File: 1701.00068.txt

package info (click to toggle)
python-pattern 2.6%2Bgit20180818-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 93,888 kB
  • sloc: python: 28,119; xml: 15,085; makefile: 194
file content (3153 lines) | stat: -rw-r--r-- 51,819 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
arXiv:1701.00068v1 [math.NA] 31 Dec 2016

The Discrete Stochastic Galerkin Method for Hyperbolic Equations with Non-smooth and
Random Coefficients
Shi Jin and Zheng Ma
January 3, 2017
Abstract We develop a general polynomial chaos (gPC) based stochastic Galerkin (SG) for hyperbolic equations with random and singular coefficients. Due to the singular nature of the solution, the standard gPC-SG methods may suffer from a poor or even non convergence. Taking advantage of the fact that the discrete solution, by the central type finite difference or finite volume approximations in space and time for example, is smoother, we first discretize the equation by a smooth finite difference or finite volume scheme, and then use the gPC-SG approximation to the discrete system. The jump condition at the interface is treated using the immersed upwind methods introduced in [8, 12]. This yields a method that converges with the spectral accuracy for finite mesh size and time step. We use a linear hyperbolic equation with discontinuous and random coefficient, and the Liouville equation with discontinuous and random potential, to illustrate our idea, with both one and second order spatial discretizations. Spectral convergence is established for the first equation, and numerical examples for both equations show the desired accuracy of the method.
Key words. hyperbolic equation, random coefficient, potential barrier, stochastic Galerkin, polynomial chaos
This research was supported by NSFC grant No. 91330203, NSF grants DMS-1522184 and DMS1107291: RNMS KI-Net, and by the Office of the Vice Chancellor for Research and Graduate Education at the University of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation.
Institute of Natural Sciences, Department of Mathematics, MOE-LSEC and SHL-MAC, Shanghai Jiao Tong University, Shanghai 200240, China and Department of Mathematics, University of WisconsinMadison, Madison, WI 53706, USA (jin@math.wisc.edu) and .
Department of Mathematics, Shanghai Jiao Tong University, Shanghai 200240, China.
1

AMS subject classifications. 35L02, 65M06, 65M60, 65C30
1 Introduction
We are interested in developing efficient numerical methods to solve linear hyperbolic equations with non-smooth and uncertain coefficients. Such problems arise in wave propagation in heterogeneous media, through interfaces between different media, or potential barriers, making the coefficients in these equations discontinuous or even more singular. Random uncertainties arise due to modeling or experiment errors. These errors are inevitable since the fluxes in hyperbolic equations are often given by empirical laws, equations of state or moment closures which are often ad hoc.
When hyperbolic equations contain singular coefficients, one usually needs to provide an extra physical condition at the singular points to make the initial or boundary value problems well-posed and to account for the correct physics of waves at the interface or barrier [8, 12]. In the case of potential barriers, a natural physical condition is the transmission and reflection conditions, and such conditions can be built into the numerical fluxes in a natural way, in the framework of the Hamiltonian-Preserving schemes [12, 13]. This is the approach we will take to tackle the problems with singular coefficients.
To handle the difficulty induced by the random uncertainties, we will utilize the generalized polynomial chaos (gPC) expansion based stochastic Galerkin (SG) method [1, 5, 7, 15, 18, 21, 23, 24]. Such methods outperform the classical Monte-Carlo method in that, given sufficient regularity of the solution in the random space, they can achieve the spectral convergence, thus are much more efficient for problems with random uncertainties. Unfortunately, for hyperbolic problems, one often is not blessed with such regularities, which leads to significant reduction of order of convergence [17, 26], thus slows down the computation or even gives non-convergent results due to Gibbs' phenomenon. The problems under study in this paper are problems with discontinuous solutions in the random space, due to jumps of solutions formed at the interfaces or barriers which will propagate into the random space.
A standard gPC-SG method begins with a gPC approximation of the original differential equation in the random space, yielding a deterministic system of equations for the gPC coefficients (while the randomness is built into the basis functions which are orthonormal polynomials), which is then discretized by standard schemes (finite difference, finite volume, finite element, or spectral methods) in space and time. The gPC approximation is accurate if solutions to the original problem are smooth in the random space. This is not the case for the problems under study.
2

Our central idea in this paper is to reverse the above gPC-SG process. Namely, we first discretize the original equation in space and time, using smooth numerical fluxes, and then apply the gPC approximation to this discrete equation. Since the discrete solution is more regular than the continuous one, the gPC approximation is applied to a smoother function (for fixed time step and mesh size), thus one expects a better convergence rate. We refer to such gPC-SG methods as the discrete gPC-SG methods.
For hyperbolic equations, the smooth numerical fluxes are usually central differences which do not depend on the characteristic information (for examples the Lax-Friedrichs, the Lax-Wendroff scheme, etc.). The upwind type schemes are not smooth, since they depend on the sign of the absolute value of the characteristic speeds thus do not yield smooth numerical fluxes. For second order scheme, in order to suppress numerical viscosity, one usually uses slope limiters or ENO or WENO type reconstruction [14,16,19] which in general are not smooth functions. In order to keep the numerical flux smooth, we use the smooth BAP slope limiter introduced in [3].
In this paper we will develop this idea for two problems. The first is a scalar hyperbolic equation with a discontinuous and random coefficient:

ut (x, t , z) + c(x, z)u(x, t , z) x = 0, t > 0.

(1.1)

Here c(x, z) is the random coefficient where z is a random variable in a properly defined

complete random space with event space  and probability distribution function (z).

c(x, z) is discontinuous respect to x, which corresponds to an interface between differ-

ent media. The second is the Liouville equation for the particle density distribution

u(x, t , z) > 0:

ut + vux - Vx uv = 0, t > 0, x, v  R,

(1.2)

in which the potential function V (x, z) may be discontinuous in x, corresponding to a potential barrier. The quantities of interest to be computed in these problems include the expectation of u,

E[u] = u(z)(z) dz.

(1.3)

and its variance

V[u] := E (u - E(u))2 = u(z)2(z) dz - (E[u])2

(1.4)

For equation (1.1), by using the Lax-Friedrichs scheme followed by the gPC-SG approximation, we will establish the regularity and consequently the spectral convergence of the proposed method in the random space, while the numerical convergence in space and time is the same as the deterministic problem established in [11]. The error will be verified numerically, for both the convection and the Liouville equations.

