1 = Bp1p2...pN-1 + O(CB), Bp1p2...pN-1 -s pN = p1p2...pN B(N ) + O(CB),
............, Bp1p2...pN-1 -s pN-1 = Bp1p2...pN-1 + O(CB), B(N)-s p = O(CB),
(2.42) (2.43)
generated by a (-d )N+1 = 0.
nilpotent of the order (N The length of the chain,
+ 1) differential-like element, -d : -d = l, is equal to, l = (N + 1), whereas its
p -s p, the such that non-vanishing linear
part in fields Cp, Bp1...pl, B, for l = 2, ..., N - 1, due to the last equation in (2.43) has the length,
llin = N . The Grassmann-odd and Grassmann-even numbers of new degrees of freedom for additional to A fields in the multiplet k(N) of the irreducible representation of the superalgebra G(N ) without decomposition in su(N^ ) generators tm are equal to, (2N-1, 2N-1 - 1). Indeed, for N = 1, the only ghost
field C(x) contains in N = 1 irreducible multiplet. For N = 2, two ghost-antighost Cp Ca, a = 1, 2
and Nakanishi-Lautrup, B2 B, fields. Then, first, extracting the degrees of freedom relating to the usual ghost and antighost C, C and B fields, second, dividing any subset on pairs of Grassmann-odd
(and Grassmann-even) fields as it is given in (2.34), we get to the value of k = k(N ) for the respective
exponent of the determinants in (2.31):
(2N-1, 2N-1 - 1)
2N-1 - 2, 2N-1 - 2
1 2
2N-1 - 2, 2N-1 - 2
2=.38
2N-2 - 1, 2N-2 - 1 . (2.44)
However, we meet the problem when going to construct the action functional (quantum action), S(LN(k)), by the rule (2.36) for odd N = 2K - 1, in particular, for N = 3 SUSY transformations on the G(N )irreducible representation superspace. Indeed, the respective gauge-fixing functional, F(3) (3) due to the linear part of the N = 3 SUSY transformations (2.41), (2.43) should be, at least, quadratic in the fields A. The fact that, the Grassmann parity of F(3)) determines it as the fermion, (F(3)) = 1, means the necessity to introduce some additional Grassmann odd non-degenerate supermatrix in order to realize the prescription (2.36) for the quantum action. The details of using of such kind of odd supermatrix, which should both to determine the required Grassmann parity of F(3) and to change the basis of additional fields (C, B) in the configuration space parameterized by (3 to construct N = 3 SUSY invariant action S(L3)((3)) for k(3) = 1 are considered in the Appendix A.
For k(N ) N=5;6,... = 7; 15, . . ., etc, the situation is more involved, and we leave its detailed consideration out of the paper scope (see as well comments in the Conclusions).
9
The validity of the second part (2.39) of the Statement we consider here only for N = 3 case, whereas
for even, N = 2K, case its both parts (2.38) and (2.39) coincide.
To do so we should determine the total configuration space, M(toNt=3) M(to3t), the fields parameterizing it, (3), (3) =(3) being sufficient to construct the (bare) quantum action, S(L3), must form a finitedimensional field completely reducible representation of Abelian G(3) superalgebra. That means, that on the fields (3) it will be realized the another irreducible representation of N = 3-parametric G(3) superalgebra not being entangled with the irreducible G(3)-representation acting on the fields (3).
First of all, let us find exactly the action of the generators -s p of G(N )-representation for N = 3 on
the fields (3), (3) = A, Cp1 , Bp1p2 , B(3) = B parameterizing irreducible representation superspace from (2.41) (2.43). Lemma 1: The action of the generators -s p of the Abelian superalgebra G(3) on the fields (3) is given by the relations:
A C p1 B p1 p2
B
-s p
p1 p2 p B
+
1 2
D (A)C p
B p1 p
+
1 2
Cp1 , Cp
Bp1p2 , Cp
-
1 6
C[p1 ,
Cp2], Cp
1 2
B, Cp
-
1 8
Bp1p2 , Cp3 , Cp
+
1 6
Bp1p, Cp2 , Cp3
. p1p2p3
(2.45)
The (3)
respective N = are determined
3 SUSY transformations as: (3) = (3)-s pp.
with
triplet
of
anticommuting
parameters,
p,
on
the
fields
To prove the representation (2.45) we start from the boundary condition for such transformation inherited from the gauge transformations for A (2.40) and present the realization for the sought-for
generators as series:
-s p = -s pe :
e0
A-s p = A-s p0 = D(A)Cp and Cp1 -s p0 0.
(2.46)
Since, first,
A -s p0-s r0 + -s r0-s p0 = 0,
(2.47)
we must add to -s p0 the nontrivial action of new -s p1 on Cp1 (vanishing when acting on A: A-s p1 0), starting from the Grassmann-even triplet of the fields Bp1p2 = Bprmtm (BRST-like variation of Cp1 )
(2.41)
Cp1 -s p12
=
B p1 p2
+
(C
1
)p1 p2
r1 r2
Cr1 , Cr2
,
for Bp1p2
= -Bp2p1
=
B12, B13, B23 , (Bp1p2 ) = 0 (2.48)
(where
the
summation
with
respect
to
repeated
indices
is
assumed)
with
unknown
real
numbers:
(C
1
)p1 p2
r1 r2
=
(C
)1
p1 p2 r2 r1
,
to
be
determined
from
the
consistency
of
3
3
equations:
l
A -s p[11]-s p[12] + -s p[11]-s p[12] = 0, where -s p[l]
-s pn, and Cp1 -s p02 0,
n0
(2.49)
from which, in fact, follows the property of antisymmetry for Bp1p2 in the indices p1, p2. The solution
for (2.49) determines:
(C
)1
p1 p2 r1 r2
=
1 4
{pr11
rp22}
,
(2.50)
providing the validity of the 2-nd row in the table (2.45). Having in mind, that any completely antisymmetric tensor, p1...pn of the n-th rank, is vanishing for n > 3, there are only the third-rank independent
10
completely antisymmetric constant tensor with upper, p1p2p3 = -p1p3p2 = -p2p1p3 , and lower, p1p2p3 , indices, which are normalized by the conditions (according with (2.37))
123 = 1, p1p2p3 r1r2p3 = rp11 rp22 - rp12 rp21 , p1p2p3 r1p2p3 = 2rp11 .
(2.51)
Second, because of
Cp -s p[11]-s p[12] + -s p[12]-s p[11] = 0,
(2.52)
we should determine, Cp1 -s p2 0), in the
for a form
nontrivial action of -s p2 on Bp1p2 (vanishing of a general anzatz, starting from the new
when acting on Grassmann-odd
A, Cp: A, field variables
B = Bmtm (BRST-like variation of Bp1p2 ) (2.43) up to the third power in Cp with a preservation of
Grassmann homogeneity in each summand, as in the (2.48),
Bp1p2 -s p23
=
p1p2p3 B
+
(B
1
)p1 p2 p3
r1 r2 r3
Br1r2 , Cr3
+
(B2
)p1 p2 p3
r1 r2 r3
Cr1 ,
Cr2 , Cr3
, (B) = 1.(2.53)
with unknown
=
(B2
)p1 p2 p3
r1 r3 r2
,
real numbers: (B to be determined
)j
p1 p2 p3 r1 r2 r3
=
-(Bj
)p2 p1 p3
r1 r2 r3
from the fulfillment of
, j = 1, 2; the 3 3
(B1
)p1 p2 p3
r1 r2 r3
=
3 equations
-(B1
)p1 p2 p3
r2 r1 r3
;
(B
2
)p1 p2 p3
r1 r2 r3
Cp1 -s p[22]-s p[23] + -s p[23]-s p[22] = 0, where Bp1p2 -s pl 3 0, l = 0, 1.
(2.54)
Its general solution has the form:
(B
)1
p1 p2 p3 r1 r2 r3
=
1 4
r[p11
rp22
]
rp33
:
(B
1
)p1 p2 p3
r1 r2 r3
Br1r2 , Cr3
=
1 2
Bp1p2 , Cp3
,
(B
)2
p1 p2 p3 r1 r2 r3
=
-
1 12
r[p11
rp22
]
rp33
:
(B2
)p1 p2 p3
r1 r2 r3
Cr1 ,
Cr2 , Cr3
=
-
1 12
C[p1 ,
Cp2], Cp3
(2.55) . (2.56)
providing the validity of the 3-rd row in the table (2.45).
Third, due to
Bp1p2 -s p[23]-s p[24] + -s p[24]-s p[23] = 0,
(2.57)
we should determine for
A, Cp, Bp1p2 -s p33 order nilpotency of
-s p
:
0)
a nontrivial action of -s p3 on B, (vanishing when acting on
a general ansatz without using the new field variables (due
4 l=1
-s pl
0)
up
to
the
fourth
order
in
Cp
with
a
preservation
A, Cp, Bp1p2 : to of the 4-th
of Grassmann
homogeneity in each summand, as in the case of (2.48) and (2.53),
B-s p3 = (B1) B, Cp + (B2)pr1r2r3r4 Br1r2 , Cr3 , Cr4 + (B3)pr1r2r3r4 Br1r2 , Br3r4
+(B4)pr1r2r3r4 Cr1 , Cr2 , Cr3 , Cr4 .
(2.58)
Here unknown real numbers -(B3)pr1r2r4r3 = -(B3)pr3r4r1
r2,B(1,B(4)prB12r2)rpr31
r2 r4
r3 r4
=
= (B
-(B2 )p
4 r1r2r4
)pr2r1r3r4 , r3 , should
(B be
)p
3 r1r2r3r4
=
determined
-(B3)pr2r1r3r4 = from the 3 3 3
equations:
Bp1p2 -s p[33]-s p[34] + -s p[34]-s p[33] = 0, where B-s pl 3 0, l = 0, 1, 2
(2.59)
Its general solution looks as
(B1) =
1 2
,
(B 2 )pr1 r2 r3 r4
=
-
1 8
r1
r2
r3
rp4
-
1 12
[r1
r3 r4
rp2
]
,
(B 3 )pr1 r2 r3 r4
= (B4)pr1r2r3r4
= 0,
(2.60)
providing the validity of the last row in the table (2.45). In deriving (2.60) the use has been made of the symmetry for the commutator [Cp, Cr] = [Cr, Cp], and the following relations
Bp[p1 , Cp2] , Cp3 + Bp1p2 , Cp , Cp3 = pp1p2 P p3 ,
B[pp3 , Cp1 , Cp2] - B[pp3 , Cp2] , Cp1 + C[p, Bp1p3 , Cp2] = pp1p2 Qp3 ,
for P p3 = 1 2
Bpp1 , Cp2 , Cp3 pp1p2 , and Qp3 =
Bpp3 , Cp1 , Cp2 pp1p2 ,
(2.61) (2.62) (2.63)
11
as well as the Jacobi identities, which establish the absence of the 4-th power in the fields Cp in the transformation for B (2.58):
Bp1p2 -s p[33]-s p[34] + -s p[34]-s p[33]
(B=Bpq =0)
=
-
1 12
C[p1 ,
Cp4 ,
Cp2], Cp3
+ Cp3 , Cp4 , Cp2]
+ Cp2], [Cp3 , Cp4 ] + p1p2{p3 B-s p4} (B=Bpq=0) = p1p2{p3 B-s p4} (B=Bpq=0) = 0,
(2.64)
meaning that we may put (B4) = 0. One can easily see that the 3 3 equations (2.57) considered for B
are fulfilled as well:
B -s p[31]-s p[32] + -s p[32]-s p[31] = 0 -s {[3p]1 -s p[32]} = 0.
(2.65)
Therefore, -s p = -s p[3] are the generators of the irreducible representation of G(3) superalgebra of N = 3-
parametric transformations in the field superspace, M(m3i)n, parameterized by the fields, A(33). That fact
completes the proof of the Lemma 1.
Thus, in order to have the superspace of irreducible representation being closed with respect to the action of abelian Lie superalgebra G(3) with Grassmann odd scalar generators -s p this superspace should parameterized by the set of fields:
{A(33)} = A, Cp, Bp1p2 , B = An, Cpn, Bp1p2n, Bn tn
(2.66)
used as local coordinates in the configuration space M(m3i)n with dimension: dim M(m3)in = (N^ 2 - 1) d + 3, 3 + 1 , for an irreducible gauge theory of the fields A with a non-Abelian gauge group SU (N^ ). It is obvious that M(m3)in M(toi)t for i = 1, 2. We will call M(m3i)n as the minimal configuration space.
Now, due to insufficiency of the M(m3i)n to provide gauge-fixing procedure without using of additional odd supermatrix or Grassmann-odd parameter let us extend the M(m3i)n by the fields (3) of so-called non-minimal sector, starting from a new antighost field, C(x) = Cm(x)tm, to provide a determination of the gauge fermion F(3) (3) as the quadratic functional for the Landau gauge, (A) = 0:
L(3)(C, A) = ddx tr C(A).
(2.67)
Properly the fields (3) contain the Nakanishi-Lautrup fields, B, and have the contents
(3) = C, Bp, Bp1p2 , B , C, Bp1p2 + (1, 1) = Bp1 , B = (0, 0)
(2.68)
with even and odd degrees of freedom, (3+1, 1+3) (modulo dim SU (N^ ) indices) and determine the action of generators -s p(n) of the representation of the Abelian superalgebra G(3) in the superspace, M(n3m) , with
the local coordinates (3). Lemma 2: The action of the generators -s p(n) of the Abelian superalgebra G(3) on the fields (3) is determined by the relations:
C-s p(n) = Bp, Bp1 -s p(n) = Bp1p, Bp1p2 -s p(n) = p1p2pB, B-s p(n) = 0.
(2.69)
The (3)
respective N are given by
= 3 SUSY transformations with the rule: (3) = (3)-s p(n)p.
triplet
of
anticommuting
parameters,
p,
on
the
fields
Indeed, the relations (2.69) repeat by its form linearized chain (2.41) (2.43) without non-linear terms. It easy to check, that the generators -s p(n) satisfy to the defining relations:
-s p(n1)-s p(n2) + -s p(n2)-s p(n1) = 0,
4
-s p(nl ) = 0.
l=1
(2.70)
12
In particular, we have the exact sequence
C, Bp, Bp1p2 , B -s p(n3) Bp3 , Bpp3 , p1p2p3 B, 0 -s p(n4) Bp3p4 , pp3p4 B, 0, 0 -s p(n5) p3p4p5 B, 0, 0, 0 0 -s p(n6) (2.71)
of the length, equal to 4.
We will call the representation (2.69) as the N = 3 trivial representation of the superalgebra G(3).
Finally. we construct the reducible representation of the superalgebra G(3) in the total configuration
space, M(to3t), parameterized by the fields, (3), (3) = (3) , with dimension in each space-time point x R1,d-1,
dim M(to3t) = (N^ 2 - 1) d + 23 - 1, 23 .
(2.72)
The generators of this representation we will denote as, -s pto3t = -s p3 + -s p(n3), (and then we will omit index "tot" in it as it done for the generally-adopted notations in N = 1, 2 BRST symmetry cases). The action of -s pto3t is completely determined by (2.45) and (2.45).
Now, let us turn to the gauge-fixing procedure, construction of the quantum action and path integral, whose integrand will be invariant with respect to derived N = 3 SUSY transformations.
2.3 N = 3 BRST-invariant path integral and quantum action
Let us determine the local path integral, Z3, and generating functionals of Green functions in any ad-
missible gauge, turning to the non-degenerate Faddeev-Popov matrix, for Yang-Mills theory underlying above constructed explicit N = 3 SUSY invariance (2.45), (2.69) in the total configuration space M(to3t), with triplet of anticommuting parameters p and the local quantum action S(3) ((3), (3)) given by the prescription (2.36) as follows:
Z3|(0) = Z3|(J ) =
d(3) d(3) exp
i h
S(3)
(3), (3)
d(3)d(3) exp
i h
S(3)
(3), (3)
with
S(3)
=
S0 (A) +
1 3!
(3)
-s p
-s q
-s r
pqr
,
(2.73)
+ J (3) + J (3)
= exp
i h
W3|(J
)
,
(2.74)
with gauge fermion functional, (3) = (3) (3) , depending on the fields (3) as follows (confer with (2.6)):
(3)((3)) = C(3)(A, B) + (3)((3)), for deg(3) > 2, deg(3)(A, B) = 1,
(2.75)
and external sources JAt3 = JA3 , J An3 to the respective Green functions related to the fields A(33), A(3n3) with the same Grassmann parities: (JA3 ) = (A(33)), (J An3 ) = (A(3n3) ).
It is easy to check that both the' functional measure, d(3)d(3) = d(3), as well as the quantum action, S(3) , are invariant with respect to the change of variables, A(3t) (A3)t generated by N = 3 SUSY transformations (2.45), (2.69), with accuracy up to the first order in constant p (equally with
infinitesimal p):
(A3)t = A(3t)(1 + -s pp) : A(3t) = A(3t)-s pp = S(3) = o(), sdet (3)/(3) = 1 + o(), (2.76)
We will call, therefore, the transformations:
A(3t) = (A3)t - A(3t) = A(3t)-s pp,
(2.77)
with the explicit action of the generators -s p (2.45), (2.69) on the component fields as N = 3-parametric BRST transformations.
13
The particular representations for the path integrals (2.73), (2.74) in the Landau and Feynman gauges are easily obtained within the same R-family of the gauges as for the N = 1 BRST invariant case (2.5) due to obvious coinciding choice of the gauge functions, (3)(A, B), for (3) = 0, in (2.75) with one, (A, B) = (A + g2B = 0), in (2.6). The quantum action, S(3) , has the representation:
S(3) (3)
=
S0
+
1 3!
(3)
-s p
-s q
-s r
pqr
=
S0
+
Sgf (3)
+
Sgh(3)
+
Sadd(3),
Sgf(3) = ddx tr A + g2B B,
(2.78) (2.79)
Sgh(3) =
ddx tr
CM (A)B
+
1 2
BpM (A)Bqr + BpqM (A)Cr
pqr ,
Sadd(3)
=
1 6
ddx tr - 3(Bp) D(A)Cq, Cr - (C) 2 D(A)Cr, Bpq
+ D(A)Bpq , Cr + D(A)Cp, Cq , Cr pqr,
(2.80) (2.81)
where we have used the identities,
M (A)-s p = M (A), Cp M mn(A; x, y)-s p = f mrnM rs(A; x, y)Csp(y), M (A)Cq -s p = - D(A)Cp, Cq + M (A) Cq-s p
=
- M (A)Cp, Cq
-
D(A)Cp, Cq
+ M (A)
Bqp
+
1 2
Cq, Cp
(AB) -s p = (A-s p) B (-1)(B) + A (B-s p) ,
(AB) -s p-s qpqr = A-s p-s qB + 2A-s p (B-s q) (-1)(B) + A (B-s p-s q) pqr,
(AB) -s p-s q-s rpqr = A-s p-s q-s rB(-1)(B) + 3A-s p (B-s q-s r) (-1)(B)
+ 3A-s p-s q (B-s r) + A (B-s p-s q-s r) pqr,
(2.82) (2.83) , (2.84) (2.85)
(2.86)
where the latter relations (2.84)(2.86) appear by readily established Leibnitz-like properties of the generators of N = 3 BRST transformations, -s p acting on the product of any functions A, B with definite Grassmann parities depending on the fields A(3t). Indeed, e.g. the validity of (2.84) follows from the calculation of variations:
A = AA (3t) A(3t)-s p p = AA (3t) A(3t)-s p A-s p, (AB) = (A)B + A(B) = (A-s pp)B + A(B-s pp) = (A-s p)B(-1)(B) + A(B-s p)
(2.87) p,(2.88)
and the same for the second: 1 2(AB), and third: 12 2 (AB) variations.