3

In such problems the uncertainty may also come from the initial data. This is a well-studied problem [6, 26] and our method can obviously be used in this case.
The paper is organized as follows. In Section 2, we will present the discrete gPC-SG method for the convection equation (1.1), and conduct the regularity and numerical convergence analysis for the fully discrete scheme. In Section 3, we will show how to use this idea for the Liouville equation for both first and second order spatial discretizations. In Section 4, we will present numerical examples for both equations that will show an exponential convergence in the random space.

2 A Discrete gPC-SG scheme for convection equation with discontinuous wave speed

We first consider a scalar model convection equation

ut (x, t , z) + c(x, z)u(x, t , z) x = 0, t > 0, u(x, 0, z) = u0(x, z).

(2.1)

Here we consider the case that c(x, z) can be discontinuous with respect to x at some

point, for example,

c-(z) > 0, if x < 0, c(x, z) = c+(z) > 0, if x > 0.

(2.2)

As in [8], an interface condition at x = 0 is needed to make the problem well-posed:

u(0-, t , z) = (z)u(0+, t , z).

(2.3)

where (z) = 1 corresponds to conservation of mass or (z) = c-(z)/c+(z) for the conservation of flux which is the case we will use in the sequel. Notice that here we assume c(x, z) is smooth enough with respect to the random variable z, and only has one discontinuous point at x = 0.
The discontinuity of u(x, t , z) generated by the interface condition (2.3) will propagate into the random space, preventing the gPC method from high order convergence due to Gibb's phenomenon. Here we propose a slightly different approach from the traditional gPC method: We first discretize equation (2.1) in space and time as done in [11] with the random variable z as a fixed parameter. A key idea in [11] is to "immerse" the interface condition (2.3) into the scheme. The gPC method will then be applied to the discrete system.

4

2.1 The scheme

Let the spatial mesh be xi = i x, where i  Z, the set of all integers, and x is the mesh size. Let t n = nt be the discrete time where t is the time step. Let Uin(z) = U (xi , t n, z) be the numerical approximation of u(xi , t n, z). The immersed upwind scheme proposed
by Jin and Qi in [11], for (2.1) (2.3) is

Uin+1(z) = (1 - -(z))Uin(z) + -(z)Uin-1(z), Uin+1(z) = (1 - +(z))Uin(z) + -(z)Uin-1(z), Uin+1(z) = (1 - +(z))Uin(z) + +(z)Uin-1(z),

if i  0, if i = 1, if i  2,

(2.4)

where (z) = c(z)t /x. Notice, from this discrete scheme (2.4), if one assumes that Uin(z) is a smooth func-
tion of z for each i , then after one time step, Uin+1(z) is still a smooth function of z. The reason is simple: (z) = c(z)t /x is a smooth function of z! Since we assume the initial data is smooth with respect to z, the numerical solution at any time t n should
also be smooth with respect to z. Then if applying the standard gPC Galerkin method to
this discrete system, one can expect a fast convergence of gPC expansion to this discrete solution when the physical mesh size x and t are fixed.
First we recall the scheme:


 

Uin

+1(z

)

=

(1

-

-(z

))Uin

(z

)

+

- (z )Uin-1 (z

)

Uin+1(z) = (1 - +(z))Uin(z) + -(z)Uin-1(z)

  

Uin

+1(z

)

=

(1

-

+(z

))Uin

(z

)

+

+ (z )Uin-1 (z

)

if i  0, if i = 1, if i  2.

(2.5)

following the standard gPC Galerkin framework, we apply the gPC expansion of z to Uin(z). Namely, we seek an approximate solution in the form of gPC expansion, i.e.

K
Uin,(K )(z) = U^in,(k)Pk (z),
k =0

(2.6)

where Pk (z) form an orthonormal polynomial basis with weights (z), and the degree of Pk (z) of k satisfying

Pi , P j  = Pi (z)P j (z)(z) dz = i j ,

(2.7)

with the weighted inner product defined as

 f , g  = f (z)g (z)(z) dz,

(2.8)

5

and i j is the Kronecker delta function. The expansion coefficients are determined as

U^in,(k) = Uin(z)Pk (z)(z) dz.

(2.9)

By utilizing the expansion (2.6) and employing a Galerkin projection, the coefficients U^in,(k) satisfy the following system of equations


 

U^ in+1

=

(1

-

-)U^ in

+

-U^ in-1,



U^ in+1 = (1 - +)U^ in + -U^ in-1,

  

U^ in+1

=

(1

-

+)U^ in

+

+U^ in-1,

if i  0, if i = 1, if i  2.

(2.10)

Here U^ in = (U^in,(0), . . . ,U^in,(K ))T is a vector of dimension (K + 1), and  are the (K + 1)  (K + 1) matrices whose entries are {k,m}0k,mK where

k,m = c(z)Pk (z)Pm(z)(z) dz .

(2.11)

2.2 The error estimate and convergence analysis
We first introduce some notations, spaces and norms that will be used for our analysis. We assume that u(x, t , z) has a compact support in the domain D = [a, b], where a < 0 and b > 0 such that the domain includes the interface x = 0. -M  i  M is the spatial discretization index and x = (b - a)/(2M + 1). The time step index is n = 0, 1, . . . .
Define a weighed L2 norm on the random space ,

f ()

2 L

2

()

=

f 2(z)(z) dz.

We also define the norm

u n ()

2 H

:=

un(z)

2 l 1(D

)



(z

)

dz

,

where

M

un (z) 1(D) =

|uin (z )|x .

i =-M

(2.12) (2.13) (2.14)

6

2.2.1 Regularity of the discrete solution in the random space

In order to obtain the error estimate, we need to investigate the regularity of discrete
solution Uin(z) in the random space. It is natural that some assumptions for the given data will be made. More precisely, we make the following assumptions (see [20, 26]).

Assumption 2.1.

mzax|sz (z)|   , mDax|sz u0(x, z)|   , 0  s  ,

(2.15)

where 0  (z) = c(z)t /x  1 and = 1, 2, . . . and ,  are positive constants. Without

loss of generality, we also assume a bounded constant  = max  ,  , 1 .

Note that in (2.15) the constants  and  are independent of x. We are now ready to state and prove the following regularity result.

Theorem 2.1. Under Assumption (2.15), the discrete solution Uin(z) have properties

imN,azx|zUin(z)|  C (n)(2)n,

(2.16)

for   N, where

n
C (n) =

n (1 + s)  2( +1)n.

s=0 s

Proof. Differentiating scheme (2.4) times with respect to z,

(2.17)



   

zUin+1(z

)

=

z

Uin

(z

)

-

  

s=0

s

z-s -(z)szUin(z) +
s=0

s

z-s -(z)szUin-1(z)



   zUin+1(z) = zUin(z) -

l

 

s=0

s

l
z-s +(z)szUin(z) +
s=0

s

z-s -(z)szUin-1(z)





 

l

    

zUin+1(z

)

=

z

Uin

(z

)

-

s=0

s

z-s +(z)szUin(z) +
s=0

s

z-s +(z)szUin-1(z)

if i  0, if i = 1, if i  2.

We will use the mathematical induction on the index n. When n = 1 which means after the first step, one has



   

z

Ui1(z

)

=

z

Ui0(z

)

-

  

s=0

s

z-s -(z)szUi0(z) +
s=0

s

z-s -(z)szUi0-1(z)



   zUi1(z) = zUi0(z) -

l

 

s=0

s

l
z-s +(z)szUi0(z)
s=0

s

z-s -(z)szUi0-1(z)





 

l

    

z

Ui1(z

)

=

z

Ui0(z

)

-

s=0

s

z-s +(z)szUi0(z) +
s=0

s

z-s +(z)szUi0-1(z)

if i  0, if i = 1, if i  2.

7

With Assumption (2.15),

i mN,azx|szUi0(z)| = i mN,azx|sz u0(xi , z)|  mDax|sz u0(x, z)|  ,

and So one has

mzax|z-s (z)|  .

(2.18) (2.19)

i

mN,azx|zUi1(z

)|


i

mN,azx|zUi0(z

)|

+

s=0

s

mzax|z

-s

(z

)|
i

mN,azx|szUi0(z

)|

+
s=0

s

mzax|z

-s

(z

)|
i

mN,azx|szUi0-1

(z

)|

l

 + 22

 2(2 + 1),

s=0 s

which satisfies (2.16) for n = 1. Next we assume when n = p, the derivatives satisfy (2.16):

imN,azx|zUip (z)|  C (p)(2)p ,   N.

Then for index n = p + 1, using the same procedure as above,

(2.20) (2.21)

i

mN,azx|zUip+1(z

)|


i

mN,azx|zUip

(z

)|

+

s=0

s

mzax|z

-s



(z

)|
i

mN,azx|szUip

(z

)|

+
s=0

s

mzax|z

-s



(z

)|
i

mN,azx|szUip-1

(z

)|

C

(p)(2)p  + 2
s=0

s

C

-s(p)(2)p 

(2.22)



C

(p) +
s=0

s

C -s(p)

(2)p+1

:=C (p + 1)(2)p+1.

From the last equality one gets the recursive relation of C (p),

C

(n + 1) = C

(n) +
s=0

s

C

-s (n),

8

(2.23)

and by the mathematical induction one can find

which is the desired result.

nn

C (n) =

(1 + s) ,

s=0 s

Remark 2.1. The coefficient

n
C (n) =

n (1 + s)  2n(1 + n)  2( +1)n.

s=0 s

For a given final time T = nt ,

(2.24) (2.25)

T

T

C (n)  2 t 1 +

t

( +1)T
 2 t .

(2.26)

2.2.2 The spectral convergence of the gPC Galerkin method
Let Uin(z) be the solution to the linear convection equation (2.4). We define the K th order projection operator

K
PK Uin(z) = Uin(z), Pk (z) Pk (z).
k =0

(2.27)

The error arisen from the gPC-SG can be split into two parts rin,(K )(z) and ein,(K )(z),

Uin(z) -Uin,(K )(z) = Uin(z) - PK Uin(z) + PK Uin(z) -Uin,(K )(z) := rin,(K )(z) + ein,(K )(z),

(2.28)

where

rin,(K

)

(z

)

=

Uin

(z)

-

P

K

Uin

(z

)

is

the

interpolation

error,

and

e

n i ,(K

)(z

)

=

P

K

Uin

(z

)

-

Uin,(K )(z) is the projection error.

For

the

interpolation

error

r

n i ,(K

)(z

),

we

have

the

following

lemma,

Lemma 2.1 (Interpolation error). Under Assumption (2.15), for a given final time T = nt and any given integer  N,

rn,(K )()

H



(b

-

a )C  (2 K

+2 )n  ,

  N,

where C is a constant depends on the orthogonal polynomials {Pk (z)}kN .

(2.29)

9

Proof. By the definition of rin,(K )(z) and the norm  H ,

r

n ,(K

)()

=

Un() - PK Un()

H

1/2

=

Un(z) - PK Un(z)

2 l 1(D

)(z

)

dz

=

M

|Uin(z) - PK Uin(z)|x

2
(z ) dz

1/2

i =-M

M

i =-M

1/2
|Uin(z) - PK Uin(z)|2(z) dz x

M

=

Uin() - PK Uin() L2()x,

i =-M

(2.30)

here we have used the Minkowski inequality. Then by the standard error estimate for orthogonal polynomial approximations [2], we get

Uin() - PK Uin()

C L2() 

z Uin (z ) K

L2() .

(2.31)

By using Theorem 2.1, one obtains

z Uin ()

L2()



max
i N,z

z Uin (z )

2
(z) dz  Cl (n)(2)n  2( +1)n(2)n, (2.32)

for l  N, then

Uin() - PK Uin() L2()  C(2 +2)n/K ,   N,

(2.33)

which leads to

Un() - PK Un()

M

H

C(2 +2)n/K

i =-M

x

=

(b - a)C(2

+2 )n  .

K

(2.34)

This completes the proof.

It remains to estimate ein,(K )(z). To this aim, first notice that Uin,(K )(z) satisfies


 

Uin,(+K1)(z

)

=

Uin,(K

)(z

)

-

P

K

-(z) Uin,(K )(z) -Uin-1,(K )(z)

Uin,(+K1)(z) = Uin,(K )(z) - P K +(z)Uin,(K )(z) - -(z)Uin-1,(K )(z)

  

Uin,(+K1)(z

)

=

Uin,(K

)(z

)

-

P

K

+(z) Uin,(K )(z) -Uin-1,(K )(z)

if i  0, if i = 1, if i  2.

(2.35)

10

On the other hand, by doing the K th order projection directly on the scheme (2.4), one obtains


 

P

K

Uin

+1(z

)

=

P

K

Uin

(z

)

-

P

K

-(z) Uin(z) -Uin-1(z))

 PK Uin+1(z) = PK Uin(z) - PK +(z)Uin(z) - -(z)Uin-1(z))

  

P

K

Uin

+1(z

)

=

P

K

Uin

(z

)

-

P

K

+(z) Uin(z) -Uin-1(z))

if i  0, if i = 1, if i  2.