For instance, the ghost-dependent functional, Sadd(3), with cubic and quartic in fictitious fields terms is derived from the expression:
Sadd(3)
=
1 6
ddx tr 3Bp M (A)Cq, Cr + D(A)Cq, Cr
(2.89)
+ C 2 M (A)Cp, Bqr + 2 D(A)Cp, Bqr - M (A)Bpr, Cq - D(A)Bpr, Cq
+ M (A)Cr, Cp , Cq + D(A)Cr, Cp , Cq + D(A)Cr, Cp , Cq pqr,
where we have omitted vanishing terms, Cp, Cq pqr 0, and with use of the antisymmetry in p, q, r as well as the integration by parts the representation (2.81) immediately follows from (2.89). Note, the each term in Sadd(3), which determine the interaction vertexes from the sector of fictitious fields, contains the
14
space-time differential operator for any gauge from R-gauges, that looks as more nontrivial analog of Sadd (2.20) for N = 2 BRST symmetry.
Let us study some consequences of the suggested N = 3 BRST transformations. As in the N = 1, 2
BRST case, the N = 3 invariance, for the corresponding generating functionals of Green's functions,
Z3|(J ) , W3|(J ) and effective action, 3|( (3) ): 3|( (3) ) = W3|(J ) - JAt A(3t) , JAt = -(3|/ A(3t) ), A(3t) = - A(Jt)W3|(J ),
(2.90)
with a given gauge condition (3)((3)), leads to the presence of an G(3)-triplet of Ward identities:
JAt A(3t)-s p (3),J = 0,
JAt
A(3t)-s p
(3),J = 0,
3| A(3t)
A(3t)-s p (3) = 0,
(2.91)
with respective normalized average expectation values M , (3),J M , (3),J M , (3), so that
1 (3),J = 1, for a functional M = M ((3)) calculated using Z3|(J ), W3|(J ), 3| for a given gauge fermion (3) in the presence of external sources , JAt and mean fields A(3t) . The gauge independence
of the path integral Z3|(0) Z3|(3) (0) under an infinitesimal variation of the gauge condition, (3) (3) + (3):
Z3|(3)+(3) (0) = Z3|(3) (0).
(2.92)
is established using the infinitesimal FD N = 3 BRST transformations with the functional parameters,
p() =
1 3!
i/h
(3)()-s q-s rpqr, .
(2.93)
which we consider in details in the Section 5.
The equivalence of N = 3 and N = 1 BRST invariant path integrals Z3|(0) (2.73), Z (2.5),. e.g in R-like gauges immediately follows from the structure of the quantum action S(3) , (2.78). Indeed,
integrating by the fields Bpq, second, with respect to Cp, then trivially with respect to Bp and Bpq we get:
Z3|()(0) = =
d(3)dCdBpdBpqdet3M (A)(Cp) exp
i h
S(3) (3)
-
ddx tr BpqM (A)Crpqr
ddBpqdet3M (A)det-3M (A)(Bpq) exp
i h
S
= Z,
(2.94)
where, e.g. (Cp) =
x
3 k=1
(C
k
(x))
appears
by
the
functional
-function
and
S
is the N = 1
BRST invariant quantum action (2.5) given in the R- gauges. The functional Z coincides with one
given in (2.5) after identification for the field B as B = C which plays now the role of the ghost field.
The crucial point of the found N = 3 BRST symmetry transformations in M(to3t) that the whole fields (3) due to the relations (2.38), (2.39) of the Statement leading to: ku(3) = k(4) = ku(4), maybe organized in the respective multiplet of N = 4 field irreducible SUSY transformations with constant 4 Grassmann-
odd parameters, r, r = 1, 2, 3, 4. The construction of the respective N = 4 SUSY transformations will be the main aim of the next Section.
3 N = 4 global SUSY transformations
Before introducing the N = 4 SUSY transformations we consider additional N = 1-parametric SUSY
transformations in M(to3t) with new anticommuting with triplet of p:
Grassmann-odd p + p = 0,
nilpotent where as
generator, for N = 1
-s , parameter, : 2, -s 2 antiBRST transformations
= 0, [17],
[18] the role of the antighost field C, as well as the rest multiplet (2.68) (3) from the non-minimal sector
should be considered in opposite way ac compared to the multiplet (3) = A, Cp1, Bp1p2 , B from the G(3) irreducible (minimal) representation.
15
3.1 Additional N = 1 BRST transformations on the fields of N = 3 representation
It is valid the following Lemma 3: The action of the generator -s of the Abelian superalgebra G(1) on the fields
parameterizing M(to3t) is determined by the relations:
-s
A
D(A)C
C
1 2
C, C
Bp1
Bp1 , C
B p1 p2 C p1
Bp1p2 , C
.
Bp1 + Cp1 , C
Bp1p2 Bp1p2 + Bp1p2 , C
B
B
B
0
(3), (3) (3.1)
The respective N given by the rule:
= 1 SUSY transformations with anticommuting parameter, (3) = (3)-s . The transformations (3.1) reflects the fact
, on that
the only
fields (3) the field C
are (x)
appears by the active (as compared to Cp) connection.
To prove the correctness of (3.1) it is sufficient to check, the nilpotency of -s on each field from the
multiplet, the gauge
bfieecldauAse :ofAthe-sh2om=o0g,enmeietaynsinthGartastshme asnent
grading of local
is obvious. generators
The nilpotency calculated on of the gauge transformations,
Ri (A) = (2.49) but
Rfomrn(-sxp;)y:)
(2.4),
for
=
0,
forms
the
local
algebra
Lie
(as
well
as
for
the
case
of
Lemma
1
Ri (A)- j Rj (A) - (-1) Ri (A)- j Rj (A) = -FRi (A), for F = f mnl(x - z)(x - y). (3.2)
The nilpotency on any other fields follows, first, from the Leibnitz rule of acting of -s on the commutator of any functions A, B with definite Grassmann parities:
A, B -s = A-s , B (-1)(B) + A, B-s ,
(3.3)
second, from the Jacobi identity: A, C , C (-1)(A) - C, A , C + C, C , A (-1)(A) = 0,
(3.4)
for any A C, Bp1 , Bp1p2 , Cp1 , Bp1p2 , B, B . E.g. for Grassmann-even A = Bp1p2 we have,
Bp1p2 -s 2 = Bp1p2 + Bp1p2 , C -s
=
Bp1p2 , C
-
Bp1p2 +
Bp1p2 , C , C
+
1 2
Bp1p2 ,
C, C
= - 1 Bp1p2 , C , C - C, Bp1p2 , C + C, C , Bp1p2 2
= 0,
(3.5)
where we have used the relations (3.1), linearity and Leibnitz rule (3.3) for -s , Jacobi identity (3.4) and
generalized antisymmetry for the (super)commutator.
The transformations,
(3) (3) = (3)(1 + -s ) = (3) + (3),
appear by the invariance transformations of following path integral and quantum action:
(3.6)
Z1|(0) =
d(3)d(3) exp
i h
S(1)
(3), (3)
, with S(1) = S0(A) + (1)-s ,
(3.7)
16
with a new gauge fermion functional, (1) = (1) (3) , which should determine a non-degenerate
quantum action S(1) on the Mt(o3t), i.e. with non-degenerate supermatrix of the second derivatives in
A(3t), B(3t)
of
S(1)
evaluated -
on
a
some
vicinity
of
the
solutions,
A0(t3)
=
(A0 , 0, ..., 0)
of
the
respective
equations of motions: S0 j = 0:
(1) = B(1)(A, B) + CpBqrpqr + (1)((3)), for deg.(1) > 2, deg(1)(A, B) = 1.
(3.8)
Indeed, from the invariance of the integration measure, d(3), and quantum action, S(1) , due to the same reason as for the standard N = 1 BRST realization in Mtot (2.8):
S(1) = 0, d(3) = d(3)sdet (3)/(3) = d(3),
(3.9)
it follows the invariance of the integrand in Z1|(0) with respect to these transformations. It justifies a definition of the transformations (3.6) as N = 1 antiBRST symmetry transformations in M(to3t).
Choosing, (1)((3)) = 0 in (3.8) for the quadratic gauge functional, (1), (in particular, for Rgauges: (1)(A, B) = (A, B)) we find for the quantum action, S(1) , the representation:
S(1) = S0(A) + ddx tr A + g2B B + BM (A)C + BpBqr + CpBqr pqr + Sadd(1),(3.10)
Sadd(1) = ddx tr Cp Bqr , C + Cp, C Bqr pqr.
(3.11)
Integrating out of Bp, Bqr fields we get for the path integral:
Z1|(0) =
dAdBdCdBdCpdBqr(Bq1r1 )(Cp1 ) exp
i h
S (1)
+ Sadd(1)
(3.12)
=
dAdB dC dB exp
i h
S
(1)
with S = S0(A) + (1) -s , (1) = B(1)(A, B),(3.13)
where the resulting (after integration) fields A(1), in fact, coincide with the fields given by the local formulation for the path integral (2.5) within Faddeev-Popov rules with N = 1 BRST symmetry, in
particular, for the Landau gauge (1.5) under identification:
A(1) = A, B, C, B A = A, C, C, B .
(3.14)
The only difference consists in the realization N = 1 antiBRST symmetry for Z1|(0) given in M(to3t) and of N = 1 BRST symmetry for Z (2.5) determine over Mtot. After replacing (B, C) (C, C) the above path integral will coincide exactly
Thus, we reached the validity of the
Statement 2: The path integral, Z1|(0), (3.7) with the quantum action, S(1) , (3.10) at least, for the
special quadratic gauge fermion, (1), (3.8) with (1) = 0 determined in N = 3 reducible representation space, M(to3t), of G(3) superalgebra, but with realization of the additional N = 1 antiBRST symmetry (3.1), (3.9) coincide with respective path integral (3.12), with the quantum action, S, (3.13) obtained with use of N = 1 antiBRST symmetry transformations acting in the standard configuration space, Mtot.
Now, we may reveal the physical contents of the fields spectrum for the Z3|(0) (2.73), S(3) (3) (2.78)(2.81) being invariant with respect to N = 3 BRST symmetry transformations (2.45), (2.69). Namely, the fields B, C from M(to3t) space correspond respectively to the pair of ghost field C inheriting the gauge symmetry and antighost field, C, introducing the gauge condition in the gauge fermion for N = 1 BRST symmetry realization of the standard Faddeev-Popov path integral. The triplet of the ghost fields
17
Cp
and
triplet
of
dual
to
B p1 p2
fields:
Bp3
=
1 2
p1p2
p3
B
p1
p2
=
B23, B31, B12
are organized into the pairs
of N = 3 triplet of Grassmann-odd ghost-antighost pairs: Cp, Bp . The triplet of the Grassmann-even
fictitious
fields
Bp
and
triplet
of
dual
to
B p1 p2
fields:
Bp3
=
1 2
p1
p2
p3
B
p1
p2
=
B23, B31, B12
forms the
pairs of N = 3 triplet of Grassmann-even ghost-antighost pairs: Bp, Bp . The role of the Nakanishi-
Lautrup field B remains the same as in case of standard N = 1 BRST symmetry formulation, i.e. as the
Lagrangian multiplier (at least for Landau gauge) introducing the gauge into the quantum action.
Because of, the term in the ghost part, Sgh(3), (2.80) with Grassmann-even triplet of ghost-antighost pairs maybe presented as follows,
1 2
ddx tr BpM (A)Bqrpqr
ddx tr BpM (A)Bp
(3.15)
we can immediately identify the fields, (C0, C0; C[3], C[3]; B[3], B[3]) in the quantum action (2.34) for the local representation (2.33) of the generalized path integral (2.31) , for ku(3) = 3, with singlet and Grassmann-odd and Grassmann-even triplets of ghost pairs as follows:
C0, C0; C[3], C[3]; B[3], B[3] = B, C; Cp, Bp; Bp, Bp, .
(3.16)
Note, first, that for N = 1 antiBRST symmetry realization in the configuration space M(to3t) it is possible in addition to the path integral formulation (3.7) introduce all necessary for diagrammatic Feynman tech-
nique generating functionals of Green functions as it was done for N = 1 and N = 3 BRST symmetry case
in the Subsections 2.1, 2.3 and study theirs respective properties (Ward identities, gauge-independence
problem). Second, as for the above developed N = 1 antiBRST symmetry concept in M(to3t) it is possible
mtoatcioonnsstroufcGt (a3)sosu-cpaellreadlgeNbra=w3ithantthiBe RtrSipTlestysmomf tehtreyantrtaicnosmfomrmutaitniogngsenasertahtoersN-s=p
3 SUSY transforwith lower indices
p = 1, 2, 3 and Grassmann-odd parameters, p. Doing so we should, to change all the Grassmann-odd
and Grassmann-even ghosts on its antighosts in the N = 3 SUSY transformations described by Lemmas 1, 2, starting from the change for the gauge parameters : = Bpp and the first relations in a chain of
these transformation
A-s p = D(A)Bp,
Bq-s p = pqrBr +
1 2
Bq ,
Bp
,...,
(3.17)
and finishing with the construction of the respective path integral, whose action and functional measure should be invariant with respect to these transformations. We leave the details of this interesting concept out of the paper scope.
3.2 N = 4 = 3 + 1 SUSY transformations
Now, we are able to consider the triplet of the Grassmann-odd ghost fields Cp and singlet C, triplets of the Grassmann-even ghost fields Bpq and Bp, triplet of new Grassmann-odd ghost fields Bpq and singlet B on the equal footing within corresponding Grassmann-odd quartet, Cr, Grassmann-even sextet, Br1r2, and Grassmann-odd quartet, Br1r2r3 for r, r1, r2, r3 = 1, 2, 3, 4 as the elements (with the fields A, B) of the irreducible tensor representation of the Abelian G(4) superalgebra. In fact, the N = 3 and N = 1
representations of G(3) and G(1) superalgebra in the same G(3)-representation space of the fields (3) are nontrivially entangled in unique N = 4 irreducible representation in the same representation space M(to3t) = M(to4t) whose local coordinates (fields) are organized into G(4)-irreducible antisymmetric tensors, as well as the parameters and generators have the structures:
G(4)
G(3)
G(3)
G(3)
Cr, Br1r2 , Br1r2r3 , B = Cp, C , Bp1p2 , Bp1 , B, Bp1p2 , B ,
r = p, ; -s r = -s p, -s ; r = (p, 4) = (1, 2, 3, 4).
(3.18) (3.19)
18
Lemma 4: The action of the generators -s r of N = 4-parametric Abelian superalgebra G(4) on the fields (4) = A, Cr, Br1r2 , Br1r2r3 , B is given by the relations:
A C r1 B r1 r2
B r1 r2 r3
B
with
-s r
Br1r2r
+
1 2
D (A)C r
B r1 r
+
1 2
Cr1 , Cr
Br1r2 , Cr
-
1 6
C[r1 ,
Cr2], Cr
r1r2r3rB +
1 2
Br1r2r3 , Cr
-
(-1)P (r1,r2,r3)
1 8
Br1r2 , Cr3 , Cr
+
1 6
P
1 2
B, Cr
-
1 4!
Br1r2r3 , Cr4 , Cr r1r2r3r4
(-1)P (r1,r2,r3)X r1r2r3r = X r1r2r3r - X r2r1r3r - X r1r3r2r + . . . ,
Br1r, Cr2 , Cr3 (3.20)
P
where the sign, P (-1)P (r1,r2,r3)Xr1r2r3r means the summation over all (odd with sign " - " and even
with " + ") 3! permutations of the indices quartet of anticommuting parameters, r,
(r1, r2, on the
r3). The respective N = 4 fields (4) are determined
SUSY transformations with as: (4) = (4)-s rr.
The form of the transformations (3.20) follows from the chain (2.41), (2.43) for N = 4. To prove the Lemma we will follow the algorithm elaborated when the Lemma 1 was proved. We start from the boundary condition for the transformations (3.20) inherited from the gauge transformations for A (2.40)
and present the realization for the sought-for generators as series:
-s r = -s re :
e0
A-s r = A-s r0 = D(A)Cr and Cr1 -s r0 0.
(3.21)
Then, because of,
A -s r01 -s r02 + -s r02 -s r01 = 0,
(3.22)
we A
-sshr1ould0)a, dstdarttoing-sfr0romthethneoGnrtarisvsimalananct-ieovnenosfexnteewt
part of the
-s r1 on fields B
C r1
r1 r2
(vanishing = Br1r2mtm
when acting on A: (BRST-like variation
of Cr1 ) (2.41)
Cr1 -s r12
=
Br1r2
+
(C
1
)rs11
r2 s2
Cs1 , Cs2
,
for Br1r2 = -Br2r1 ,
(Br1r2 ) = 0
(3.23)
with unknown real numbers:
(C
1
)rs11
r2 s2
=
(C
1
)rs12
r2 s1
,
to
be
determined
from
the
consistency
of
4
4
equations:
l
A -s r[11]-s r[12] + -s r[11]-s r[12] = 0, where -s r[l]
-s rn, and Cr1 -s r02 0,
(3.24)
n0
from which follows the antisymmetry for Br1r2 in the indices r1, r2. The solution for (3.24) looks as:
(C
1
)rs11
r2 s2
=
1 4
{r1s1
sr22}
,
for {r1s1 sr22} sr11 sr22 + sr21 sr12 ,
(3.25)
that proves the validity of the 2-nd row in the table (3.20).
Second, in view of
Cr -s r[11]-s r[12] + -s r[12]-s r[11] = 0,
(3.26)
we should Cr1 -s r2
determine, for 0), in the form
a nontrivial of a general
action anzatz,
of -s r2 on Br1r2 (vanishing when starting from the Grassmann-odd
acting on A, field variables
Cr: A, Br1r2r3 =
Br1r2r3mtm (BRST-like variation of Br1r2 ) (2.43) up to the third power in Cr with a preservation of
Grassmann homogeneity in each summand, as in the (3.23),
Br1r2 -s r23
=
B r1 r2 r3
+
(B
1
)sr11
r2 r3 s2 s3
Bs1s2 , Cs3
+
(B
2
)rs11
r2 r3 s2 s3
Cs1 ,
Cs2 , Cs3
, (Br1r2r3 ) = 1.(3.27)
19
with
unknown real numbers:
(Bj
)sr11
r2 s2
r3 s3
,
j
=
1, 2;
satisfying
the
same
antisymmetry
properties
as
for
(B
j
)p1 p2 p3
r1 r2 r3
in
(2.53)
and
to
be
determined
from
the
solution
of
the
444
equations
Cr1 -s r[22]-s r[23] + -s r[23]-s r[22] = 0, where Br1r2 -s rl 3 0, l = 0, 1.
(3.28)
Its general solution has the form:
(B1
)sr11
r2 s2
r3 s3
=
1 4
s[r11
sr22
]
sr33
:
(B1
)rs11
r2 s2
r3 s3
Bs1s2 , Cs3
=
1 2
Br1r2 , Cr3
,
(B2
)sr11
r2 s2
r3 s3
=
-
1 12
s[r11
sr22
]
sr33
:
(B2
)sr11
r2 s2
r3 s3
Cs1 ,
Cs2 , Cs3
= - 1 C[r1 , 12
Cr2], Cr3
(3.29) . (3.30)
providing the validity of the 3-rd row in the table (3.20).
Third, there are only the fourth-rank independent completely antisymmetric constant tensor with upper, r1r2r3r4 , and lower, r1r2r3r4 , indices, which are normalized by the conditions (according with (2.37))
1234 = 1, r1r2r3r4 s1s2s3r4 = det srji , i, j = 1, 2, 3; r1r2r3r4 s1s2r3r4 = 2 sr11 sr22 - sr12 sr21 ; r1r2r3r4 s1r2r3r4 = 6sr11 .
(3.31)
due to
Br1r2 -s r[23]-s r[24] + -s r[24]-s r[23] = 0,
(3.32)
we should determine for A, Cr, Br1r2 -s r33 0)
a a
nontrivial action of -s r3 general ansatz with use
on of
Br1r2r3 , the new
(vanishing when acting on A, Cr, Grassman-even field variable, B,
Br1r2
:
Br1r2r3 -s r3
=
r1r2r3r B
+
(B
1
)sr11
r2 r3 s2 s3
r s
Bs1s2s3 ,
Cs
+
(B2
)sr11
r2 s2
r3r s3 s
Bs1s2 , Cs3 , Cs
+
(B
3
)sr11
r2 s2
r3r s3 s
Bs1s2 ,
B s3 s
+
(B
4
)sr11
r2 s2
r3r s3 s
Cs1 ,
Cs2 ,
Cs3 , Cs
.
(3.33)
Here
,
the
unknown
real
numbers
(Bi
)sr11
r2 s2
r3 r s3 s
,
i
=
1, 2, 3, 4,
obey
the
analogous
properties
of
(anti)sym-
metry as for the coefficients (B2)pr1r2r3r4 (2.58) in the respective lower and upper indices that is now
dictated by antisymmetry for Br1r2r3, Bs1s2 and symmetry for Cs3 , Cs in G(4)-indices. They should
be determined from the 6 4 4 equations:
Br1r2 -s r[33]-s r[34] + -s r[34]-s r[33] = 0, where Br1r2r3 -s rl 0, l = 0, 1, 2
(3.34)
Its general solution looks as
(B1
)sr11
r2 r3 s2 s3
r s
Bs1s2s3 , Cs
=
1 2
Br1r2r3 , Cr
,
(B2
)sr11
r2 r3 s2 s3
r s
Bs1s2 , Cs3 , Cs
=-
(-1)P (r1,r2,r3)
1 4
P
(B3
)sr11
r2 r3 s2 s3
r s
=
(B4
)sr11
r2 s2
r3r s3 s
=
0,
Br1r2 , Cr3
, Cr
+
1 3
(3.35) Br1r, Cr2 , Cr3 ,(3.36)
(3.37)
providing the validity of the 4-th row in the table (3.20). In deriving (3.35)(3.37), the use has been made of the symmetry for the commutator [Cp, Cr] = [Cr, Cp], Jacobi identities both for (Bpp1 , Cp2], Cp3 ) and for (Cp1 , Cp2], Cp3 ), which establish the absence of the 4-th power in the fields Cp in the transformation for Br1r2r3 (3.33) completely repeating the equations (2.64) for N = 3 case, but with replacement: Bp1p2 , B, Cp, -s p[3] on Br1r2 , Br1r2r3 , Cr, -s r[3] .
Fourth, because of,
Br1r2r3 -s r[34]-s r[35] + -s r[35]-s r[34] = 0,
(3.38)
we should determine for a nontrivial action A, Cr, Br1r2 , Br1r2r3 -s r44 0) a general
of -s r4 on B, (vanishing when acting ansatz without new Grassman-odd
on A, Cr, Br1r2 , Br1 field variable due to
r2r3 : 5-th
20
order nilpotency for -s r (
5 l=1
-s rl
0)
up
to
the
fifth
order
in
Cr
with
a
preservation
of
Grassmann
homogeneity in each summand, as in the case of (3.23), (3.27) and (3.33),
B-s r4 = (B1)rs B, Cs + (B2)rs1s2s3s4s Bs1s2s3 , Cs4 , Cs + (B3)rs1s2s3s4s Bs1s2 , Bs3s4 , Cs + (B4)rs1s2s3s4s Cs1 , Cs2 , Cs3 , Cs4 , Cs
. (3.39)
The above unknown real numbers, (Bi)rs, (Bi)rs1s2s3s4s, i = 2, 3, 4, obey the obvious properties of (anti)symmetry, e,g, as for the coefficients (B2)rs1s2s3s4s = -(B2)rs2s1s3s4s=(B2)rs1s3s2s4s. They should be determined from the 4 4 4 equations:
Br1r2r3 -s r[44]-s r[45] + -s r[45]-s r[44] = 0, where B-s rl 0, l = 0, 1, 2, 3,
(3.40)
whose general solution has the form
(B 1 )rs
=
1 2
sr
,
(B 2 )rs1 s2 s3 s4 s
=
-
1 4!
sr
s1s2
s3
s4
,
(B
3
)sr11
r2 s2
r3r s3 s
=
(B4
)sr11
r2 s2
r3r s3 s
=
0,
(3.41)
providing the validity of the last row in the table (3.20). In deriving (3.41), we have used the above
mentioned properties found when establishing (3.35)(3.37) as well as the Jacobi identity for the fields Br1r2r3, Cr4 , Cr5 ) with the following representations for "4-cocycles", i.e. for 5-th rank tensors being antisymmetric in 4 indices:
1
(-1)P (rr1r2r3)
3!
P
1
(-1)P (rr1r2r3)
2!
P
Brr1r2 , Cr3
, Cr4
= rr1r2r3 P4r4
for
P4r4
=
1 3!
Brr1r2 , Cr3 , Cr4 rr1r2r3,(3.42)
Brr1r4 , Cr2
, Cr3
= rr1r2r3 Qr44
for
Qr44
=
1 2
Brr1r4 , Cr2 , Cr3 rr1r2r3, (3.43)
so that the latter quantities, Qr44 pared for the N = 3 quantities,
, (3.43) do not present in the transformations for Qp Qp3 (2.62), (2.63), which are non-vanishing
B in when
(3.20) enter
as cominto the
transformations for B (2.45). One can immediately check that the equations (3.40) considered for B,
instead of Br1r2r3 , are fulfilled as well:
B -s r[41]-s r[42] + -s r[42]-s r[41] = 0 -s {[4r]1 -s [r42]} = 0.
(3.44)
Therefore, -s r = -s r[4] are the generators of the irreducible representation of G(4) superalgebra of N = 4-
parametric SUSY transformations in the field superspace, Mt(o4t), parameterized by the fields, A(44). That fact completes the proof of the Lemma 4.
Note, first, that the transformations on the fields Br1r2 , Br1r2r3 , B do not contain the terms more than
cubic in the fictitious fields, whereas they depend linearly on the fields B's in the cubic terms. Second, the quantities, Qr4 do not enter into the transformations for Grassmann-even field B as compared to its N = 3 analogs, Qp, which are essentially presented in the transformations for Grassmann-odd B.
Now, we have all necessary to construct N = 4 G(4)-invariant quantum action for the YangMills theory.
4 N=4 BRST invariant gauge-fixing procedure and local path integral
Let us determine according to the prescription (2.33), (2.36) the local path integral, Z4, generating functionals of Green functions in any admissible gauge, turning to the non-degenerate Faddeev-Popov matrix, for Yang-Mills theory underlying above constructed explicit N = 4 SUSY invariance (3.20) in
21
the total configuration space M(to4t), M(to4t) = M(to3t), with quartet of anticommuting parameters r and the local quantum action SY(4) ((4)) as follows:
Z4|Y (0) =
d(4) exp
i h
SY(4)
(4)
,
with SY(4)
= S0(A) -
1 4!
Y(4)
-s r1
-s r2
-s r3
-s r4
[r]4
,
(4.1)
Z4|Y (J(4)) =
d(4) exp
i h
SY(4)
(4)
+ J(4)(4)
= exp
i h
W4|Y
(J(4)
)
.
(4.2)
with use of the compact notation for, r1r2r3r4 [r]4. Here, W4|Y (J(4)) is the generating functionals of connected correlated Green functions and gauge boson functional, F(N(4)) = Y(4) = Y(4) (4) , depends on the fields (4) as follows (confer with Y (2.17) for N = 2 BRST symmetry):
Y(4)((4)) = Y(04)((4)) + Y(4)((4)), for degY(4) > 2, degY(04)((4)) = 2,
(4.3)
and JAt4 are the external sources (coinciding with ones for N = 3 case, JAt3 ) to the Green functions related to A(4t4) with the same Grassmann parities: (JAt4 ) = (A(4t4)).
It is not difficult to check that both the' functional measure, d(4), as well as the quantum action, SY(4) , are invariant with respect to the change of variables, A(4t) (A4)t generated by N = 4 SUSY transformations (3.20) with accuracy up to the first order in constant p (equally with infinitesimal p):
(A4)t = A(4t)(1 + -s rr) : A(4t) = A(4t)-s rr = SY(4) = o(), sdet (4)/(4) = 1 + o(), (4.4)
These properties justify the definition of the transformations:
A(4t) = (A4)t - A(4t) = A(4t)-s rr,
(4.5)
with the explicit action of the generators -s r (3.20) on the component fields as N = 4-parametric BRST transformations for the functionals Z4|Y (0), Z4|Y (J(4)).
The particular representations for the path integrals (4.1), (4.2) in the Landau and Feynman gauges may be obtained within the same R-family of the gauges as for the N = 1, 2, 3 BRST invariant cases (2.5), (2.17), (2.73). To do so we determine the quadratic gauge boson functional, Y(04)((4)), which should generate R-like gauges as follows:
Y(04)((4)) = Y(04)(A) + Y(B4)(Brs) =
ddx tr
1 2
A
A
-
g2 4!
B
q1
q2
B
q3
q4
[q]4
8.
(4.6)
The quantum action, SY(4) , has the representation:
SY(4) (4)
=
S0
-
1 4!
Y(4)
-s r1
-s r2
-s r3
-s r4
[r]4
=
S0
+
Sgf (4)
+
Sgh(4)
+
Sadd(4),
Sgf(4) = ddx tr A + g2B B,
Sgh(4) =
ddx tr
1 3!
B
r1
r2 r3
M
(A)C
r4
+
1 8
B
r1
r2
M
(A)B
r3
r4
[r]4 ,
(4.7) (4.8) (4.9)
8Instead of the functional Y(B4)(Brs) which generates the -dependent term it is possible to consider the functional
Y~(B4)(C, Brsq )
=
g2 4!
ddx trCq1 Bq2q3q4 [q]4 still leading to the same quadratic term: g2B2 in Sgf(4), but with another
non-quadratic in the fictitious fields summands in Sadd(4).
22
Sadd(4) =
ddx
tr
1 4!
(A) 2 Br1r2r3 , Cr4 -
Br1r2 , Cr3 , Cr4
- Br1r2 Cr3 , M (A)Cr4
+ 4 Cr3 , DCr4 + Cr1 DCr2 , Br3r4 - Cr2 , DBr3r4 + DCr2 , Cr3 , Cr4
+ g2 4
1 Bq1q2 , Br1r2 4
Bq3q4 , Br3r4
+
1 (3!)2
Cq1 ,
Cq2 , Cr2 , Cr1
Cq3 , Cq4 , Cr4 , Cr3 [q]4 [r]4 + S ,
(4.10)
with some Grassmann-even functional S vanishing in the Landau gauge ( = 0). To derive (4.7)(4.10) we have used the relations (2.82)(2.86), (3.3) being adapted for N = 4 BRST symmetry, as well as the following from (2.86) Leibnitz-like property of the generators, -s r acting on the product of any functions A, B with definite Grassmann grading:
(AB) -s r1 -s r2 -s r3 -s r4 [r]4 = A-s r1 -s r2 -s r3 -s r4 B + 4A-s r1 (B-s r2 -s r3 -s r4 ) (-1)(B)
(4.11)
+6A-s r1-s r2 (B-s r3 -s r4 ) + 4A-s r1 -s r2 -s r3 (B-s r4 ) (-1)(B) + A (B-s r1 -s r2 -s r3 -s r4 ) [r]4 .
The detailed derivation for the quantum action, structure of the additional -dependent term, S, are considered in the Appendix B. Note, the each terms in Sadd(4) contain space-time derivative and, in particular, the second-order differential operator (Faddeev-Popov operator) for any gauge from R-gauges, as for the Sadd(3) (2.89) for N = 3 BRST symmetry. For the Landau gauge, the summands in Sadd(4) proportional to the Lorentz condition: (A) = 0, may be omitted therein due to the presence of ((A)) in the functional integral (4.1) after integrating over the fields B.
The equivalence of N = 4 and N = 1 BRST invariant path integrals Z4|Y (0) (4.1), Z (2.5),. e.g in the Landau gauge determined by the gauge functional Y(04)(A) (4.6) follows analogously to the derivation (2.94) for N = 3 case from the structure of the quantum action SY(4) , (4.7)(4.10). Indeed, using the representation for SY(4) (B.22) in terms of dual G(4)-tensor fields Br1r2 , Cr (B.20), (B.21) let us divide the quartets of ghost Grassman-odd fields Cr, Cr as G(3)-triplets and singlets which permits to present the respective term in the ghost part of the action as:
Cr; Cr = (C, Cp); (C, Cp) CrM (A)Cr = CM (A)C + CpM (A)Cp,
(4.12)
for r = (1, p), p = 1, 2, 3 and C -B234. Because of the remark above we may omit the terms with
(A) with except for Nakanishi-Lautrup field B and therefore integrate by the fields Cp, second, with respect to Cp, and then trivially with respect to Br1r2 and Br1r2 for 1 r1 < r2 3 as follows:
Z4|Y (0)(0) = =
ddCpdBr1r2 dBr1r2 det3M (A)(Cp) exp
i h
SY(4)0 (4)
-
ddBr1r2 det3M (A)det-3M (A)(Br1r2 ) exp
i h
S
|=0
ddx tr CpM (A)Cp
= Z.
(4.13)
The functional Z exactly coincides with one given in (2.5) in the Landau gauge.
Again, the N = 4 BRST invariance, for the corresponding generating functionals of Green's functions, Z4|Y (J(4)) , W4|Y (J(4)) and effective action, 4|Y ( (4) ) determined by the same rule as for its N = 3 analog (2.90) with a given gauge condition Y(4)((4)), leads to the presence of an G(4)-quartet of Ward identities:
JAt4 A(4t4)-s r Y(4),J = 0,
JAt4
A(4t4)-s r
Y(4),J = 0,
4|Y A(4t4)
A(4t4)-s r Y(4) = 0,
(4.14)
23
with corresponding normalized average expectation values (as in (2.91)) in the presence of the external sources JAt4 and mean fields A(4t4) . The gauge independence of the path integral Z4|Y (0) Z4|Y(4) (0) under an infinitesimal variation of the gauge condition, Y(4) Y(4) + Y(4):
Z4|Y(4)+Y(4) (0) = Z4|Y(4) (0)
(4.15)
is established using the infinitesimal FD N = 4 BRST transformations with the functional parameters,
r1
((4) )
=
-
1 4!
i/h Y(4)((4))
4
-s rk [r]4, .
k=2
(4.16)
which will be carefully elaborated in the next Section 5 as well as some important consequences of the suggested N = 3 and N = 4 BRST transformations, respective quantum actions and gauge-fixing procedures.
5 N = k, k = 3, 4 infinitesimal and finite BRST transformations and their Jacobians
Here, we consider the algorithm of construction of finite N = k BRST transformations starting from its algebraic (infinitesimal) proposals respectively for k = 3, 4 cases and calculate theirs Jacobians together with some physical corollaries.
5.1 N = 3 BRST transformations
The finite N = 3 BRST transformations acting on the fields A(3t3), parameterizing configuration space M(to3t), are restored from the algebraic (equivalently, infinitesimal for small p) N = 3 BRST transformations, generalizing the recipe [26] for N = 2 BRST symmetry and following to [27], [35] in two equivalent ways. First, the derivation is based on the condition which follows for any -s p-closed regular functional K (3) to be invariant with respect to right-hand supergroup transformations and, second, from the Lie equations :
1) K g(p)(3) = K (3) and K-s p = 0 g (p) = exp {-s pp} ,
2) A(3t3) (3)| -p = A(3t3) (3)| -s p
for
-p
- p
9.
(5.1) (5.2)
whose set forms an Abelian 3-parametric supergroup,
G(3) =
g(p) : g(p) = 1 +
3
1 e!
e
-s pl pl = exp (-s pp)
,
e=1 l=1
(5.3)
where -s p, -s p1 -s p2 [p]3 and -s p1 -s p2 -s p3 [p]3 are respectively the generators of N = 3 BRST, quadratic mixed and cubic mixed N = 3 BRST transformations in the space of fields A(3t3).
For the field-dependent G(3) triplet of odd-valued functionals p((3)), which is not closed under N = 3 BRST transformations, p-s p = 0, but for, /xp = 0, the finite element g p((3)) cannot be
9For a t-rescaled argument p tp of A(3t3) (3)|t , the form of Lie equations:
d dt
A(3t3)
(3)|t
= A(3t3) (3)|t -s pp,
is equivalent to (5.2) with a formal solution for constant p: A(3t3) (3)|t = A(3t3) exp t-s pp
24
presented as group element (using an exp-like relation) in (5.3). In this case, the set of algebraic elements G(3) = g~lin(((3))) := 1 + -s pp((3)) forms a non-linear superalgebra which corresponds to a set of formal group-like finite elements:
G~(3) =
g~ p((3))
:
g~
=
1
+
-s pp
+
1 2
-s p
-s q
q
p
+
1 3!