(2.36)

(2.36) subtracted by (2.35) gives

 

e

n+1 i ,(K )

=

e

n i ,(K

)

-

P

K

-(z)(ein,(K ) - ein-1,(K ))



    

-PK

-(z

)(r

n i ,(K

)

-

r

n i -1,(K

))



  

e

n+1 i ,(K )

=

e

n i ,(K

)

-

P

K

(+(z

)ein,(K

)

-

-

(z

)e

n i -1,(K

))

 

-PK

(+(z

)r

n i ,(K

)

-

-(z

)rin-1,(K

))



    

e

n+1 i ,(K )

=

e

n i ,(K

)

-

P

K

+(z)(ein,(K ) - ein-1,(K ))



 

-PK

+(z

)(r

n i ,(K

)

-

r

n i -1,(K

))

if i  0, if i = 1, if i  2.

(2.37)

where the variable z is omitted for clarity. Now we can give the following estimate of the projection error ein,(K )(z),
Lemma 2.2 (Projection error). Under Assumption (2.15), for a given final time T = nt and any given integer  N that the projection error satisfies the following estimate,

en,(K )()

2(b - a)CC

H

K

(n) ,

  N,

(2.38)

(2 +2)n - 3n where C (n) = 2 +2 - 3 and C is a constant determined only by the orthogonal polynomials {Pk (z)}kN .

Proof. First, according to (2.37), one has the following estimate for i  0,

ein,+(K1) L2()  ein,(K ) L2() + P K

max(- (z ))(
z

ein,(K )

L2() +

e

n i -1,(K

)

L2())

+ PK

max(- (z ))(
z

rin,(K )

L2() +

rin-1,(K )

L2()) .

(2.39)

Note

PK

 1 since it is a projection operator and max((z))  1, so one gets
z

e

n+1 i ,(K )

L2() 

ein,(K )

L2() +

ein,(K )

L2() +

ein-1,(K )

L2()

+

r

n i ,(K

)

L2() +

rin-1,(K )

L2().

(2.40)

11

According to (2.33),

r

n i ,(K

)

L2()  C(2 +2)n/K

,

i  Z,   N,

(2.41)

so

e

n+1 i ,(K )

L2()  2

e

n i ,(K

)

L2() +

ein-1,(K )

L2() + C2(2 +2)n/K

.

(2.42)

Similarly, for i = 1 and i  2, one has the same estimate as above. Summing over i and multiplying by x give

e

n+1 (K )

H 3

e

n (K

)

H + 2(b - a)C(2 +2)n/K

.

Using this recursive relation and notice that e(0K ) H = 0, one obtains

(2.43)

e(nK )

H



2(b - a)C K

(2 +2)n - 3n 2 +2 - 3

:=

2(b

- a)CC K

(n) .

This completes the proof of the lemma.

(2.44)

We are now ready to state the convergence theorem of gPC-SG method for the discrete scheme:

Theorem 2.2. Under Assumption (2.15), for a given final time T = nt and any given integer  N, the error of the gPC-SG method for the discrete scheme is

U n -U(nK )

H



(b

-

a)CC K

(

,n) ,

  N,

where C ( , n) = (2 +2)n + 2C (n).

(2.45)

Proof. From Lemma 2.1 and Lemma 2.2, one has

U n -U(nK )

H

r(nK )

H+

e(nK )

H



(b - a)C(2 K

+2)n 2(b - a)CC + K

(n) := (b - a)CC ( K

,n) ,

which completes the proof.

Remark 2.2. The constant C ( , n) = O 2( +1)n

( +1)T
= O 2 t

.

This implies a spectral

convergence in gPC order K for every fixed t .

12

2.2.3 An error estimate of the discrete gPC method

Now we are ready to prove the main result of the error estimate. Part of this estimate uses the error estimate uses the result of Jin and Qi [11] for the deterministic problem.

Lemma 2.3. Let u0(x, z) be a function of bounded variation for every fixed z. Then the immersed interface upwind difference scheme (2.4), under the CFL condition 0 < (z) < 1,
has the following 1-error bound:

U n(z) - u(, t n, z) 1(D)  C1(z)(c-(z)) + C2(z)(c+(z)), for every fixed z, (2.46)

where

(c(z)) = 2

c

 (z )x

(1

-

c

(z)

t x

)tn

+

x

,

and C1(z), C2(z) are bounded functions with respect to z.

(2.47)

Proof. For every fixed z, this is a deterministic problem thus one can use Theorem 1 in [11]. Note that we have assumed c(z) are strictly positive and bounded function with
respect to z, so one can get a bounded C1(z) and C2(z).

Next we will prove the following error estimate:

Theorem 2.3. Under Assumption 2.15 and assume u0(x, z) is a function of bounded variation for every z. Then the following error estimate of the discrete gPC method holds:

U(nK ) - u(, t n, ) H  C (T )(

x + t + x) + (b - a)CC (

,n) ,

K

l  N,

where C (T ) depends only on time T and C ( , n) depends on t and .

(2.48)

Proof. First we split the error into two parts:

U(nK ) - u(, t n, ) H  U n - u(xi , t n, z) H + U(nK ) -U n H .

(2.49)

For the first part, it is the error of numerical scheme (2.4), using Lemma 2.3 one gets

U(nK ) - u(, t n, ) H =  

1/2

U n(z) - u(, t n, z)

2 l1

(D

)(z

)

dz

1/2
(C1(z)(c-(z)) + C2(z)(c+(z)))2(z) dz

1/2

1/2

[(C1(z)(c-(z))]2(z) dz + [(C2(z)(c+(z))]2(z) dz .

(2.50)

13

The last inequality is obtained by Minkowski inequality. Notice that C1(z) is bounded and

1/2
[(c(z))]2(z) dz  2

c



(z

)x(1

-

c



(z

)

t x

)tn

(z

)

d

z

1/2
+

1/2
x 2(z ) dz

1/2
= 2 tnx c(z)(z) dz - tnt (c(z))2(z) dz + x

 C (T ) x + t + x.

(2.51)

Therefore one gets

U n - u(, t n, ) H  C (T )( x + t + x).

(2.52)

For the second part, according to Theorem 2.2 we have

U n -U(nK )

H



(b

-

a)CC K

(

,n) ,

  N.

Then by adding these two parts we complete the proof.