-s p-s q
-s r
r
q
p
,
(5.4)
with loss of the commutativity property: g~ (p1)((3)) , g~ (p2)((3)) = 0. The Jacobian of a change of variables: A(3t3) (A3)t3 = A(3t3)g~ p((3)) , in M(to3t), in the path integral Z3|(0) (2.73) generated by finite FD N = 3 BRST transformations may be calculated explicitly, following a generalization of the
recipe proposed in [26] for an irreducible gauge theory with a closed algebra (including the YangMills
theory, see as well [31]) in the N = 2 case, or following the recipe of [27] for N = m finite FD SUSY
transformations. The results are as follows:
sdet
A(3t3)g~ p((3))
- B(33t)
= exp
- trG(3) ln [e + m]pq
, for (epq , mpq ) qp, q-s p ,
(5.5)
where trG(3) denotes trace over matrix G(3)-indices. Representation (5.5) is based on the explicit calculation which generalize the algorithm for the Jacobian of the change of variables generated by N = 2
BRST transformations for Yang-Mills theory [31], [39] as follows
-
sdet
A(3t3) g~
PBA33 = (Q1)AB33 (Q2)AB33 (Q3)AB33
p((3))
B(33t)
= exp Str ln BA33 + MBA33
, for MBA33
A(33)-s p
- p B3
= p A(33)-s p
, - B3
-
A(33)-s q-s p
- q B3
(-1)A3 +1,
= =
1 2
p
q
1 (3!)2
()3
A(A(333)3)-s(-sp -)s3q-B- 3B3(--1)31! Ap3 q+r1 ,A(33)
(-s )3
- r B3
= ,
PBA33
+
3
(Qi )AB33
i=1
(5.6) (5.7)
3
2
= Str P + Qi n = Str P + Qi n + n StrP n-1Q3,
(5.8)
i=1
i=1
2
Str P + Qi n = StrP n + StrFn P, Q1, Q2 with Fn P, Qi (Qi=0) = 0,
i=1
(5.9)
(where we imply: At3 A3; ()3 q1 q2 q3 [q]3 and (-s )3 given by (5.13)), so that the only supermatrix P gives the non-vanishing contribution into the Jacobian (5.5):
sdet
A(3t3)g~ p((3))
- B(33t)
= exp
-
(-1)n n
Str(PBA33
)n
,
n=1
(5.10)
as compared the Jacobian
w(5i.t5h),thdeuenitlop:otenm kt=1suppkerma0trfoicresm(Q>i3)AB. 33
(entering
in
Fn
(5.9))
which
do
not
contribute
to
For functionally-independent FD p (3) , the Jacobian (5.5) is not -s p-closed in general. For -s p-
potential (thereby, functionally-dependent) parameters
^p1 (3)
=
1 2!
(3)
[p]3 -s p2 -s p3 ,
(5.11)
25
with an arbitrary potential being by Grassmann-odd-valued functional (3) the Jacobian (5.5) simplifies to N = 3 BRST exact functional determinant:
J(3) (3)
= sdet
-
A(3t3)g~
^p((3))
B(33t)
=
1 1 + 3! ((3))[p]3
3
-s pk
-3
,
J(3)((3))-s p = 0,
(5.12)
k=1
by virtue of the fact that the tensor quantity -s p1-s p2 -s p3 is completely antisymmetric in (p1, p2, p3) indices and can be presented as:
-s p1 -s p2 -s p3 = 1 [p]3 (-s )3 3!
for
(-s )3 -s q1 -s q2 -s q3 [q]3
which permits, because of:
4 k=1
-s qk
0,
to
have
the
representation
qp + ^q
(3)
-s p
=
qp
+
1 2!
(3)
qp2p3 -s p2 -s p3 -s p
=
qp
+
2
1 3!
qp2
p3
p2
p3
p
(-s )3
= qp
1
+
1 3!
(-s )3
,
= trG(3) ln
[qp + ^q-s p]
= trG(3) ln
qp
1+
1 3!
(-s )3
= qq ln
1
+
1 3!
(-s )3
(5.13) (5.14) (5.15)
that proves (5.12).
In the case of -s p-closed parameters p, p-s q = 0, including constant p, i.e., for G(3) group elements, the Jacobian becomes trivial: J(3) = 1. In turn, for the infinitesimal FD triplet ^p (3) (5.11) the Jacobian (5.12) reduces to:
J(3) ((3) )
=
1-
1 2
((3))
-s
3 + o()
=
exp
-
1 2
((3)
)
-s
3
+ o(),
(5.16)
which permits to justify the gauge independence for the path integral Z(3) (and therefore for the conventional S-matrix) under small variation of the gauge condition: (3) (3) + (3), announced in
(2.92) because of
Z3|(3)+(3) (0) =
d(3)
sdet
A3
- B3
exp
i h
S(3)
+(3)
()
= Z3|(3) (0).
(5.17)
in accordance with the choice (2.93) for (3) in terms of ((3)) and therefore of ^p = ^p()
(3)|(3)
=
1 3
i/h
(3)
(3)
=
^p()
=
1 3!
i/h (3)-s q-s rpqr..
(5.18)
The another properties for the generating functionals of Green functions related to the finite FD N = 3 BRST transformations we will consider in the Section 6.
5.2 N = 4 BRST transformations
The results of the above subsection are easily adapted for N = 4 BRST transformations with some specific. Thus, the finite N = 4 BRST transformations acting on the fields A(4t4), parameterizing configuration space bMy (tto4wt) ocoeiqnuciivdailnegntwwitahysM: o(tro3t)frboymdtihmeecnosniodni,tiaornewrehsitcohrfeodllofrwosmfotrhaenaylg-esbrr-acilcosNed=re4guBlaRrSfuTntcrtaionnsafolrKmati(o4n) s to be invariant with respect to right-hand supergroup transformations {g(r)}, r = 1, 2, 3, 4, or from the
Lie equations:
1) K g(r)(4) = K (4) and K-s r = 0 g (r) = exp {-s rr} ,
2) A(4t4) (4)| -r = A(4t4) (4)| -s r
for
- r
- r
.
(5.19) (5.20)
26
The set of such {g(r)} forms an Abelian 4-parametric supergroup,
G(4) =
g(r) : g(r) = 1 +
4
1 e!
e
-s rl rl = exp (-s rr)
,
e=1 l=1
(5.21)
For the field-dependent BRST transformations,
G(4) quartet of r-s r = 0, the
odd-valued functionals r finite element g r((4))
((4)), which is not closed under N = 4 cannot be presented as group element
in (5.21). The set of algebraic elements G(4) = g~lin(((4))) := 1 + -s rr((4)) forms a non-linear
superalgebra which again corresponds to a set of formal group-like finite elements:
G~(4) =
g~ r((4))
: g~ = 1 +
4
1 e!
e
-s rk
e
re+1-k ((4))
,
e=1 k=1
k=1
(5.22)
The Jacobian of a change of variables: A(4t4) (A4)t4 = A(4t4)g~ r((4)) , in M(to4t), in the path integral Z4|Y (0) (4.1) and in Z4|Y (J(4)) (4.2) generated by finite FD N = 4 BRST transformations may be calculated explicitly following to the same way as for the Jacobian (5.5) in N = 3 case:
sdet
A(4t4)g~ r ((4))
- B(44t)
= exp
- trG(4) ln [e + m]rr12
, for (err12 , mrr12 ) rr21 , r2 -s r1 , (5.23)
where trG(4) denotes trace over matrix G(4)-indices. The justification of the representation (5.23) is based on the same points (5.6)(5.10) as for its N = 3 analog (5.5), whose detailed calculation we leave out of
the paper scope. For -s r-potential, therefore functionally-dependent parameters
^r1 (4)
=
-
1 3!
(4)
[r]4-s r2 -s r3 -s r4 ,
(5.24)
with an arbitrary potential being by Grassmann-even-valued functional (4) = (4) (4) the Jacobian (5.23) reduces to N = 4 BRST exact functional determinant:
-
J(4) (4)
= sdet
A(4t4)g~
^r ((4))
B(44t)
=
1+
1 4!
(4)
((4))
-s
4
-4
,
J(4)((4))-s r = 0,
(5.25)
where we have used the property for tensor quantity
4 k=1
-s rk
to
be
completely
antisymmetric
in
(r1, r2, r3, r4) indices that makes natural the definition:
4
-s rk
=
1 4!
[r]4
(-s )4
for
(-s )4
4
-s rk [r]4 .
k=1
k=1
(5.26)
Again, for the case of -s r-closed parameters r, r1 -s r2 = 0, including constant r, i.e., for G(4) group elements, the Jacobian becomes trivial: J(4) = 1, whereas for the infinitesimal FD quartet ^r (4) (5.24) the Jacobian (5.25) reduces to:
J(4) ((4) )
=
1-
1 3!
(4)
((4) )
-s
4
+ o((4))
=
exp
-
1 3!
(4)((4)
)
-s
4
+ o((4)),
(5.27)
which immediately leads to the gauge independence of the path integral Z4|Y(4) (0) (and therefore for the conventional S-matrix) under small variation of the gauge condition: Y(4) Y(4) + Y(4), announced in (4.15) because of
Z4|Y(4)+Y(4) (0) =
d(4)
sdet
At4
- B4t
exp
i h
SY(4)
+Y(4)
((4)
)
= Z4|Y(4) (0).
(5.28)
27
according to the choice (4.16) for Y(4) in terms of (4)((4)) and therefore of ^r = ^r((4))
(4) (4)|Y(4)
=
-
1 4
i/h
Y(4)
(4)
= ^r1 ((4)) =
1 4!
i/h
Y(4)
4
-s rk [r]4 .
k=2
(5.29)
6 Correspondence between the gauges, Ward identities, gauge dependence, gauge-invariant GribovZwanziger model.
Here we consider the physical properties of the respective N = 3, N = 4 finite BRST transformations, including extended by sources (antifields) to the N = 3 or N = 4 BRST transformations effective actions in the Subsection 6.1 and its applications in the Subsection 6.2 to the GribovZwanziger model [36] with gauge-invariant horizon functional suggested in [37] with preservation of the local N = 1, 2 BRST invariance, shown in [38], [39].
6.1 FD Finite N = 3, 4 BRST Symmetry for Ward identities and Gauge Dependence Problem.
First, let us study a relation that exists among the path integrals underlying N = 3 BRST symmetry, Z3|(3)0 (0) and Z3|(3)0+(3) (0) in different admissible gauges, one of which being described by a Grassmann-odd gauge functional (3)0 corresponding to the Landau gauge (2.75) for = 0. The other one ((3)0 + (3)) corresponds to any family from the gauges within the (3)((3)), including R-gauges for (3) = 0 in (2.75) and for (A, B) = (A + g2B = 0) within the functional (3)((3)). To this end, we use a finite FD N = 3 BRST transformation with functionally-dependent parameters ^p1 |(3)
(5.11), the N = 3 BRST invariance of the quantum action, S(3) (3) (2.78) for = 0, and the form of the Jacobian, J(3) (3) , (5.12) of a corresponding change of variables, (3) (3)g~(^), given as follows
Z3|(3)0 (0)3) = (3)g~(^)
d(3) exp
i h
S(3)0 + 3ih ln
1
+
1 3!
((3))(-s )3
=
d(3) exp
i h
S(3)0+(3) + 3ih ln
1
+
1 3!
((3)
)(-s )3
-
1 3!
(3)(-s )3
. (6.1)
The coincidence of the vacuum functionals Z3|(3)0 (0) and Z3|(3)0+(3) (0), evaluated with the respective fermionic functionals (3)0 and (3)0 + (3), takes place in case there holds a compensation equation for an unknown Fermionic functional = ((3)):
3ih ln
1
+
1 3!
(-s )3
=
1 3!
(3)(-s )3
1 3!
(-s )3
=
exp
-
3
i 3!h
(3)
(-s )3
- 1.
(6.2)
The solution of equation (6.2) for an unknown (3) , which determines ^p (3) , according to (5.11), with accuracy up to N = 3 BRST exact terms, is given by
(3)|(3)
=
-
i 3h
g(y)(3)
,
for
g(y) = [exp(y) - 1] /y
and
y
-
3
i 3!h
(3)
-s
3
,
and therefore the corresponding triplet of field-dependent parameters have the form
(6.3)
^p
(3)|(3)
=
-
i 3!h
g(y)(3)-s q
-s r
pqr
,
(6.4)
28
whose approximation linear in (3) is given by
^p
(3)|(3)
=
-
i 3!h
(3)-s q-s rpqr
+ o (3) ,
(6.5)
with opposite sign than in (2.93) because of we started here from the gauge determined by (3)0 instead of (3)0 + (3) in (2.92). Therefore, for any change (3) of the gauge condition (3)0 (3)0 + (3), we can construct a unique FD N = 3 BRST transformation with functionally-dependent parameters (6.4) that allows one to preserve the form of the path integral (6.1) for the same YangMills theory. On the another hand, if we consider the inverse form of compensation equation (6.2) for an unknown gauge variation (3) with a given (3) , we can present it in the form
3 3!ih ln
1
+
1 3!
(-s )3
= (3)(-s )3 3 3!ih
-(-1)n (3!)nn
-s 3
n-1
n=1
whose solution, with accuracy up to an -s p-exact term, is given by
-s 3 = (3) -s 3 , (6.6)
(3) (3)| = 3 3!ih
-(-1)n (3!)nn
-s 3
n-1
= 3ih
-(-1)n 3n-1n
^p-s p
n-1 (3)
. (6.7)
n=1
n=1
Thereby, for any change of variables in the path integral Z(3)0 given by finite FD N = 3 BRST transfor-
mations
with
the
parameters
^p
=
1 2
-s q
-s r
pqr
,
we
obtain
the
same
path
integral
Z , (3)0+(3)
evaluated,
however, in a gauge determined by the Fermionic functional (3)0 + (3), in complete agreement with
(6.7).
This latter, in particular, implies that we are able to reach any gauge condition for the partition function within the R-like family of gauges, starting, e.g., from the Landau gauge and choosing: (3) = g2 ddxtr CB (for = 1 in the Feynman gauge).
Making in Z(3) (J(3)) an FD N = 3 BRST transformation, (3) (3)g~(^) and using the relations (5.12) and (6.3), we obtain a modified Ward (SlavnovTaylor ) identity:
exp
i h
JC3t
(C33t)
g~ ^p (3)|
-1
1
+
1 3!
(-s )3
-3
= 1,
(3) ,J(3)
(6.8)
where the source-dependent average expectation value corresponding to a gauge-fixing (3) (3) , as in (2.91), explicitly for regular functional L = L (3) :
L = Z (3),J(3)
-1 3|(3)0
J(3)
d(3) L exp
i h
S(3) + JC3t (C33t)
, with 1 (3),J(3) = 1 .
(6.9)
Due to the presence of (3) , which implies functionally dependent ^p(), the modified Ward identity
depends on a choice of the gauge Fermion (3) (3) for non-vanishing J(3), according to (6.3), (6.4), and therefore the corresponding Ward identities for Green's functions, obtained by differentiating (6.8) with respect to the sources, contain the functionals ^p() and their derivatives as weight functionals. Due to
(6.8) for constant p, the usual G(3)-triplet of the Ward identities (2.91) for Z3|(3) (J(3)) follow from the first order in p.
Then, taking account of (6.4), we find that (6.8) implies a relation which describes the gauge dependence of Z3|(3) (J(3)) for a finite change of the gauge, (3) (3) + (3):
Z J 3|(3)+(3) (3) = Z3|(3) J(3)
exp
i h
JC3t
(C33t)
g~ ^p (3)| - (3)
-1
,
(3) ,J(3)
(6.10)
29
so that on the mass-shell for Z3|(3) J(3) : J(3) = 0, the path integral (and therefore the conventional physical S-matrix) does not depend on the choice of (3) (3) .
Let us introduce extended generating functionals of Green's functions by means of sources KC3t|p, KC3t|pq = -KC3t|qp, KC3t , ((KC3t|p) = (KC3t|pq) + 1 = (KC3t ) = (C3t ) + 1), introduced respectively to N = 3 BRST variations (C33t)-s p, (C33t)-s p-s q, and (C33t)(-s )3:
Z3|(3) J(3), Kp, Kpq, K = +KC3t (C33t) -s 3 + J(3)(3)
d(3) exp
i h
S(3) (3)
+ KC3t|p(C33t)-s p + KC3t|pq (C33t)-s p-s q
for Z3|(3) J(3), 0, 0, 0 = Z3|(3) J(3) .
(6.11)
If we make in (6.11) a change of variables in the extended space of (C33t), KC3t|p, KC3t|pq, KC3t
(C33t) (C33t)g(),
KC3t |pq
KC3t |pq
+
1 2
[q
KC3t
|p]
,
KC3t|p KC3t|p,
K C3t
K C3t
+
1 3!
pqr
r
KC3t|pq
+
1 4
[q
KC3t|p]
(6.12)
f(o-sr )J4(C33)t
= 0
0, with , which
finite constant means that the
parameters p, we find transformations (6.12)
that the integrand in (6.11) is unchanged, due to are extended N = 3 finite BRST transformations
for the functional Z3|(3) J(3), Kp, Kpq, K . For the linearized in the parameters p transformations (6.12) the integrand in (6.11) is invariant with accuracy up to o() justifying to call them as the algebraic
extended N = 3 BRST transformations.
Making in (6.11) a change of variables, which corresponds only to N = 3 BRST transformations (C33t) (C33t)g~(^) with an arbitrary functional ^p((3)) from (6.4), we obtain a modified Ward identity for
Z3|(3) J(3), Kp, Kpq, K :
exp
i h
JC3t (C33t)
g~ ^((3)|)
-1
+ KC3t|p((C33t))-s p
g~ ^((3)|)
-1
+
1 3!
pqr
KC3t
|pq
((C33t)
)
-s
3^r
1 + 1 -s 3 -3
=1 ,
3!
(3) ,J(3),Kp,Kpq,K
(6.13)
where the symbol " L " (3),J(3),Kp,Kpq,K for any L = L (3), Kp, Kpq, K stands for a source-dependent average expectation value for a gauge (3) in the presence of sources (extended ZinnJustin fields)
KC3t|p, KC3t|pq , KC3t :
L (3),J(3),K(3)
=
Z -1
3|(3)
J(3), K(3)
d(3) L exp
i h
S(3) ((3), K(3)
+ J(3)(3)
,
with S(3) (3), K(3) = S(3) (3) + KC3t|p(C33t)-s p + KC3t|pq (C33t)-s p-s q + K C3t (C33t) -s 3,
(6.14)
for K(3) Kp, Kpq, K . We can see that (6.8) and (6.13) differ by definitions (6.9) and (6.14), as well as by the presence of terms proportional to the sources KC3t|p, KC3t|pq, except for the Jacobian.
For constant parameters p, we deduce from (6.13), in the first order in p
JC3t (C33t)-s p + KC3t|q(C33t)-s q -s p +
1 3!
pqr
KC3t|qr
(C33t)
-s
3
=0,
(3),J(3),Kp,Kpq ,K
Identities (6.15) can be presented as
-
-
-
JC3t
KC3t |p
-
KC3t |q
KC3t |pq
+
1 3!
pqr
KC3t
|qr
K C3t
ln Z3|(3) J(3), Kp, Kpq, K
=0.
(6.15) (6.16)
30
Let us consider an extended generating functional of vertex Green's functions, (3) , Kp, Kpq, K , being a functional Legendre transform of ln Z3|(3) J(3), Kp, Kpq, K with respect to the sources J(3):
(3) , Kp, Kpq, K
=
h i
ln
Z3|(3)
J(3), Kp, Kpq, K
- JC3t (C33t) ,
-
-
where JC3t = -
(3) , Kp, Kpq, K
(C33t)
and C3t
=
h i JC3t
ln Z3|(3) (J(3), Kp, Kpq, K).
(6.17) (6.18)
From (6.16)(6.18), we deduce for (3) = (3) , Kp, Kpq, K an G(3)-triplet of independent Ward identities:
- -
(3) (C33t)
(3) KC3t |p
+
- KC3t|q KC3t|pq
-
1 3!
pqr
KC3t|qr
- K C3t
(3) =
1 2
(3), (3)
p (3)
+
V(p3) (3)
=
0,
(6.19)
for p = 1, 2, 3, in terms of G(3)-triplets of extended antibrackets, (, )p(3), and operators V(p3), extending the familiar Sp (2)-covariant Lagrangian quantization for gauge theories [33, 34] (see also [40, 41, 42] as
well as [28, 29, 30]) in the N = 2 case, introduced for general gauge theories
- -
- -
(F, G)p(3)
=
F
(C33t)
KC3t |p
-
KC3t |p
(C33t)
G
,
-
-
V(p3)
=
KC3t
|q
KC3t
|pq
-
1 3!
pqr
KC3t|qr
K C3t
(6.20)
for any functionals F, G with omitting the sign of averaging for the fields (C33t) and with the usual con-
- vention: /KC3t|pp1 the construction of the
KD3t |qq1
=
(1/2)q[p
qp11
]
C3t
D3t
.
Note that
extended N = 3 BRST transformations
the algebra (6.12), the
aolgf eobprearaotfogresnVer(p3a)torrespe-sapts, ,i.be.y,
V({3p)V(q3}) = 0.
The Ward identities (6.19) are interesting as they remind of the behavior of the extended quantum
action S(3) (3), Kp, Kpq, K (6.14) being the tree approximation for the extended effective action (3) within the loop expansion and serve as generating equations for a corresponding G(3)-covariant
method of Lagrangian quantization, covering the case more general than a gauge group.
In turn, the case of N = 4 finite BRST transformations permits to get the same results with some
peculiarities. We restrict ourselves by only derivation of the respective modified Ward identity and description of the gauge dependence problem, being based on the solution of the compensation equation
from the change of variables in Z4|Y (0) (4.1) generated by FD N = 4 BRST transformations with quartet of the parameters ^r((4)) (5.24) with jacobian J(4)((4)) (5.25)
4ih ln
1
+
1 4!
((4))(-s )4
=
-
1 4!
Y(4)
(-s )4
1 4!
((4))(-s )4
=
exp
4
i 4!h
Y(4)(-s )4
- 1.
(6.21)
to guarantee the coincidence of the path integrals, Z4|Y (0), (4.1) and Z4|Y +Y (0) evaluated in different
admissible gauges corresponding to the Bosonic gauge functionals Y(4) (4) (e.g. for the Landau gauge Y(04)0 (4.6)) and, Y(4) + Y(4), (e.g. for the Feynman gauge Y(04) (4.6) within R-like gauges for = 1) for finite Y(4) (4) . The solution of (6.21) for an unknown (4) and hence of ^r (4) , with accuracy up to N = 4 BRST exact terms, is given in terms of the function g(z) (6.3)
(4)|Y(4)
=
i 4h
g(z
)Y(4)
,
for
z
4
i 4!h
Y(4)
-s
4
,
^r1
(4)|Y(4)
=
-
i 4!h
g(z)Y(4)
4
-s rk [r]4 ,
k=2
(6.22) (6.23)
31
whose approximation linear in Y(4) coincide with (4.16) for Y(4) = Y(4). From the inverse form of compensation equation (6.21) for an unknown gauge variation Y(4) with a given (4) :
4!4ih ln
1
+
1 4!
(-s )4
= -Y(4)(-s )4
4!4ih
-(-1)n n=1 (4!)nn
-s 4 n-1
we find with accuracy up to an -s r-exact term, that
-s 4 = -Y(4) -s 4, (6.24)
Y(4) (4)|
= 4 4!ih
(-1)n n=1 (4!)nn
-s 4
n-1
= 4ih
(-1)n n=1 4n-1n
^r-s r
n-1 (4)
.
(6.25)
Thus, for any change of variables in the path integral Z4|Y(4) given by finite FD N = 4 BRST transformations with the parameters ^r (5.24), we obtain the same path integral Z , 4|Y(4)+Y(4) evaluated, however, in a gauge determined by the Bosonic functional Y(4) + Y(4).
Making in Z4|Y(4) (J(4)) an FD N = 4 BRST transformation, (4) (4)g~(^) and using the relations (5.25), (6.22) and (6.23), we obtain a N = 4 modified Ward (SlavnovTaylor ) identity:
exp
i h
JC4t
(C44t)
g~ ^r (4)|
-1
1 + 1 (-s )4 -4
=1.
4!
Y(4) ,J(4)
(6.26)
where the source-dependent average expectation value corresponding to a gauge-fixing Y(4) (4) is determined as in (6.9) for N = 3 case. Due to (4) , which implies functionally dependent ^r(), the modified Ward identity depends on a choice of the gauge Boson Y(4) (4) for non-vanishing J(4), according to (6.22), (6.23) with the same as for N = 3 case interpretation for the modified Ward identities for the Green functions. Due to (6.26) for constant r, the usual G(4)-quartet of the Ward identities (4.14) for Z4|Y(4) (J(4)) follow from the first order in r.
Then, taking account of (6.23), we find that (6.26) implies a relation which describes the gauge dependence of Z4|Y(4) (J(4)) for a finite change of the gauge, Y(4) Y(4) + Y(4):
Z4|Y(4)+Y(4) (J(4)) = Z4|Y(4) (J(4))
exp
i h
JC4t
(C44t)
g~ ^r (4)| - Y(4)
-1
,
Y(4) ,J(4)
(6.27)
so that on the mass-shell for Z4|Y(4) J(4) : J(4) = 0, the path integral (and therefore the conventional physical S-matrix) does not depend on the choice of Y(4) (4) .
6.2 Gauge-independent Gribov-Zwanziger model with local N = 3, 4 BRST symmetries
Finally, we turn to the Gribov copies problem [8] within the GribovZwanziger model [36] with a gaugeinvariant horizon functional, H(Ah), recently proposed to be added to an N = 1 BRST invariant Yang
Mills quantum action [37] in Landau gauge with the use of the gauge-invariant (thereby, invariant with
respect to a local N = 1, 2 BRST invariance, as it was shown in [39], Eq. (36)(40)) transverse fields Ah = (Ah)ntn [43]:
A
= Ah
+
AL
:
Ah
= (
-
2
)
A - ig
A 2
,
A
-
1 2
A 2
+ O(A3) : Ah-s p = 0,
(6.28)
H(Ah) = 2 ddx ddyf mnk(Ah)n(x)(M -1)ml(Ah; x, y)f ljk(Ah)j(y) + d(N^ 2-1) .
(6.29)
Note, that the systematic study for the original GribovZwanziger model [36] with not BRST-invariant horizon, H(A), within Lagrangian BRST quantization of gauge theories [44], [45] from the viewpoint of
32
so-called soft BRST symmetry breaking was initiated in [46]. Then, as in the case of N = 1, 2 BRST symmetry, the gauge and N = 1, 2 BRST invariant extension of the respective quantum YangMills action within the R-family of gauges with a gauge fermion and a boson Y prescribed by the Gribov Zwanziger actions are given by
S^GZ() = S0 + -s + H(Ah), for S^GZ((1 + -s )) = .S^GZ(),
S^GZ ((2))
=
S0
-
1 2
Y
-s a
-s a
+
H (Ah ),
for
S^GZ ((2)g(a)) = .S^GZ ((2)),
(6.30) (6.31)
with allowance made for (1.5), (2.6) and (2.16), (2.17) the same may be done in N = 3 and N = 4
BRST invariant formulations of the respective quantum actions S(3) (3) (2.78) and SY(4) (4) (4.7). Therefore, the N = 3 and N = 4 BRST invariant and gauge independent GribovZwanziger actions within (3) and respectively within Y(4)-family of gauges related to R-gauges are given by
S^GZ (3)
=
S0
+
1 3!
(3)
-s
3 + H(Ah), for S^GZ
(3)g(p)
= .S^GZ (3) ,
S^GZ (4)
= S0 -
1 4!
Y(4)
-s
4 + H(Ah),
for S^GZ
(4) g (r )
= .S^GZ (4) .
(6.32) (6.33)
As in the case of the N = 1, 2 BRST symmetry, one may expect the unitarity of the theory within the suggested N = 3, N = 4 BRST symmetry generalizations of the FaddeevPopov quantization rules [3]. These problems are under study.
The same results concerning the problems of unitarity and gauge-independence may be achieved within the local formulations of GribovZwanziger theory [36] when the horizon functional is localized (in the path integral) by means of a quartet of auxiliary fields aux = m n, m n; mn, m n , having opposite Grassmann parities, (, ) = (, ) + 1 = 0, and being antisymmetric in su(N^ ) indices m, n. We suggest here the only N = 1 BRST invariant formulation,
S^GZ (1), aux = S0(A) + (1) -s + S(Ah, aux).
(6.34)
S = ddx m nM ml(Ah)ln - mnM ml(Ah)ln
+ f mnl(Ah)m(nl - nl) + 2d(N^ 2 - 1) ,
(6.35)
with additional non-local N = 1 BRST transformations for the fields aux with untouched ones for (1) (2.7)
aux-s = m n, m n; mn, m n -s = 0, mn; m n - M -1 mk(Ah)f knl(Ah)l, 0 . (6.36)
The part S in case of N = 3 and N = 4 BRST formulation for the quantum actions (as well as for the N = 2 case) should be modified due to another spectra for the auxiliary fields aux.
Finally, the non-local gauge-invariant transverse fields, Ah, (6.28) can also be localized by using complex SU (N^ )-valued auxiliary field, h(x), with non-trivial own gauge and N = 1 BRST transformations [47] in order to reach really localized Gribov-Zwanziger model still N = 1, 2, 3, 4 BRST invariant without Gribov ambiguity, whose properties are now under study.
7 On Feynman diagrammatic technique in N = 3, N = 4 BRST quantization
Here, we introduce some new definitions to develop a Feynman diagrammatic technique for the Yang Mills theory within suggested N = 3 and N = 4 BRST invariant formulations for the non-renormalized quantum actions S(3) (3) given by (2.78)(2.81), and SY(4) (4) determined by (4.7)(4.10). To be complete, we compare the graphs which contain additional lines related to new fictitious fields to ones with
33
known, i.e. ghost, C(x), antighost, C(x), fields in N = 1 BRST setup and with duplet of ghost-antighost fields, Ca(x), a = 1, 2 in N = 2 BRST setup, having in mind that usually the Nakanishi-Lautrup field B(x) is integrated out from the quantum actions.
We present the generating functionals of Green functions in R-gauges Z(J) (2.9), ZY (J) determined
with the quantum action SY () (2.18), Z3| (J ) (2.74), Z4|Y (J(4)) (4.2) respectively for N = 1, 2, 3, 4 BRST symmetry within the perturbation theory according to [48] but for d-dimensional space-time
Z(J) = exp
V
h i
J
;
h i
J
,
h i
J
exp
i 2h
ddxddy tr J(x)D (x - y)J (y)
+ 2J(x)D(x - y)J(y) ,
(7.1)
ZY (J ) = exp
VY
h i
J
;
h i
Ja
+ Ja(x)Dab(x - y)Jb(y)
exp
i 2h
,
ddxddy tr J(x)D (x - y)J (y)
(7.2)
Z3| (J ) = exp
V3|
h i
J
;
h i
J(C)
,
h i
J(B)
;
h i
Jp(C)
,
h i
J[(pB]2)
;
h i
Jp(B)
,
h i
J[(pB]2)
exp
i 2h
ddxddy tr J(x)D (x - y)J (y) + 2J(C)(x)DCB(x - y)J(B)(y)
+
Jp(C3
)
(x)D[p]3
CB
(x
-
y)J[(pB]2)(y)
+
Jp(B3 )(x)DB[pB]3
(x
-
y)J[(pB]2)(y)
,
(7.3)
Z4|Y (J(4)) = exp
V4|
h i
J
;
h i
Jr(C)
,
h i
J[(rB]3)
;
h i
J[(rB]2)
exp
i 2h
ddxddy tr J(x)
D (x
-
y)J (y) +
1 3
Jr(1C
)(x)DC[rB]4
(x
-
y)J[(rB]3)(y) +
1 4
J[(rB]2)
(x)DB[rB]4
(x
-
y)Jr(3Br)4 (y)
, (7.4)
for Sp(2)-duplet of sources Ja = J1, J2 J, J to ghost-antighost fields Ca, for G(3)-triplets of
Grassmann-odd J[(pB]2), Grassmann-even J[(pB]2) and Grassmann-odd singlets J(C), J(B) of sources .for the respective fields B[p]2 , B[p]2, C, B mentioned in the round brackets in the indices and for G(4)-quartets
of Grassmann-odd Jr(1C), J[(rB]3) and sextet of Grassmann-even J[(rB]2) sources .for the fields Cr1 , B[r]3 , B[r]2. The causal Green functions for the vector field A: D(x) [48] and for the respective fictitious pair of
fields
D(x),
Dab(x)
for
the
fictitious
Grassmann-odd
fields
in
N
=
2;
for
DCB (x),
D[p]3 (x)
CB
for
Grassmann-
odd, DB[pB]3 (x) for Grassmann-even fields in N = 3; DC[rB]4(x), DB[rB]4 (x) respectively for Grassmann-odd and
Grassmann-even fields in N = 4 cases are determined in terms of the Feynman propagators in momentum
representation:
D (x) =
1 2 d
ddp e-ipxD (p),
for D(p) = -
-
pp (1 p2 +
- ) i0
D(x) =
1 2 d
ddp e-ipxD(p),
for D(p) =
1su(N^ ) p2 + i0
,
1su(N^ )
mn ,
1su(N^ ) p2 + i0
,
Dab
;
DC
B
,
D[p]3
CB
,
DB[pB]3
;
DC[rB]4
,
DB[rB]4
(x)
=
ab; 1, [p]3 , [p]3 ; [r]4 , [r]4 D(x).
(7.5) (7.6) (7.7)
34
And the respective vertexes look as
V
A; C, C
=
1 4
ddx tr 2[A] A, A + A, A 2 + 4C A, C ,
(7.8)
VY A; Ca
= V A; C, C
(C,C )C a
-
24
ddx tr Ca, Cc Cb, Cd abcd,
(7.9)
V3| A; C, B; Cp, B[p]2 ; Bp, B[p]2
= V A; C, C
(C,C )(B ,C )
+
1 2
ddx tr Bp1 A, Bp2p3
V4| A; Cr, B[r]3 ; B[r]2
+ B[p]2 A, Cp3 [p]3 + Sadd(3),
= V A; 0, 0 +
ddx tr
1 8
B
[r]2
A, Br3r4
-
1 Cr4 3!
A, B[r]3
[r]4 + Sadd(4),
(7.10) (7.11)
where each su(N^ )-commutator implicitly contains interaction coupling g as multiplier, all the integrations above satisfy to the Feynman boundary conditions and the respective expressions (2.81), (4.10), for Sadd(3), Sadd(4) were used.
The expansion of the functionals (7.1)(7.4) generates the respective diagrammatic techniques, known for N = 1 BRST symmetric formulation (7.1), e.g. from [48]. The basic elements for each N = m, m = 1, 2, 3, 4 we list in the momentum representation, first, for N = 1:
D (p) D(p)
Figure 1: Propagators for the vector field A and for the ghost fields C, C.
Second, for N = 2 case for only different propagator for Sp(2)-duplet of ghost-antighost field Ca and quartic in Ca, Cb ,Cc,Cd (a, b, c, d = 1, 2) interaction vertex V(Y)CaCbCcCd(p) obtained from
trV(Y)CaCbCcCd (x) CaCc
Cb, Cd
=
1 2
d
dd
p
e-ipx
V nln1l1
(Y )Ca
C
b
C
cC
d
(p)C
l1
a
(p)C
n1
c
(p)C
lb
C
nd
(p)
(7.12)
Dab(p) = CaCb 0
V(nYln)1Cla1 CbCcCd
=
-
24
f
mnl
f
mn1
l1
ab
cd
Figure 2: Propagators for the fields Ca and self-interaction vertex quartic in the ghost fields Ca.
Third, for N = 3 propagators for the fictitious fields and with account for antisymmetry (B, B)qr = -(B, B)rq
35
DCB(p) = CB 0
Dpqr (p) =
CB
CpBqr 0
DBpqBr (p) = BpBqr 0
Figure 3: Propagators for the fictitious Grassman-odd G(3) singlets, C, B, 3 pairs of triplets Cp, Bqr and 3 pairs of Grassman-even triplets Bp, Bqr.
Fourth, for N = 4 propagators of the fictitious fields with account for antisymmetry of (Br1r2r3 , Br1r2) = -(Br2r1r3 , Br2r1 )
DC[rB]4 (p) = - Cr4 B[r]3 0
DB[rB]4 (p) = Br1r2 Br3r4 0
Figure 4: Propagators for the fictitious four pairs of Grassman-odd G(4)-quartets Cr, B[r]3 and 3 pairs of Grassman-even G(4)-sextet Br1r2 , Br3r4 .