(2.53)

3 A gPC method for the Liouville equation with discontinuous potential

In this section we study the Liouville equation in classical mechanics with random

uncertainties:

ut + vux - Vx uv = 0, t > 0, x, v  R,

(3.1)

with initial condition

u(x, v, 0, z) = u0(x, v, z),

(3.2)

where u(x, v, t , z) is the density distribution of a classical particle at position x, time t and traveling with velocity v. V (x, z) is the potential depending on a random variable z
The Liouville equation has bicharacteristics defined by Newton's second law:

dx

dv

= v, dt

d t = -Vx(x, z),

which is a Hamiltonian system with the random Hamiltonian

H = 1 v2 + V (x, z). 2

(3.3) (3.4)

14

If V (x, z) is discontinuous with respect to x which corresponds to a random potential barrier, then the characteristic speed of the Liouville equation given by (3.3) is infinity at

the discontinuous point and a conventional numerical scheme becomes difficult. On the

other hand, it is known from classical mechanics that the Hamiltonian remains constant

across a potential barrier. Based on this principle, Jin and Wen proposed a framework,

called Hamiltonian preserving scheme in which they build the interface condition into

the scheme according to the behavior of a particle across the potential barrier [12], [10].
As in the previous section, we first discretize equation (3.1) using the Hamiltonian
preserving scheme in which we regard the random variable z as a fixed parameter.
Without loss of generality, we employ a uniform mesh with grid points at xi+1/2, i = 0, . . . , N in the x-direction and v j+1/2, j = 0, . . . , M in the v-direction. The cells are centered at (xi , v j ), i = 1, . . . , N , j = 1, . . . , M with xi = (xi+1/2+xi-1/2)/2 and v j = (v j +1/2+ v j -1/2)/2. The mesh size is denoted by x = xi+1/2 - xi-1/2 and v = vi+1/2 - vi-1/2. Also we assume that the discontinuous points of potential V are located at some grid points. Let the left and right limits of V at point xi+1/2 be Vi++1/2 and Vi-+1/2 respectively. The scheme reads:

t

ui

j

(z)

+

v

j

ui-+1/2, j

(z) - ui+-1/2,j x

(z)

-

DVi

(z)

ui , j

+1/2(z) - ui v

,j

-1/2 (z )

=

0,

(3.5)

here

DVi

(z)

:=

Vi-+1/2(z) - Vi+-1/2(z) . x

(3.6)

We also need to determine the numerical fluxes ui,j +1/2(z) and ui+1/2,j (z) at each cell

interface.

3.1 A first order finite difference approximation

Here we can use the standard first order upwind scheme for the fluxes ui+1/2,j (z) since the wave speed in this direction, which is v j , has nothing to do with the random variable z. So the characteristic in fact is deterministic. For example we consider the case v j > 0, according to the Hamilton preserving scheme such fluxes read,

ui-+1/2,j (z) = ui j (z),

ui++1/2,j (z) =

c1ui +1,k (z) + c2ui +1,k+1(z), ui +1,k (z),

when transmission, when reflection,

(3.7)

Here k is an index determined by the energy conservation across the interface (see [12]),

1 2(v j

)2

+ Vi-+1/2

=

1 (v +)2 2

+ Vi++1/2,

(3.8)

15

where

v+

is

the

velocity

across

the

barrier.

If

(v

j

)2

+

2(V

- j +1/2

-

V

+ j +1/2

)

>

0,

particle

will

transmit, thus

v+ =

(v

j

)2

+

2(V

- j +1/2

-

V

j++1/2),

(3.9)

k is the index such that

vk  v + < vk+1,

(3.10)

and c1 and c2 are the coefficients of a linear interpolation,

c1

=

v+ - vk v

,

c2

=

vk+1 - v

v+

,

c1 + c2 = 1.

(3.11)

If

(v

j

)2

+

2(V

- j +1/2

-

V j++1/2)

<

0,

then

particle

will

reflect,

k

is

the

index

such

that

vk = -v j .

(3.12)

When v j < 0, we can determine c1, c2 and k similarly using the Hamilton preserving condition (3.8).
For the flux ui,j+1/2(z), one should be careful when dealing with it. Unlike the flux in x-direction, the wave speed in v-direction, DVi (z), depends on the random variable z such that the characteristic is random. This will make the discontinuity of solution in the physical space propagate into the random space if we use a characteristic dependent scheme (i.e. upwind scheme), which results a bad regularity of the solution with respect to z.
Here we use the Lax-Friedrichs flux which is a characteristic independent scheme for the v-direction flux in general:

1 ui ,j +1/2(z) = 2 DVi (z) ui ,j +1(z) - ui j (z) - ui j (z) + ui ,j +1(z) ,

(3.13)

where  is a constant satisfying   max |DVi (z)|.
i ,z
From the discussion above, one can easily see that the fluxes of x-direction and vdirection are both smooth functions with respect to z. As in Section 2, we can conclude that the solution of this scheme, which is ui j (z), are smooth functions of z for each i , j . Then we apply the standard gPC-SG method to this discrete system, same as in Section 2, one can expect a fast convergence of gPC expansion to the discretized solution when the mesh size x and time step t are fixed. The justification is the same as in Section 2.

Remark 3.1. Here any central schemes, such as the local Lax-Friedrichs scheme, can be used besides the Lax-Friedrichs scheme.

16

3.2 A formally second order spatial discretization

In previous two sections, we have presented our discrete gPC scheme with a first order spatial discretization. In the following, we will give the formally second order spatial discretization. Specifically, the spatial numerical flux used in the Hamilton Preserving scheme [12] is given by (consider the case when v j > 0)

ui-+1/2, j

(z)

=

ui

j

(z)

+

x 2

si

j

(z ),



x

x

ui++1/2,j (z) = c1

ui,k (z) + 2 x

si ,k (z)

+ c2

ui ,k+1(z) +

2

si ,k+1(z)

,

ui +1,k (z) - 2 si +1,k (z),

(3.14)

where si j is the numerical slope, c1, c2, k are determined by the Hamilton preserving scheme just as the first order case in previous subsection (3.7)(3.12).
Since the solution contains discontinuities, a second order scheme will necessarily introduce numerical oscillations. In order to suppress these oscillations, one can use the limited slope, in the spirit of total-variation-diminishing (TVD) framework [16]. Most of the slope limiteds used in the shock capturing community are non-smooth functions, while in our approach the regularity in z is essential. To this aim, we use smooth slope limiters called BAP, introduced in [3]. For the backward and forward differences,

sl (z) = (ui j (z) - ui-1,j (z))/x, sr (z) = (ui+1,j (z) - ui j (z))/x,

(3.15)

at (xi , v j ), the BAP slope is given by

si j (z) = B-1

B(sl (z)) + B(sr (z)) 2

.