And, for some N = 1, 3, 4 vertexes of the gauge vector fields A with respective fictitious fields (Grassmann-odd for N = 1, 4 and Grassmann-even for N = 3 BRST symmetric formulations from the quadratic in the fictitious fields terms with Faddeev-Popov operator M (A) in the momentum representation found as in (7.12)) in the Figures 5, 6
Note, starting from the N = 2 case we have introduced the additional notation of the respective (being valid for free (quadratic) theory) averaging fields 0 written under the respective propagator's line to distinguish different fictitious fields corresponding, in fact, to the same function, D(p). From the N = 3 case the propagator's line for the Grassmann-even (Bose) fictitious particle is given by "dash with dot" as compared to the standard "dash" notations for the Grassmann-odd (Fermi) fictitious particle. There are 3 independent propagators for Grassmann-odd fields among CpBqr 0 and 3 ones for Grassmann-even from BpBqr 0 in the Figure 3, which are C1B23 0, C2B31 0, C3B12 0 and B1B23 0, B2B31 0, B3B12 0, i.e. for {p, q, r}={(1, 2, 3); (2, 3, 1).(3, 1, 2)}. For N = 4 BRST symmetric case the Figure 4 contains 4 independent propagators for Grassmann-odd fields - Cr4B[r]3 0 and 3 ones for Grassmann-even from Br1r2 Br3r4 0: C1B234 0, C2B314 0, C3B124 0, C4B132 0 and B12B34 0, B13B42 0, B14B23 0.
There exist more additional vertexes from (7.9), (7.10), (7.11) which can be analogously represented as in the Figures 5, 6.
8 Conclusion
In the present work a generalization of the FaddeevPopov proposal presenting the Lagrangian path integral for the YangMills theory in Landau and Feynman gauges [3], [9] is proposed for non-local form by inserting the special unity, detkM (A) det-kM (A), depending on non-negative integer k in (2.31),
36
VACC (p) = f mnlp
V3||ABp B[p]2 (p)
=
1 2
f
mnl
p
[p]3
Figure 5: Interaction vertexes of A: with C, C fields in N = 1, with any pair from G(3)-triplets of even (Bose) fictitious fields Bp, Bqr in N = 3 BRST formulations.
V4||ACr4
B[r]3
(p)
=
-
1 3!
f mnlp[r]4
Figure 6: Interaction vertex of YangMills field A with any pair from G(4)-quartets of odd (Fermi) fictitious fields Cr,B[r]3 in N = 4 BRST formulation.
(2.32) and for local form in (2.33), with numbers of fictitious Grassmann-odd and Grassmann-even fields
(with the same number of physical degrees of freedom as compared to the case of space-time extended
SUSY gauge theories) in the spectrum of the total configuration spaces larger than those for N = 1, 2
BRST symmetry cases. It is shown in the Statement 1, that to realize the N = m BRST symmetry
transformations with more than two Grassmann-odd parameters, p, p = 1, 2, ..., m (in substituting instead of the infinitesimal gauge parameters = Cpp the m-plet of Grassmann-odd ghost fields) when formulating the corresponding quantum actions, S(LN(k))((N(k))) (2.36) with the gauge-fixing terms
(respecting N (k) = m BRST invariance) to be added to the classical YangMills action the spectrum
of k = k(N ) should obey to the relation (2.38), whereas to perform the gauge-fixing procedure without
using an odd non-degenerate transformation changing the Grassmann parities for some fictitious fields
its spectrum k = ku(N ) is described by (2.39).
An irreducible representation space, commuting generators -s p with triplet
M(m3i)n, for the 3-parametric abelian superalgebra of Grassmann-odd constant parameters, p, with
G(3) of antiits action on
the local coordinates, fields (3), has been explicitly constructed by Eqs. (2.45). To formulate a local
quantum action with appropriate gauge-fixing procedure, we have followed two ways. First, that proves
the condition (2.38) of the Statement 1, is based on the original using of Grassmann-odd non-degenerate
operator which changes the Grassmann parities and acts on G(3)-irreducible space of initial YangMills
fields A, triplets Cp, Bpq, odd singlet B, in such a way, that the respective change of variables in the
subspace of part of fictitious fields, M (A.8) has permitted to make possible to pass to a new basis of
fictitious fields in which the local quantum action (A.22) and path integral (A.13) in Landau gauge with
a new form of N = 3 BRST symmetry transformations, (A.23)(A.28), have been constructed. Second,
the non-minimal sector of the fields (3) containing antighost field (as a connection) C to incorporate the usual gauge condition, (A, B), into a gauge fermionic functional (3) (2.75) has been introduced, on which a new N = 3 representation of G(3)-superalgebra is explicitly realized (2.69). The sector contains
two G(3)-singlets, C, B with usual Nakanishi-Lautrup field and two G(3)-triplets, Bp, Bpq and together
37
with the fields, (3) composes the fields (3) of reducible G(3)-superalgebra representation parameterizing the total configuration space M(to3t), on which the quantum action S(3) (3) (2.78)(2.81) and path in-
tegral Z3|(0) (2.73) in R-like gauges, determined by the gauge fermionic functional (3) (3) (2.75), have been explicitly constructed. The set of the transformations in M(to3t), (3) = (3)-s pp, determined by (2.45), (2.69), leaving both the quantum action and the integrand of the respective path integral by
invariant,we call N = 3 BRST transformations. The quantum (non-renormalized) action S(3) contains the terms quadratic in fictitious fields leading to the same one-loop contribution for the effective action
as one for the quantum actions constructed according to N = 1 and N = 2 BRST symmetry principles
in smaller configuration space, whereas for more than quadratic in powers of ghost fields terms in S(3) , described by the Sadd(3) (2.81) which generates the ghost vertexes to be different than ones derived from
the former actions. We have established with the help of G(1)-superalgebra with nilpotent generator -s and parameter
being additional to G(3)-superalgebra, but acting on the fields of M(to3t) by the rule (3.1), the fact that the G(1)- invariant path integral Z1|(0) (3.7) with the quantum action S(1) and, at least for special quadratic gauge fermionic functional (1) (3.8) given on M(to3t) is equivalent to the N = 1 antiBRST invariant path integral (3.12) with the quantum action S, (3.13) constructed by the standard Faddeev-Popov method
with use of N = 1 antiBRST symmetry transformations acting in the standard configuration space, Mtot of fields A, C, C, B. We call the transformations (3.9) with parameter which led to the G(1)- invariance of S(1) and integrand of Z1|(0) by N = 1 antiBRST symmetry transformations in M(to3t).
It was shown the Grassmann-odd parameters: G(3)-triplet p and G(1)-singlet , of G(3) and G(1)
superalgebras acting on the space p, , as well as the quartet of
thMe (tgo3t)e,nearraetournsiq-suerly=com-sbpi,ne-sd
within quartet of parameters r = to form a G(4)-superalgebra whose
irreducible representation contains the same fields as reducible one for G(3)-superalgebra in M(to3t) but
organized in G(4)-antisymmetric tensors, (4) = A, Cr, Br1r2 , Br1r2r3 , B according to the rule (3.18),
which parameterize N = 4 total configuration space M(to4t). The explicit action of the generators -s r on
each {-s r1
,co-smrp2o}n=ent0.froTmhe(r4e)spweacstivcoenNstru=ct4edSbUySYEqtsr.an(3sf.o2r0m) awtiitohnsp,reser(v4a)ti=on
of the (4)-s r
G(4)-superalgebra: r have appeared,
according to their definition, by N = 4 BRST transformations for the quantum action SY(4) and local path
integral Z4|Y (0) (4.1) term generated by the
constructed with quartic powers in
help of addition to the classical action of the N = 4 BRST exact -s r applied to the gauge Bosonic functional, Y(4) (4) (4.3). For
R-like family of gauges determined by the functional Y(04)((4)) (4.6) the quantum action SY(4) (4)
(4.7) was exactly calculated for the Landau gauge ( = 0), whereas for the Feynman gauge ( = 1)
the additional summand Sadd(4) (4.10) to the standard gauge-fixed and quadratic [in 4 Grassmann-odd (C1, B234), (C2, B134), (C3, B124), (C4, B123) and 3 Grassmann-even (B12, B34), (B13, B24), (B14, B23)
pairs of ghost fields] parts Sgf(4), Sgh(4) of the quantum action contains the 8-th powers in odd Cr and 4-th power of even Br1r2 fields. For any classical action and the functionals Sgf(4), Sgh(4) lead to the same contribution into one-loop effective action as those for the known and above quantum actions
constructed according to the N = 1, N = 2 and both N = 3 BRST symmetry recipes. It was explicitly
shown on the level of the non-renormalized path integrals the equivalence among N = 3 BRST invariant
path integral evaluated in the R-like gauges and usual N = 1 BRST invariant path integral in the R
-gauges in (2.94). For N = 4 BRST invariant path integral its equivalence with N = 1 BRST invariant
path integral was found in case of Landau gauge in (4.13).
For both N = 3 and N = 4 BRST invariant formulations of the quantum actions the generating functionals of Greens functions, including effective actions were determined and Ward identities (2.91), (4.14) for them, which follow from the respective algebraic N = m, m = 3, 4 BRST invariance, were derived as well as the independence on the choice of the gauge condition for the respective path integral under the corresponding small variation of the gauge: (3) (3) + (3) and Y(4) Y(4) + Y(4) were established by means of infinitesimal FD N = m BRST transformations.
38
The finite N = 3 and N = 4 BRST transformations were restored to form respectively the Abelian supergroups G(m) = exp{-s pp}, p = 1, 2, ..., m acting on the respective configuration space M(tomt) by means of two ways: first, by continuation of the invariance of any regular functional under algebraic
N = m, m = 3, 4 BRST transformations to full invariance under finite transformations, second by means of resolution of the Lie equations. The sets G~(m) (5.4), (5.22) of finite FD N = m BRST transfor-
mations were introduced and the respective Jacobians of the change of variables in M(tomt) generated by
these transformations were calculated in (5.5), (5.23). For functionally-dependent Grassman-odd parame-
ters, ^p1
=
-(-1)m
1 (m-1)!
(m)
(m)
[p]m -s p2 ...-s pm
with a some potential functional (m) Grassmann-
odd(even) for m = 3 (m = 4) (5.11), (5.24) the Jacobians above are transformed to the respective
N = m BRST exact terms (5.12), (5.25). The latter Jacobians were applied, first, to the establishing
of the independence upon the choice of the gauge condition for finite variation of the respective path
integral, Z3|(3) (0) = Z3|(3)+(3) (0), Z4|Y (0) = Z4|Y +Y (0), from the solutions of the corresponding compensation equations (6.2), (6.21) relating the parameters ^p1 with respective change of the gauge condition (3), Y(4) in (6.4) and (6.23). Second, they were used to derive new modified Ward identities
(6.8), (6.26) for the generating functionals of Green functions Z3|(3) (J(3)), Z4|Y(4) (J(4)) depending on the functionally-dependent FD parameters ^p1 , p1 = 1, 2.., m, and therefore on the finite variation of the
gauge (3), Y(4) respectively. Third, they have permitted to establish gauge independence of Z3|(3) (J(3)), Z4|Y(4) (J(4)) upon the respective choice of the gauge condition (3) (3) + (3) and Y(4) Y(4) + Y(4)
on the corresponding mass-shell: J(3) = 0, J(4) = 0.
The new Ward identities (6.19) for the extended (by means of sources Kp, Kpq, K to the N = 3 BRST variations (3)-s p, (3)-s p-s q, and (3)(-s )3) generating functional of vertex Green's functions, (3) , Kp, Kpq, K (6.17) obtained from the part of extended N = 3 BRST transformations (6.12) in the space of (3), Kp, Kpq, K for constant p, reproduced the new differential-geometric objects. i.e., G(3)-triplets of antibrackets: (, )p and odd-valued first-order differential operators V p (6.20).
The gauge-independent Gribov-Zwanziger model of YangMills fields without residual Gribov ambiguity in the infrared region of the field A configurations described by gauge-invariant, and therefore N = m BRST invariant, for m = 3, 4, horizon functional H(Ah) (6.29) in terms of gauge-invariant transverse fields Ah (6.28) [43], firstly proposed in [37] within N = 1 BRST symmetry realization but with non-local BRST transformations was suggested in non-local form but with local N = 3, N = 4 BRST
invariance by the Eqs. (6.32), (6.33). The partially local, (in view of residual presence of non-local vector field Ah) Gribov-Zwanziger model was proposed with non-local N = 1 BRST symmetry (2.7), (6.36), due to inverse gauge-invariant Faddeev-Popov matrix M -1 (Ah) presence for auxiliary fields in (6.36).
The extension of the basics for the diagrammatic Feynman technique within perturbation theory for the N = 3 and N = 4 BRST invariant quantum actions for the YangMills theory were proposed due to the presence of additional both Grassmann-odd and Geassmann-even fictitious fields.
Concluding, let us present the spectrum of irreducible representations for a G(l) Abelian superalgebra
with l = 0 (non-gauge theories), l = 1 (BRST symmetry algebra), l = 2 (BRST-antiBRST symmetry
algebra), l = 3 (superalgebra with 3 BRST symmetries), and so on according to the chain (2.41)
(2.43), by a numeric pyramid partially similar to the Pascal triangle (1), which contains in its left-
hand side the symbol "d|A" relating to number of degrees of freedom of the classical YangMills fields
A with suppressed su(N^ ) indices: where an l-th row, corresponding to the field content (l) of an
irrep space for the G(l) superalgebra, is constructed from the symbols of d|A, l|C[r]1, C2l |B[r]2..., 1|B(l)
(Clk = k!/(l!(k - l)!)), corresponding to the degrees of freedom (modulo the dimension of su(N^ )) for A, Cpl , Bplql , ..., B(l), pl = 1, 2, ..., l, whose sum is equal to (2l + d - 1). The symbols related by an arrow:
d|A srl by the
l|C[r]1 meaning the part of rule: A-s rl = DCrl with
the chain omitting
generated the arrow
by the N over -s rl
= for
l-BRST generator the readability in
-s rl , rl = the Table
1, 1.
2, ..., l From
the second row (N = 2), the rule of filling the triangle starts to work, whereas for N = 0 there is no
39
N = 0: N = 1:
N = 2:
N = 3:
N = 4:
d|A
...
... ...
...
N = 2K: d|A sr 2K|C[r]1
d|A
d|A
sa
d|A
sp
3|C [p]1
sr
4|C [r]1
sr
...
...
...
sr
C22K |B([r2]K2 )
d|A s
2|C a sp
6|B[r]2 ...
....
1|C
sa
1|B
3|B[p]2
sp
1|B
sr
4||B[r]3
sr
1|B
...
...
...
...
sr
2K |B([r2]K2K) -1 sr 1|B
Table 1: Numbers of fictitious fields in addition to A for each N = 0, 1, 2, ..., 2K
fictitious fields, and in the case of N = 1 it is only A and ghost field C that compose an irrep space of the N = 1 BRST algebra without an additional trivial BRST doublet, C, B necessary to construct quantum action and local path integral which as the fields from the non-minimal sector, answering for the reducible representation of G(1)-superalgebra, selected into another Table 2. Notice, that the second left-hand side only contains the numbers 1, 2, 3, ..., 2K of Grassmann-odd fictitious fields, C, Cp2 , Cp3 , ..., Cp2K ; the third left-hand side (starting from N = 2) only contains the numbers 1, 3, 6, ..., C22K of Grassmann-even fictitious fields B, Bp3q3 , Bp4q4 , ..., Bp2Kq2K , etc. The final right-hand side of the triangle (1) is composed
of the NakanishiLautrup G(l)-singlet fields B B2, B3 B, B4, ..., Bl, with alternating Grassmann parity, (Bl) = l, respectively for l = 2, 3, ..., 2K.
In turn, for the reducible representation space of G(2K - 1)-superalgebra, for integer K determining the non-minimal sector of fields to be necessary to provide gauge-fixing procedure without odd supermatrix, the spectrum of additional fields is described by the Table 2 corresponding to the exact sequence (2.71). In particular, from Table 1 it follows that, for odd numbers N = 2K - 1 of parameters in the G(N ) superalgebra, the generalized FaddeevPopov rules must be described by odd non-degenerate transformation, , intended to present the path integral with the Grassmann-even NakanishiLautrup field B(2K-1) = B2k-1 exponentiating the standard gauge condition, added to the classical action using an N = (2K - 1) BRST-exact form.
It follows from the both Tables that the generalization of the Faddeev-Popov quantizations for the case of N = 2K - 1 BRST invariance without using of an odd non-degenerate transformation, when formulating the local quantum action and path integral leads to the dimension of the total configuration space M(to2tK-1) to coinciding with the one for Mt(o2tK) realizing N = 2K BRST symmetry for the same purpose.
There are various directions to extend the results of the present study. Let us mention some of them. First, to develop the case of N = 3, 4 BRST symmetries transformations in a Yang-Mills theory as a dynamical system with first-class constraints in the generalized canonical formalism [49], [50], [51]. Second: to develop the case of N = 3, 4 BRST symmetry transformations for irreducible general gauge theories in Lagrangian formalism [44], including theories with a closed algebra of rank 1. Third: to generalize, in a manifest way, the FaddeevPopov rules in YangMills theories to the case of N = 2K - 1 and N = 2K, K > 2 BRST symmetry transformations in Lagrangian formalism and in generalized canonical formalism. Then, it is intended to examine the case of irreducible dynamical systems subject
N = 1:
1|C
s
1|B
N = 3:
1|C
sp
3|B[p]1
sp
3|B[p]2
sp
1|B
N = 5:
1|C
sr
5|B(r5)
sr
10|B([r5])2
sr
10|B([r5])3
sr
5|B([r5])4
sr
1|B
...
... ...
...
...
...
...
...
...
...
...
...
N = 2K - 1: 1|C sr N |B(rN)
sr
...
...
...
...
...
sr
N |B([rN]N) -1 sr 1|B
Table 2: Numbers of fictitious fields from the non-minimal sectors for each odd N = 1, 3, 5, ..., 2K - 1
40
to N = 2K - 1, N = 2K, K > 2 BRST symmetry transformations and to compare the results with superfield formulations with N BRST charges in [52]. Next, it is planned to consider an irreducible general gauge theory subject to N = 2K - 1, N = 2K K > 2 BRST symmetry transformations in the Lagrangian formalism. The problem of study of the renormalizability for the suggested N = 3, 4 BRST invariant formulations of the quantum actions so as to have completely renormalized respective effective actions remains a very important question, as well as adopting of the N = m, m = 2, 3, 4 BRST invariance to the renormalizability of N = 1 space-time super YangMills theory in terms of N = 1 superfields considered for N = 1 BRST symmetry in [53], [54] on the basis of preserving the gaugeinvariance, and, hence, the N = m BRST symmetry, regularization by higher-derivatives [55], recently developed for N = 2 superfield formulation of Abelian and super YangMills theories [56] on a basis of N = 2 harmonic superspace approach [57]. We intend to study these problems in forthcoming works.
Acknowledgments The author is thankful to J.L Buchbinder for illuminating discussion, V.P, Spiridonov for the comments. He is grateful to P.Yu. Moshin and K.V. Stepanyantz for the comments and advises within many useful discussions, as well as to B.P. Mandal and S. Upadhyay for participation at the initial research stage for the problem.