(3.16)

Some examples of smooth B(x) include

B(x) = arctan(x),

B(x) = tanh(x),

x

B(x) =

,

1 + x2

B-1(x) = tan(x), B-1(x) = tanh-1(x), B-1(x) = x .
1 - x2

(3.17)

3.3 The full discretization
Next we need to define the numerical flux in the v-direction. To this stage, in order to get a smooth discrete solution (with respect to z), we also need to choose some scheme that

17

does not depend on characteristic information. Here we use the Lax-Wendroff scheme. The v-direction flux:

1

t

ui,j +1/2(z) = 2 (ui,j +1(z) + ui,j (z)) + (DVi (z)) 2v (ui,j +1(z) - ui j (z)).

(3.18)

So combine (3.5), (3.14) and (3.18), we get a second order in space and velocity, whose solution is smooth with respect to z, written as

t ui j (z) = RHS(z).

(3.19)

We now the gPC-Galerkin method to this discrete system, for the k-th component uinj,k in gPC expansion we have:

t uikj (z) = RHS(z), Pk (z) ,

(3.20)

where Pk (z) is the k-th order orthogonal polynomial and  is the inner product on the random space. Due to the complicated nonlinear form of RHS(z), we will use numerical integration, i.e. , the Gauss-quadrature to calculate the right hand side of (3.20).

M
RHS(z), Pk (z) = RHS(zm)Pk (zm)wm,
m=0

(3.21)

where M is the total number of quadrature points we choose and zi , wi are the Gauss quadrature points and corresponding weights. Here we summarize the algorithm on every time step:



First,

use

the

gPC

expansion

uinj

(z)

=

K k =0

uin,,jk

P

k

(z

)

to

compute

uinj (zm).

Notice

that one only needs to compute Pk (zm), which is independent of time thus can be

pre-computed before time marching.

 Using uinj (zm) and (3.14), (3.18) to get RHS(zm) for every i , j , m.

 Finally by (3.21) and time marching using the forward Euler or Runge-Kutta methods to get uinj+1,k for every i , j , k. This finishes one time step.
Remark 3.2. For the convection equation (2.1), one can simply replace Uin(z) by Uin(z)+ si (z)x/2 in (2.4) and follow the procedure above to get a second order scheme in spatial domain.

18

4 Numerical examples
In this section we will conduct some numerical experiments to show the performance of the proposed methods and check their numerical accuracy.

4.1 Example 1: the scalar convection equation with discontinuous coefficient

We consider the initial problem

ut + (c(x, z)u x = 0, u(x, 0) = u0(x),

t > 0, x  R, x  R,

(4.1)

with

c- > 0, c(x, z) = 0.3z + c+ > 0,

if x < 0, if x > 0,

(4.2)

where z is uniformly distributed on [-1, 1] (thus the gPC basis should be the normalized Legendre polynomials) and we treat the random variable z as a small perturbation such that (c + 0.3z) > 0 for any z  [-1, 1].
In this example, we set the initial data as

u0(x) = cos(0.25x), on [-1, 3],

(4.3)

and an interface is located at x = 0 with the condition: u(0+, t , z) = (z)u(0-, t , z),

(4.4)

where

(z)

=

c c

- +

+ +

0.3z 0.3z

,

(4.5)

for the conservation of flux.

The analytic solution of this simple model problem can be easily obtained by using

the method of characteristic including the interface condition [12]:

 u0

x - (c+ + 0.3z)t

,



u(x, t , z) = (z)u0 (z)[x - (c+ + 0.3z)t ] ,

 u0

x - (c- + 0.3z)t

,

x > (c+ + 0.3z)t , 0 < x < (c+ + 0.3z)t , x < 0.

(4.6)

In the following examples, we set c- = 1, c+ = 2, and final time T = 1. The expectation and variance of the analytic solution can be obtained using (1.3) and (1.4).

19

For numerical solutions, we compute their expectation by

Ei (t n) := E[u(xi , t n, z)] = u(xi , t n, z)(z) dz = U^in,(0),

and their variance by

K

Vi (t n) := E (u - E(u))2 =

U^in,(k) 2.

k =1

The norm for measuring the error between the analytic solution and the numerical solution is 1.

u(1, 2, z)

1.0

u(1,2,z)

0.9

0.8

0.7

0.6

0.5
1.00 0.75 0.50 0.25 0.z00 0.25 0.50 0.75 1.00

Figure 1: Example 1. The analytic solution (4.6) at t = 1 and x = 2 is a discontinuous function of z.
Figure 1 shows that the analytic solution (4.6) has a discontinuity at z = 0 when x = 2. Figure 2 shows that the expectation and variance of the analytic solution. In this case, one can expect a low convergence rate of the standard gPC-SG method.

4.1.1 The first order finite difference approximation
In this subsection, we will give the numerical results of our discrete gPC-SG method. Figure 3 shows the numerical expectation and variance compared with the analytic

20

1.0

Expectation

Variance

0.8

0.6

0.4

0.2

0.0

2

1

0x1

2

3

Figure 2: Example 1. The expectation and variance of the analytic solution.

solution with x = 0.001, t = 1 x and gPC order K = 20. The discrepancy on the 4
variance is due to the poor resolution of the first order spatial discretization, which is improved with the second order spatial discretization to be used later.
Next we conduct the convergence test only for the gPC approximation. We fix x = 0.005 and t = 1 x in all computations with different K . Figure 4 shows that the 1 error
5 decays very fast with respect to the gPC order K . When K = 4, it decays to the numerical error of the finite difference method.
However, in Figure 4, since the finite difference error dominates the gPC error, it is difficult to verify the convergence rate of the gPC method. In order to examine the gPC error, we fix x and t , and compare the numerical solutions with different K , with the case of K = 30 serving as the reference solution. We measure the 1 error between each K = 2, 3, . . . , 20 and K = 30. The result is shown in Figure 5, in which an exponential convergence in the gPC approximation can be observed by using the log-log plot. Note that if the convergence order is algebraic, the curve should be a line. Here the curve shape shows the exponential decay of the gPC error.

21

1.0

Analytic expectation

Expectation of the new gPC method

0.8

0.6

0.4

0.2

0.0

2

1

0x1

2

3

Analytic variance

0.20

Variance of the new gPC method

0.15

0.10

0.05

0.00

2

1

0x1

2

3

Figure 3: Example 1. The analytic solution compared with the new gPC-SG method using 1
first order finite difference approximation with x = 0.001, t = x, gPC order K = 20. 4

error

0.045 0.040 0.035 0.030 0.025 0.020 0.015 0.010
4

Expectation error Variance error

8 gPC ord12er

16

20

Figure 4: Example 1. The first order finite difference approximation with x = 0.005,

1 t = x: the

1 error versus the gPC order.

5

22

loglog error

10 1

10 2

10 3

10 4

10 5

10 6

10 7

10 8

10 9

10 10

10 11

10 12

10 13 10 14 10 15

Expectation error Variance error

gPC order 101

Figure 5: Example 1. The first order finite difference approximation x = 0.005, 1
t = x: the gPC error versus the gPC order by a log-log plot (with other numeri5
cal parameters fixed).

23

4.1.2 The second order finite difference approximation
For the second order scheme, we use the same set up as in the first order case. Figure 6 shows the expectation and variance compared with the analytic solution, which gives a more accurate solution than the first order approximation especially for the variance around x = 2.
Figure 7 and Figure 8 show the convergence of the numerical method in the gPC order from which one can observe the fast convergence. Comparing Figure 7 with Figure 4, we can see that the second scheme has a better total 1 error. But the rate of the gPC convergence shown in Figure 8 is not as fast as the first order scheme. This is hardly surprising since our spectral convergence depends on the smoothness of the discrete solutions, and the smoothness is given by the numerical viscosity which is larger for the first order spatial discretization. The second order spatial discretization offers better accuracy away from the discontinuities and better resolutions at discontinuities, but because it is closer to the analytic solution (which is not smooth) thus less smooth than the first order one, and smoothness of the discrete solution is what our spectral convergence relies upon, thus its gPC congerence rate, compared with the first order one, should be slower. However this does not mean that the second order method is inferior to the first one, since one has to consider the overall error, including the contributions of error from the spatial discretization in this problem. By comparing Figure 6 with Figure 3, and Figure 7 with Figure 4, it is obvious that the second order scheme outperforms the first order one.

1.0

Analytic expectation

Expectation of the new gPC method

0.8

0.6

0.4

0.2

0.0

2

1

0x1

2

3

0.25

Analytic variance

Variance of the new gPC method

0.20

0.15

0.10

0.05

0.00

2

1

0x1

2

3

Figure 6: Example 1. The analytic solution compared with the new gPC-SG method using the second order finite difference approximation with x = 0.001, t = 1 x, gPC order
4 K = 20.

24

error

0.035 0.030 0.025 0.020 0.015 0.010 0.005
4

Expectation error Variance error

8 gPC ord12er

16

20

Figure 7: Example 1. The second order finite difference approximation x = 0.005, t = 1 x: the 1 error versus the gPC order.
5

25

10 2

loglog error

10 3

Expectation error

10 4

Variance error

gPC order 101

Figure 8: Example 1. The second order finite difference approximation x = 0.005, 1
t = x: the gPC error versus the gPC order by a log-log plot (with other numerical 5
parameters fixed).

26

4.2 Example 2: the Liouville equation with a discontinuous potential

Recall the Liouville equation

ut + vux - Vx uv = 0, t > 0, x, v  R, with the random potential given by

(4.7)

V (x, y) = V0(x) + 0.1xz, where z is uniformly distributed on (-1, 1) and

(4.8)

0.2, V0(x) = 0,

x < 0, x > 0.

(4.9)

For the given initial data, one cannot get an analytic solution for this problem. Instead

we will use the collocation method as a comparison. In collocation method, one solves

the Liouville equation (1.2) at a discrete set of {zi }1iM called sample points in the corresponding random space. For every fixed zi , we only need to solve a deterministic Liouville equation with discontinuous potential using Hamilton preserving scheme [12].

Then the expectation and variance can be obtained by the quadrature rules of (1.3)

and (1.4). In the following examples, we choose {zi }1iM as the roots of M th order Legendre polynomials and use the Gauss-Legendre quadrature to obtain the expectation

and variance.

For the gPC method we need to evaluate

1 -1

V0 (z )P

j

(z

)Pk

(z

) (z )

dz

,

which,

for

this

simple case, is given by



j +1

 

,

1

  

(2 j + 1)(2 j + 3)



-1

V0(z

)P

j

(z

)Pk

(z

)

(z

)

dz

=

V0
  

(x), j





,

 4j2-1

k = j + 1, k = j, k = j - 1.

(4.10)

Here one has a symmetric tridiagonal matrix. As an illustration of the singularity of the solution caused by the discontinuous
potential , we use a continuous initial data:

sin[2(0.25 - (x2 + v2))], x2 + v2 < 0.25,

u(x, v, 0) =

0,

otherwise.

(4.11)

The expectation of the solution by using the collocation method with M = 20 sample points and our new gPC-SG method with gPC order K = 4 are shown in Figure 9. Although the initial data is continuous, due to the interface condition, the solution may still be discontinuous. This singularity will have a big impact on the convergence of gPC method.

27

2

1.8 1.5
1.6 1
1.4
0.5 1.2

0

1

0.8 -0.5
0.6 -1
0.4
-1.5 0.2

-2

0

-2 -1.5 -1 -0.5

0

0.5

1

1.5

2

2

0.9 1.5
0.8 1
0.7
0.5 0.6

0

0.5

0.4 -0.5
0.3 -1
0.2
-1.5 0.1

-2

0

-2 -1.5 -1 -0.5

0

0.5

1

1.5

2

Figure 9: Example 2 with initial data (4.11). Expectation of the solution. Left: the collocation method with 20 sample points. Right: the new gPC-SG method with gPC order K = 4.

4.2.1 The first order finite difference approximation

In this example we set the initial data as

 1,  
u(x, v, 0) = 1,
 0,

x  0, v < 0, x2 + v2 < 1, x  0, v > 0, x2 + v2 < 1, otherwise.