Appendix
A On N = 3 BRST invariant gauge-fixing in N = 3 irreducible superspace
Here, we will prove that it is impossible to perform N = 3 BRST invariant gauge-fixing procedure within the set of fields A(33) parameterizing the superspace of irreducible representation of G(3)-superalgebra without using of non-degenerate odd-valued change of variables among the components of (3) to explicitly
construct such a gauge-fixing.
Indeed, it is easy to see that in the basis of additional to A fields in A(33) = (A, Cp, Bpq, B) composing the irreducible representation space of G(3)-superalgebra, on which due to Lemma 1 the N = 3 SUSY
transformations is realized (2.45), there are no enough coordinates to reach a non-local FaddeevPopov
path integral (2.31) with preservation of the symmetry above. The terms in the functional S(L3)((3))
(2.36)
for
N (k)
=
3,
k
=
1,
with
the
fermionic
gauge-fixing
functional,
1 3!
F(3)
(3)
-s p11 -s p21 -s p31 p11p21p31
are calculated following to the rules (2.82)(2.86) similar to the N = 2 BRST symmetry case (2.17) for
= 0, when F(3)0 (3) = F(3)0 A :
F(3)0 A -s p =
ddx
tr
F(3)0 A
D C p
=
-
ddx tr D
F(3)0 A
Cp = -
ddx tr F (A)Cp, (A.1)
F(3)0 A -s p-s qpqr = ddx tr
ddyCp(x)M F (A, x; y)Cq(y) - F (A)Bpq pqr,
(A.2)
for
M F (A, x; y)
=
F (A, x) A(y)
D(y),
(A.3)
F(3)0 A (-s )3 = ddx tr
ddy 2Bqp(x)M F (A, x; y)Cr(y) + Cp(x)M F (A, x; y)Bqr(y)
-
dd
z
C
p(x)
M F (A, x; A(z)
y)
D(z
)C
r
(z
)C
q
(y)
pqr - F (A)
3!B
+
1 2
Bpq, Cr
pqr
.
(A.4)
Hence,
SF(3)0 ((3))
S(L3) ((3) )
=
S0
+
1 3!
F(3)0
(A)(-s )3
=
S0
+
SF(3)0 |gf
+
SF(3)0 |gh
+
SF(3)0 |add ,
(A.5)
41
SF(3)0|gf + SF(3)0 |gh =
ddx tr
BF (A)
+
1 3!
ddy 2Bqp(x)M F (A, x; y)Cr(y)
+ Cp(x)M F (A, x; y)Bqr(y) pqr ,
(A.6)
SF(3)0 |add
=
- pqr 3!
ddx
1 2
F
(A)
Bpq, Cr
+
dd
yddz
C
p(x)
M F (A, x; A(z)
y)
D(z
)C
r
(z
)C
q
(y)
, (A.7)
where F (A) may be interpreted as a Grassmann-odd analog of gauge conditions (2.6), (2.15) used in the N = 1, 2 BRST symmetry realizations for the quantum action, and therefore M F (A, x; y) should be
considered as a Grassmann-odd analog of the FaddeevPopov matrix (1.4).
A.1 Non-degenerate odd-valued change of fictitious fields
To provide a satisfactory description, we must deal neither with the appearance in Z0L of the -function (F ) from odd-valued functions, nor with the superdeterminant sdetM F (A) from an odd-valued matrix
M F (A)10, we may pass to another basis of auxiliary fields, (3), in the representation space M(3) of the N = 3 superalgebra G(3) with the same number of Grassmann-odd and Grassmann-even fields. To
this end, we introduce a non-degenerate transformation in M(3): (3) (3) = (3), with unaffected YangMills fields A, ghost fields C1, C3, bosonic fields B13, and to be transformed fictitious fields M =
(B23, B12, C2, B), by introducing a Grassmann-odd non-degenerate matrix N = NMN (analogous to the odd supermatrix = AB = (A, B) , () = 1, resulting from the odd Poisson bracket, (, ), calculations with respect to the field-antifield variables A in the field-antifield formalism [44], [45]), composed from the unit matrices 1(N^2-1) with suppressed su(N^ )-indices, as follows:
B2
0
0
0 B23
M M = N MN N :
B C1
=
0
0 0
0 0
0
B12 C2
,
C3
00 0
B
(A.8)
with the odd non-degenerate supermatrix , which turns the only fields of definite parity into new fields with the same properties but with opposite parity: B23, B12, C2, B = C1, C3, B2, B , so that by definition, the property to be idempotent for holds: 2 = 1. Notice that the separation of the (un)transformed fields in (3) is not unique for unaffected A. Note, that in the usual sense [11], [58] sdetN = 0.
The supermatrix N plays the role of an inverse for itself, which make it possible to express the initial fictitious fields N from (A.8) as functions of new fictitious fields N :
M = N MN N , (N ) = 1, because of N 2 = 14(N^2-1).
(A.9)
10If one attempts to exponentiate the non-local path integral (2.31) over M(3) = {A(33)} in the basis of, first, the auxiliary
fields {Cp, Bpq , B} by means of the one Lie-group G-valued field B12 from the triplet of Grassmann-even fields Bpq , to exponentiate (), second, the pair, C1, C2 from the triplet of Grassmann-odd fields Cp, to exponentiate det M , third, the
pair B13, B23 from Grassmann-even fields Bpq , and the remaining pair of Grassmann-odd fields, C3, B, to exponentiate, respectively, det-1M and detM , we get:
Z0L =
dA() det2M (A) det-1M (A) exp
i h S0(A)
=
i d(3) exp h SL((3)) ,
for SL((3)) = S0(A) + ddx tr (A)B12 + C1M (A)C2 + B23M (A)B13 + C3M (A)B .
However, to provide N = 3 BRST invariance of the local action SL((3)) for YangMills theory one must impose additional requirement: B12 = 0, being rather restrictive one.
42
A.2 N = 3 BRST-invariance and path integral in new fictitious fields
The following step is based on a definition of the gauge fermion F(3)0(A) with help of the odd matrix in quadratic form consistent for the Landau gauge:
F(L3)0(A)
=
-
1 2
ddx tr
AA
=
-
1 2
ddx AmmnAn, for (F(L3)0) = 1.
(A.10)
Because the map acts linearly, turning the points (with coordinates) in a fiber of the respective bundle
into the same points (with coordinates) in a fiber of another bundle, but with opposite parity, then the respective infinitesimal gauge for A and N (3) SUSY transformations for A(33) make by natural the properties:
A = (A) A = (A) = D(A)Cpp, = , D(A)Cp = D(A)Cp A, Cp = A, Cp ,
(A.11) (A.12)
where the last relation maybe considered as the continuation of the commutativity property of with partial derivative .
Now, we can write the path integral related to (2.31) in a local form, (2.33) for k = 1 with the action SF(L3)0 (A.5), fermionic functional F(L3)0, in terms of a new basis of {A(33)} for the representation space of the G(3) superalgebra, as follows:
Z = F(L3)0
d(3) exp
i h
SF(L3)0
(3)
SF(L3)0 |gf
+ SF(L3)0 |gh
=
1 2
ddx tr
,
with
SF(L3)0
= S0(A) +
1 3!
F(L3)0
(A)
-s
3
(A)
+ (A)
B
-
1 2
M(A) Cq
, (A.13)
M M
-M(A)Cq pqrBpr
,
M M
(A.14)
SF(L3)0 |add
=
pqr 2 3!
ddx tr
1 2
(A) + (A)
Bpq, Cr +
M(A)Cr, Cq
+ D(A)Cr, Cq - M(A)Cr, Cq + D(A)Cr, Cq Cp
, (A.15)
M M
with usual Faddeev-Popov matrix, M = M(A) and with taken account for the relations
F(L3)0
A
-s p =
1 2
ddx tr
F(L3)0
A
-s p-s qpqr =
1 2
DCpA - ADCp
=
1 2
ddx tr
(A) + (A) Cp,(A.16)
ddx tr (A) + (A) Bpq - M(A)Cq
-M(A)Cq Cp pqr,
(A.17)
F(3)0
A
(-s )3
=
1 2
ddx tr
(A) + (A)
3!B +
1 2
Bpq, Cr
pqr
- 3 M(A)Cq - M(A)Cq Bpr + M(A)Cr, Cq
+ D(A)Cr, Cq - M(A)Cr, Cq - D(A)Cr, Cq Cp pqr .
(A.18)
Here the relations (2.82), (2.83), (A.11), (A.12) and (B.9) for Landau gauge (A) = 0 were used as well as the vanishing of the terms, Cp1 , Cp2 [p]3 0.
43
Note, first, the terms proportional to the (A) in (A.18) maybe easily elaborated by the rule
tr (A) B = mnn(A)Bm = n(A)mnBm = tr (A)B, tr (A) Bpq, Cr = tr (A) Bpq, Cr ,
(A.19) (A.20)
by virtue of the properties (A.11), (A.12). Second, the quadratic in the fictitious fields with Faddeev Popov matrix summands, we can present due to the same properties as follows:
tr M(A)Cq Bpr = tr BprM(A)Cq = tr BprM(A)Cq = tr (Bpr)M(A)Cq. (A.21)
Expressing the fields M in terms of M , according to the change of variables (A.8) in M(3), we get for the action SF(L3)0 (A.13)(A.15) with use of (A.19)(A.21) and with use of dual field B2 = -B13 = 132B13:
SF(L3)0 = S0(A) + ddx tr (A)B + C3M(A)C3 + C1M(A)C1 + B2M(A)B2
+
1 3!
1
ddx tr (A) B2, B2 +
C 2k+1, C2k+1
k=0
+
pqr 2
M(A)Cr, Cq Cp + D(A)Cr, Cq Cp
- M(A)Cr, Cq + D(A)Cr, Cq Cp
.
(C 2 ,C 2 )(B 2 ,B2 )
(A.22)
Here, the role of FaddeevPopov ghosts is a mixed one, in comparison with the initial basis of fictitious fields Cp, Bpq, B. For example, in the first row of (A.22) for the fields C, C, used within the original FaddeevPopov quantization as ghost and antighost fields, we have, respectively, C1, B23 and C3, B12.
Therefore, as far as the last condition in (A.12) holds true, the functional SF(L3)0 , with the gauge functional (A.10) which determines the path integral ZF(L3)0 (A.13) in the Landau gauge with a local quantum action solving the problem of generalization of the FaddeevPopov rules in the case of the
irreducible representation N = 3-parametric G(3) superalgebra.
The latter local action (as well as the measure d(3)) corresponding to the Landau gauge is invariant under N = 3 (therefore called as N = 3 BRST) transformations, which, at the algebraic level in a new basis of fields, A(33), are written with allowance for (2.45), (A.8), (A.9), as follows:
A-s p = D C11p + B22p + C33p ,
(A.23)
C1-s p
=
1 2
C1, C1
1p +
C 3
+
1 2
C1, B2
2p +
-
B2
+
1 2
C1, C3
3p,
B2-s p =
-
C3
+
1 2
B2, C1
1p
+
1 2
B2, B2
2p +
C1 +
1 2
B2, C3
3p,
C3-s p =
B2
+
1 2
C3, C1
1p +
- C1 +
1 2
C3, B2
2p
+
1 2
C3, C3
3p,
(A.24)
C3-s p
=
1 2
C3, C1
-
1 6
C [1 ,
B2], C1
1p
+
1 2
C3, B2
-
1 6
C [1 ,
B2], B2
2p
+
B
+
1 2
C3, C3
-
1 6
C [1 ,
B2], C3
3p,
B2-s p
=
1 2
B2, C1
+
1 6
C [1 ,
C3], C1
1p +
B
+
1 2
B2, B2
+
1 6
C [1 ,
C3], B2
(A.25) 2p
+
1 2
B2, C3
+
1 6
C [1 ,
C3], C3
3p,
(A.26)
44
C1-s p =
B
+
1 2
C1, C1
-
1 6
B[2,
C3], C1
1p
+
1 2
C1, C3
-
1 6
B[2,
C3], C3
3p
+
1 2
C1, B2
-
1 6
B[2,
C3], B2
2p,
B-s p
=
1 2
B, C11p + B22p + C33p -
1 2
C3, C3 + B2, B2
(A.27)
+ C1, C1 , C11p + B22p + C33p
+
1 3
C32p - B23p , C[2 , C3]
+
1 3
- C31p + C13p
, C[3 , C1]
+
1 3
B21p - C12p , C[1 , B2]
, (A.28)
where we introduced the formal identification B2 = B2 to use the antisymmetry of: C[1B2] = C1B2 - B2C1 being inherited from one for C[1C2]11.
Thus, we see, that the preservation of the explicit N = 3 BRST symmetry for the quantum action S(L3)((3)) in the space of G(3)-irreducible representation M(3) requires the introduction of odd nondegenerate supermatrix N with destroying of G(3)-covariance of the fields (3) to get local path integral (A.13) with N = 3 BRST invariance (A.23)-(A.28).
This fact proves the validity condition (2.38) of the Statement 1 concerning gauge-fixing procedure for odd N .
B N = 4 BRST Invariant YangMills Action in R-like Gauges
In this Appendix, we present the details of calculations used in Section 4 to find N = 4 BRST invariant
quantum action (4.7)(4.10) and establish a correspondence between the gauge-fixing procedures in the
YangMills theory described by a gauge-fixing function (A, B) = 0 from the class of R-gauges in N = 1 BRST formulation and by a gauge-fixing functional Y(04) in the suggested N = 4 BRST quantization.
To calculate SY(4) (4) we have used the results of applications (2.82)(2.86), (2.87), (2.88), (3.3) adapted for N = 4 case, as well as the property (4.11) for differentiation of the product and commutator of any two functions by products of the generators -s p up to 4-th order.
the
Thus, for the quadratic gauge preliminary calculations with
bosonic functional, Y(04)((4) action of the first and second
p) o=wYer(0s4)o(Af )-s+r1
Y(B4)(Bq1q2 ), (4.6) we need on Y(04)(A) with use of the
notation for the compact writing, r1r2r3r4 [r]4:
Y(04)(A)-s r1 = ddx trAD(A)Cr1 = - ddx tr(A)Cr1 ,
(B.1)
(A)Cr1 -s r1 -s r2 [r]4 = Cr1 M (A)Cr2 + (A)Br1r2 [r]4,
(B.2)
of the third powers, with account for the identities (B.9) below and equalities ddx trCr1 M (A)Br2r3 = ddx trBr2r3 M (A) - [(A), ] Cr1 , obtained with help of the integration by parts:
3
Y(04)(A)
-s rk [r]4 = -
k=1
ddx tr - Br1r3 M (A)Cr2 + Cr1 M (A)Br2r3 - Cr1
+ D(A)Cr3 , Cr2
+ Br1r2 M (A)Cr3 + (A)
B r1 r2 r3
+
1 2
Br1r2 , Cr3
M (A)Cr3 , Cr2 [r]4
=-
ddx tr 3Br1r2 M (A)Cr3 + Cr1 DCr2 , Cr3 +
Br1r2r3 +
3 2
Br1r2 , Cr3
A [r]4, (B.3)
11The action of the Grassmann-odd operator may be determined on the su(N^ ) commutator A, B of any Grassmannhomogeneous quantities A, B as A, B = A, B = (-1)(A) A, B in such a way that should act only on the fields M (A.8) and M . E.g. B, C1 = B, C1 and B, B2 = B, B2 = - B, B2 .
45
and of the fourth power:
4
Y(04) (A)
-s rk [r]4 = -
k=1
ddx tr
-3
B r1 r2 r4
+
1 2
Br1r2 , Cr4
M (A)Cr3 + 3Br1r4 M (A)Br2r3
+(A)
[r]4 B
+
1 2
Br1r2r3 , Cr4 -
(-1)P (r1,r2,r3)
1 4
Br1r2 , Cr3 , Cr4
P
+
1 3
Br1r4 , Cr2 , Cr3
-
3 2
Br1r2r4 , Cr3
-
3 4
Br1r2 , Cr4 , Cr3
+
B r1 r2 r3
+
3 2
Br1r2 , Cr3
M (A)Cr4 + Cr1
DCr2 , Br3r4 - DBr2r4 , Cr3
+ DCr4 , Cr2 , Cr3 - 3Br1r2 DCr4 , Cr3 + Br1r4 DCr2 , Cr3 [r]4
(B.4)
= - ddx tr 4Br1r2r3 M (A)Cr4 + 3Br1r2 M (A)Br3r4 + (A)B[r]4
+(A) 2 Br1r2r3 , Cr4 - Br1r2 , Cr3 , Cr4 - Br1r2 Cr3 , M (A)Cr4 + 4 Cr3 , DCr4
+Cr1 DCr2 , Br3r4 - Cr2 , DBr3r4 + DCr2 , Cr3 , Cr4
[r]4 .
(B.5)
Here, we have used that, gration by parts, relations
Cr1 , Cr2 r1r2 (2.82), (2.83)
r3 r4
its
0, definition of analog, M (A)Br1
the Faddeev-Popov operator (1.4), r2 -s r3 , and easily checked Leibnitz
interule
of the commutator differentiation for covariant derivative, D(A):
M (A)Br1r2 -s r3 = D(A)Cr3 , Br1r2 + M (A) Br1r2 -s r3 = M (A)Cr3 , Br1r2 + D(A)Cr3 , Br1r2
+ M (A)
B r1 r2 r3
+
1 2
Br1r2 , Cr3
-
1 12
C[r1 ,
Cr2], Cr3
,
D(A) Br1r2 , Cr3 = D(A)Br1r2 , Cr3 + Br1r2 , D(A)Cr3 ,
(B.6) (B.7)
as well as the relations, first, for the terms with permutation, P (r1, r2, r3), and second, for su(N^ )-valued functions F, G:
-
(-1)P
(r1
,r2
,r3
)
1 2
1 4
Br1r2 , Cr3 , Cr4
+
1 3
Br1r4 , Cr2 , Cr3
+
3 4
P
=-
3 4
Br1r2 , Cr3 , Cr4 +
Br1r4 , Cr2 , Cr3
-
3 4
Br1r2 , Cr3 , Cr4
= - Br1r2 , Cr3 , Cr4 [r]4 ,
Br1r2 , Cr4 , Cr3 [r]4
DA = A ,
ddx tr (DF ) G = - ddx trF DG .
[r]4
(B.8) (B.9)
In turn, the input from the gauge boson part Y(B4)(Bq1q2 ), (4.6) into the quantum action (4.7) may be presented as:
4
Y(B4)
-s rk [r]4
=
-2
g2 4!
k=1
4
3
ddx tr Bq1q2
-s rk Bq3q4 + 4Bq1q2
-s rk Bq3q4 -s r4
k=1
k=1
+3Bq1q2 -s r1 -s r2 Bq3q4 -s r3 -s r4 [r]4 [q]4 ,
(B.10)
so that to derive the quadratic in the fields B terms, which should determine the gauge-fixed action for the Feynman-like gauge it is sufficient to calculate the last summand above, because of, Bq1q2 -s r1-s r2 = q1q2r1r2B + o(B, C), according to N = 4 BRST transformations (3.20).
46
Let us find the action of the operators -s r1 [r]4 and -s r1 -s r2 [r]4 on Bq1q2 [q]4 :
Bq1q2 -s r1 [r]4 [q]4 =
B q1 q2 r1
+
1 2
Bq1q2 , Cr1
-
1 6
Cq1 ,
Cq2 , Cr1
[r]4 [q]4 ,
Bq1q2 -s r1 -s r2 [r]4 [q]4 = q1q2r1r2 B + Bq1q2r1 , Cr2 + Bq1r1 , Cq2 , Cr2
-
1 3
Bq1r1 , Cr2 , Cq2
-
1 6
Br1r2 , Cq1 , Cq2
+
1 6
Cq1 ,
Cq2 , Cr2 , Cr1
+
1 2
Bq1q2 , Br1r2
[r]4 [q]4 .
(B.11) (B.12)
Then, for the last term in (B.10) we have
- g2 4
ddx trBq1q2 -s r1 -s r2
Bq3q4 -s r3 -s r4
[r]4 [q]4
=
- g2 4
ddx tr q1q2r1r2 B
+ Bq1q2r1 , Cr2 +
Bq1r1 , Cq2
, Cr2
-
1 3
Bq1r1 , Cr2 , Cq2
-
1 6
Br1r2 , Cq1 , Cq2
+
1 6
Cq1 ,
Cq2 , Cr2 , Cr1
+
1 2
Bq1q2 , Br1r2
q3q4r3r4 B + Bq3q4r3 , Cr4
+
Bq3r3 , Cq4
, Cr4
-
1 3
Bq3r3 , Cr4 , Cq4
-
1 6
Br3r4 , Cq3 , Cq4
+
1 6
Cq3 ,
Cq4 , Cr4 , Cr3
+
1 2
Bq3q4 , Br3r4
[r]4 [q]4
= -g2
ddx tr 4!B2 + 2B
Bq1q2r1 , Cr2 +
Bq1r1 , Cq2
, Cr2
-
1 3
Bq1r1 , Cr2 , Cq2
-
1 6
Br1r2 , Cq1 , Cq2
+
1 6
Cq1 ,
Cq2 , Cr2 , Cr1
+
1 2
Bq1q2 , Br1r2
q1 q2 r1 r2
+
1 4
Bq1q2r1 , Cr2 +
Bq1r1 , Cq2
, Cr2
-
1 3
Bq1r1 , Cr2 , Cq2
-
1 6
Br1r2 , Cq1 , Cq2
+
1 6
Cq1 ,
Cq2 , Cr2 , Cr1
-
1 3
Bq3r3 , Cr4 , Cq4
-
1 6
+
1 2
Bq1q2 , Br1r2
Br3r4 , Cq3 , Cq4
Bq3q4r3 , Cr4 + Bq3r3 , Cq4 , Cr4
+
1 6
Cq3 ,
Cq4 , Cr4 , Cr3
+
1 2
Bq3q4 , Br3r4
[r]4 [q]4 ,
(B.13)
where we have used the Fierz-like identities for the products of Levi-Civita tensors:
q1q2r1r2 [r]4 q3q4r3r4 = 4[q]4 , and q1q2r1r2 [r]4 q3q4r3r4 [q]4 = 4 4!,
(B.14)
and its normalization (2.37), (3.31). Now, we are waiting that the first and second terms in (B.10) of the third and fourth orders in -s r
when acting on Bq1q2 will not produce new summands to the gauge-fixed and quadratic in the fictitious
fields parts of the action (4.7). Their role concerns only to exclude non-diagonal terms from the last
quantity in (B.10) given explicitly in (B.13). To justify the proposal let us show, that the terms linear in B in (B.13) are absent in SY(4) (4) (4.7). To do so we need the product of three antisymmetrized
47
generators, -s r1 -s r2 -s r3 [r]4 applied to Bq1q2 :
3
B q1 q2
-s rk [r]4 [q]4 =
k=1
q1 q2 r1 r2
1 2
B, Cr3
-
1 4!
Bs1s2s3 , Cs4 , Cr3 s1s2s3s4
+ Bq1q2r1 , Br2r3 -
q1q2r1r3 B +
1 2
Bq1q2r1 , Cr3
-
(-1)P (q1,q2,r1)
1 8
Bq1q2 , Cr1 , Cr3
P
+
1 6
Bq1r3 , Cq2 , Cr1
, Cr2 +
Bq1r1 , Cq2 , Br2r3 -
Bq1r1 ,
B q2 r3
+
1 2
Cq2 , Cr3
, Cr2
+
B q1 r1 r3
+
1 2
Bq1r1 , Cr3
+
1 12
Cr1 ,
Cq1 , Cr3
, Cq2 , Cr2
-
1 3
Bq1r1 , Cr2 ,
B q2 r3
+
1 2
Cq2 , Cr3
+
1 3
Bq1r1 , Br2r3 , Cq2
-
1 3
B q1 r1 r3
+
1 2
Bq1r1 , Cr3
+
1 12
Cr1 ,
Cq1 , Cr3
, Cr2 , Cq2
-
1 6
Br1r2 , Cq1 ,
B q2 r3
+
1 2
Cq2 , Cr3
+
1 6
Br1r2 ,
B q1 r3
+
1 2
Cq1 , Cr3
, Cq2
-
1 6
B r1 r2 r3
+
1 2
Br1r2 , Cr3
, Cq1 , Cq2
+
1 6
Cq1 ,
Cq2 , Cr2 , Br1r3
-
1 6
Cq1 ,
Cq2 , Br2r3 , Cr1
+
1 6
Cq1 ,
B q2 r3
+
1 2
Cq2 , Cr3
, Cr2 , Cr1
-
1 6
B q1 r3
+
1 2
Cq1 , Cr3
, Cq2 , Cr2 , Cr1
+
1 2
Bq1q2 ,
B r1 r2 r3
+
1 2
Br1r2 , Cr3
+
1 2
B q1 q2 r3
+
1 2
Bq1q2 , Cr3
-
1 6
Cq1 ,
Cq2 , Cr3
, Br1r2 [r]4 [q]4 . (B.15)
Consider, e.g. the summand, B Bq1q2r1, Cr2 in (B.13). The only second term in (B.10) gives similar contribution from (B.15), so that their sum is equal to:
ddx tr
4 3 2B Bq1q2r1 , Cr2
q1 q2 r1 r2
+
4
3 q1q2r1r2
2
B, Cr3
Bq3q4r4 [r]4 [q]4
= 4! ddx tr B Bq1q2r1 , Cr2 q1q2r1r2 + B, Cr3 B q3q4r4 q3q4r3r4
= 4! ddx tr B Bq1q2r1 , Cr2 + B Bq1q2r2 , Cr1 q1q2r1r2 0,
(B.16)
due to the antisymmetry in r1, r2 of, Bq1q2r2 , Cr1 q1q2r1r2 = - Bq1q2r1 , Cr2 q1q2r1r2 and the property for su(N^ )-valued functions with definite Grassmann parities:
tr F G, H = F m f mnl Gn Hl = tr F, G H = -tr G F, H (-1)(F )(G).
(B.17)
The checking that the remaining terms linear in B in (B.13) do not contribute in the quantum action (4.7) may be fulfilled analogously, but we leave out of the paper scope the proof of this fact.
The -dependent part of N = 4 BRST invariant quantum action (4.7) take the form:
SY(4)
(4)
= g2
ddx tr
B2
+
1 4!
1 42
Bq1q2 , Br1r2
Bq3q4 , Br3r4
(B.18)
+
1 4!3!
Cq1 ,
Cq2 , Cr2 , Cr1
Cq3 , Cq4 , Cr4 , Cr3
[r]4 [q]4 + S,
without terms of the product
linear in B in S, which of four antisymmetrized
should be determined from (B.10)(B.13), (B.15) and generators, -s r1 -s r2 -s r3 -s r4 [r]4 applied to Bq1q2 .
the
results
48
Therefore, combining (B.4), (B.18) we have
SY(4) (4) = S0 +
ddx tr
A + g2B B +
1 3!
B
r1
r2
r3
M
(A)C
r4
+
1 8
B
r1
r2
M
(A)B
r3
r4
[r]4
+
1 4!
(A)
2 Br1r2r3 , Cr4
-
Br1r2 , Cr3 , Cr4
- Br1r2 Cr3 , M (A)Cr4
+ 4 Cr3 , DCr4 + Cr1 DCr2 , Br3r4 - Cr2 , DBr3r4 + DCr2 , Cr3 , Cr4
+
g2 4!
1 42
Bq1q2 , Br1r2
Bq3q4 , Br3r4
+
1 4!3!
Cq1 ,
Cq2 , Cr2 , Cr1
[r]4
Cq3 , Cq4 , Cr4 , Cr3 [r]4 [q]4 + S ,
(B.19)
for S (=0) = 0, that proves the representation (4.7)(4.10) for the quantum action. Determining the dual fields (with lower G(4)-indices) for Grassmann-even Br1r2 and Grassmann-odd Br1r2r3 fields:
Br1r2
=
1 2
B
r3
r4
r1r2
r3 r4
=
B34, -B24, B23, B14, -B13, B12 ,
Cr4
=
1 3!
B
r1
r2
r3
r1
r2
r3
r4
=
- B234, B134, -B124, B123
(B.20) (B.21)
the action (B.19) can be equivalently presented as follows
SY(4) = S0 + ddx tr A + g2B B + Cr1 M (A)Cr1 +
Br1r2 M (A)Br1r2
1r1<r23
+
1 4!
2(A)
3! Cr1 , Cr1
-
Br1r2 , Cr1 , Cr2
- 2Br1r2 Cr1 , M (A)Cr2
+ 4 Cr1 , DCr2
+ 2Cr1
DCr2 , Br1r2
-
Cr2 , DBr1r2
+
1 2
DCr2 , Cr3 , Cr4 [r]4
+
g2 4 4!
Bq1q2 , Br1r2
Bq1q2 , Br1r2
+
g2 3!(4!)2
Cq1 ,
Cq2 , Cr1 , Cr2
Cq3 , Cq4 , Cr3 , Cr4 [r]4 [q]4 + S ,
(B.22)
by virtue of easily checked identity,
1r1<r23 Br1r2 M (A)Br1r2
1 4
B
r1
r2
M
(A)Br1
r2
,
justifying
the
representation (2.34) for the quantum action for the case N = 4 (k(4)=3) in the Landau gauge ( = 0)
with the identification:
C0, C[3]; C0, C[3]; B[3], B[3] = Cr; Cr; Br1r2 , Br1r2 for r = 1, ..., 4; 1 r1 < r2 3.
(B.23)
References
[1] C.N.Yang and R.L.Mills, Phys. Rev. 96 191 (1954). [2] R. P. Feynman, Acta Phys. Pol. 24, 697 (1963). [3] L.D. Faddeev and V.N. Popov, Phys. Lett. B. 25, 29 (1967). [4] B.S. DeWitt, Phys. Rev. 162, 1195 (1967). [5] G. 't Hooft, Nucl. Phys. B 33, 173 (1971).
49
[6] N. Nakanishi, Covariant Quantization of the Electromagnetic Field in the Landau Gauge, Prog. Theor. Phys. 35, 1111 (1966).
[7] B. Lautrup, Canonical Quantum Electrodynamics in Covariant Gauges, Mat. Fys. Medd. Kon. Dan. Vid.- Sel. Medd. 35, 29 (1967).
[8] V.N. Gribov, Nucl. Phys. B. 139, 1 (1978). [9] V. N. Popov and L. D. Faddeev, Kiev Inst. Theor. Phys. Acad. Sci. (1967), preprint ITP 67-36
[English translation: Perturbation theory for gauge-invariant fields (preprint NAL-THY-57, (1972))]. Reprinted e.g. in 50 Years of YangMills Theory, ed. G. 't Hooft (World Scientific, 2005). [10] L.D. Faddeev, Int. J. Mod. Phys. A 25, 1079 (2010). [11] F.A. Berezin, Pure Appl. Phys. 24, 1 (1966). [12] C. Becchi, A. Rouet and R. Stora, Phys. Lett. B 52, 344 (1974); Annals Phys. 98, 287 (1976). [13] I. V. Tyutin, Lebedev Inst. preprint. 39 (1975), [arXiv: 0812.0580 [hep-th]]. [14] A.A. Slavnov and L.D. Faddeev, Theor.Math.Phys. 3 (1970) 312. [15] A.A. Slavnov, Theor.Math.Phys. 10 (1972) 99. [16] J. Zinn-Justin and R. Guida, Scholarpedia 3(12), 8287 (2008).; J. Zinn-Justin, Scholarpedia 4(2), 8674 (2009). [17] G. Curci and R. Ferrari, Phys. Lett. B. 63, 91 (1976). [18] L. Alvarez-Gaume and L. Baulieu, Nucl. Phys. B. 212, 255 (1983). [19] V.P. Spiridonov, Nucl. Phys. B. 308, 527 (1988). [20] L. Bonora and M. Tonin, Phys. Lett. B 98, 48 (1981). [21] P. Gregoire and M. Henneaux, Phys. Lett. B 277, 459 (1992). [22] A.A. Varshovi, Gauge-fixing invariance and antiBRST symmetry, Int. J. Geom. Methods Mod. Phys. 1750168 (2017), [arXiv:1611.08856[hep-th]]. [23] S. D. Joglekar and B. P. Mandal, Phys. Rev. D 51, 1919 (1995). [24] P. Lavrov and O. Lechtenfeld, Phys. Lett. B. 725, 382 (2013), [arXiv:1305.0712[hep-th]]. [25] A. Reshetnyak, Int. J. Mod. Phys. A 29, 1450128 (2014), [arXiv:1312.2092[hep-th]]. [26] P. Yu. Moshin and A. A. Reshetnyak, Nucl. Phys. B. 888, 92 (2014), [arXiv:1405.0790[hep-th]]. [27] S. Upadhyay, A.A. Reshetnyak and B.P. Mandal, Eur. Phys. J. C 76, 391 (2016), [arXiv:1605.02973[physics.gen-ph]]. [28] P.Yu. Moshin and A.A. Reshetnyak, Phys. Lett. B. 739, 110 (2014), [arXiv:1406.0179[hep-th]]. [29] P.Yu. Moshin and A.A. Reshetnyak, Int. J. Mod. Phys. A 29, 1450159 (2014), [arXiv:1405.7549[hepth]]. [30] P.Yu. Moshin and A.A. Reshetnyak, Int. J. Mod. Phys. A 30, 1550021 (2015), [arXiv:1406.5086[hepth]]. [31] P.Yu. Moshin and A.A. Reshetnyak, Int. J. Mod. Phys. A.31,1650111 (2016), [arXiv:1506.04660[hepth]].
50
[32] B.S. de Witt, Dynamical Theory of Groups and Fields (Gordon and Breach, New York, 1965). [33] I.A. Batalin, P.M. Lavrov and I.V. Tyutin, J. Math. Phys. 31, 1487 (1990). [34] I.A. Batalin, P.M. Lavrov and I.V. Tyutin, J. Math. Phys. 32, 532 (1991). [35] I.A. Batalin, K.Bering, P.M. Lavrov and I.V. Tyutin, Int.J.Mod.Phys. A29 , 1450167(2014),
[arXiv:1406.4695[hep-th]]. [36] D. Zwanziger, Nucl. Phys. B. 323, 513 (1989). [37] M. Capri, D. Dudal, P. Sorella et all, Phys. Rev. D. 2015. V. 92. P. 045039. [arXiv:1506.06995[hep-
th]]. [38] P. Yu. Moshin and A. A. Reshetnyak, Phys.Part.Nucl.Lett. 14 (2017) 411, [arXiv:1604.03027[hep-th]]. [39] A.A. Reshetnyak and P.Yu. Moshin, Russ. Phys, Journal 59, 1921 (2017), [arXiv:1607.07253[hep-th]]. [40] M. Henneaux, Phys. Lett. B 282, 372 (1992). [41] C.M. Hull, Mod. Phys. Lett. A 5, 1871 (1990). [42] G. Barnich, R. Constantinescu and P. Gregoire, Phys. Lett. B 293, 353 (1992). [43] M. Semenov-Tyan-Shanskii and V. Franke, A variational principle for the Lorentz condition and
restriction of the domain of path integration in non-abelian gauge theory, Zap. Nauch. Sem. LOMI im. V. A. Steklov, AN SSSR 120 (1982) 159. (English translation: New York: Plenum Press 1986). [44] I.A. Batalin and G.A.Vilkovisky, Phys. Lett. B 102, 27 (1981). [45] M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton, USA: Univ. Press (1992). [46] P. Lavrov, O. Lechtenfeld and A. Reshetnyak, JHEP. 1110, 043 (2011), [arXiv:1108.4820[hep-th]]. [47] M.A.L. Capri, D. Dudal, D. Fiorentini, M.S. Guimaraes, I.F. Justo, A.D. Pereira, B.W. Mintz, L.F. Palhares, R.F. Sobreiro and S.P. Sorella, Phys. Rev. D 94, 025035 (2016), [arXiv:1605.02610[hep-th]]. [48] L.D. Faddeev and A.A. Slavnov, Gauge Fields: Introduction to the Quantum Theory, Addison-Wesley Publishing Company, 1991. [49] E.S. Fradkin and G.A. Vilkovisky, Phys. Lett. B55, 224 (1975). [50] I.A. Batalin and G.A.Vilkovisky, Phys. Lett. B 69, 309 (1977). [51] M. Henneaux, Phys. Pep. 126, 1 (1985). [52] I.A. Batalin, K. Bering, Nucl. Phys. B. 700, 439 (2004), [arXiv:hep-th/0401169]. [53] O. Piguet and K. Sibold, Nucl. Phys. B 197, 257 (1982). [54] S.S. Aleshin, A.E. Kazantsev, M.B. Skoptsov and K.V. Stepanyantz, JHEP 1605, 014 (2016), [arXiv:1603.04347[hep-th]]. [55] A. A. Slavnov, Theor.Math.Phys. 13, 1064 (1972) [Teor. Mat. Fiz. 13, 174 (1972)]. [56] I.L. Buchbinder, N.G. Pletnev and K.V. Stepanyantz, Phys. Lett. B 751, 434 (2015), [arXiv:1509.08055[hep-th]]. [57] A.S. Galperin, E.A. Ivanov, V.I. Ogievetsky and E.S.Sokatchev, Harmonic Superspace, Cambridge University Press, 324 (2007). [58] D.M. Gitman and I.V. Tyutin, Quantization of Fields with Constraints, Springer, 1990.
51
|