(4.12)

Notice that the solution has singularity due to both the initial data and the discontinuous potential. The deterministic version of this example was used in [12] and the analytic solution can be obtained by using the method of characteristics. We first plot the analytic solution and numerical solution (using the first order flux) with a fixed z = 0 in Figure 10 corresponding to the deterministic example in [12].
Then we compare the solution computed by the collocation method with M = 20 sample points (Figures 11 and 12 left). Figures 11 and 12 right show the solutions by our new gPC-SG method with gPC order K = 10. Here the mesh size is x = v = 0.03 and time step is t = 0.002. One can see the difference between the expectation of the stochastic solution and the deterministic case when z = 0 and this differences can be easily seen on the variance plots as well. The expectation of the stochastic solution is expected to be smoother since it integrates over the z variable, thus gains on order of regularity (see examples in [4, 9]). For the computation cost, our new gPC-SG method runs much faster than collocation method. The collocation method takes about 20 times

28

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

Figure 10: The deterministic case of Example 2 with initial data (4.12). Left: analytic solution of the deterministic problem with z = 0 and t = 1. Right: numerical solution using the first order Hamiltonian preserving scheme with x = v = 0.015, t = 0.001

cost of the deterministic version due to 20 sample points we choose, however, our new gPC-SG, with K = 10, takes about 10 times the cost of the deterministic problem.
In Figure 13 we plot the 1 error of the discrete gPC-SG method as the gPC order K increases. This figure shows the spectral convergence.
4.2.2 The second finite difference approximation
Here for the second finite difference approximation we still use the same set up as in previous subsection for the first order case.
First as in the first order case, we will show the numerical solution of the deterministic case when z = 0 using the second order flux in Figure 14. The second order method clearly gives a much sharper resolution for the discontinuities than the first order method (compare the right figures of Figure 10 and Figure 15). But due to the Lax-Wendroff scheme we use in the v-direction (3.18), there exists some oscillations due to numerical dispersion.
Then we will show the expectation and variance of the solution calculated by the collocation method with M = 20 sample points and our new gPC-SG method (for the calculation of RHS(z) we also use 20 Gauss-Legendre quadrature points). See Figure 15 and Figure 16. One can find no difference between these two methods, both giving sharper resolutions at discontinuities than their first order counterparts shown in Figures 11 and 12. Here for the computation cost, we point out that unlike in the first order case, our new gPC-SG method runs only slightly faster than the collocation method since in the calculation of RHS(z) we use a similarly technique as the collocation method.

29

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

Figure 11: Example 2 with initial data (4.12) by the first order finite difference approximation with x = v = 0.03 and t = 0.002. The expectation of the solution. Left: the collocation method with M = 20 samples points. Right: the new gPC-SG method using first order finite difference approximation.

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

Figure 12: Example 2 with initial data (4.12) by the first order finite difference approximation with x = v = 0.03 and t = 0.002. The variance of the solution. Left: the collocation method. Right: the new gPC-SG method.

30

Expectation error

10 3

0.0010

Variance error

10 4

10 5

0.0008

10 6

10 7

loglog error

0.0006

10 8 10 9

0.0004

10 10 10 11

0.0002 0.0000

10 12

10 13 10 14 10 15

Expectation error Variance error

3

4

5 gPC 6order 7

8

9

gPC order

101

Figure 13: Example 2 with initial data (4.12). Convergence of the new gPC-SG method using the first order finite difference approximation. Left: the 1 error versus gPC order. Right: the gPC error versus the gPC order by a log-log plot (with other numerical parameters fixed).

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

Figure 14: The deterministic case of Example 2 with initial data (4.12). Left: analytic solution of the deterministic problem with z = 0 and t = 1. Right: numerical solution using the second order Hamiltonian preserving scheme with x = v = 0.015, t = 0.001

31

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

Figure 15: Example 2 with initial data (4.12) by the second order finite difference approximation with x = v = 0.03, t = 0.002. Reference solution by the collocation method with 20 sample points at t = 1. Left: expectation. Right: variance.

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

1.0

0.5

0.0

0.5

1.0

1.5 1.5

1.0

0.5 0.0

0.5

1.0

Figure 16: Example 2 with initial data (4.12) by the second order finite difference approximation with x = v = 0.03, t = 0.002. Solution at t = 1 computed by the new gPC-SG method. Left: expectation. Right: variance.

32

error loglog error

0.022

Expectation error Variance error

10 2

0.020

0.018

10 3

0.016

10 4

0.014

0.012

10 5

3

4

5 gPC 6order 7

8

9

Expectation error Variance error

gPC order

101

Figure 17: Example 2 with initial data (4.12). Convergence of the new gPC-SG method using second order finite difference approximation. Left: the 1 error versus the gPC order. Right: the gPC error versus the gPC order by a log-log plot (with other numerical parameters fixed).

Finally, we test the convergence rate of our new gPC-SG method. To do this, we first fix our mesh size: x = v = 0.03, t = 0.02, and output the result at t = 1. We use 20 Gauss-Legendre quadrature points to compute the inner product in (3.20). We choose the gPC order K = 10 as our reference solution, and see how the error changes when increasing K from 3 to 10. From Figure 17, an exponential convergence can be observed.

References
[1] H. Bijl, D. Lucor, S. Mishra, C. Schwab, Uncertainty Quantification in Computational Fluid Dynamics, Springer, Cham, 2013. doi:10.1007/978-3-319-00885-1.
[2] C. Canuto, A. Quarteroni, Approximation results for orthogonal polynomials in Sobolev spaces, Math. Comp. 38 (1982) 67-86. doi:10.1090/S0025-5718-19820637287-3.
[3] H. Choi, J.G. Liu, The reconstruction of upwind fluxes for conservation laws: its behavior in dynamic and steady state calculations, J. Comput. Phys. 144 (1998) 237-256. doi:10.1006/jcph.1998.5970.
[4] B. Despres, G. Poette, and D. Lucor. Robust uncertainty propagation in systems of conservation laws with the entropy closure method. In Uncertainty Quantication
33

in Computational Fluid Dynamics, Volume 92 of Lect. Notes Comput. Sci. Eng., 105-149. Springer, Heidelberg, 2013
[5] R. G. Ghanem and P. D. Spanos. Stochastic Finite Elements: A Spectral Approach. Springer Verlag, New York, 1991.
[6] D. Gottlieb and D. Xiu, Galerkin method for wave equations with uncertain coefficients, Comm. Comp. Phys. 3, 505-518, 2008.
[7] Max D. Gunzburger, Clayton G. Webster, and Guannan Zhang. Stochastic finite element methods for partial differential equations with random input data. Acta Numer., 23 (2014), 521-650.
[8] S. Jin, Numerical methods for hyperbolic systems with singular coefficients: wellbalanced scheme, Hamiltonian preservation and beyond, Proc. of the 12th International Conference on Hyperbolic Problems: Theory, Numerics, Applications, Univeristy of Maryland, College Park. Proceedings of Symposia in Applied Mathematics Vol 67-1, 93-104, 2009, American Mathematical Society.
[9] J. Hu, S. Jin, and D. Xiu, A stochastic Galerkin method for Hamilton-Jacobi equations with uncertainty, SIAM J. Sci. Comput. 37, A2246-A2269, 2015.
[10] S. Jin, K.A. Novak, A Semiclassical Transport Model for Thin Quantum Barriers, Multiscale Model. Simul. 5 (2006) 1063-1086. doi:10.1137/060653214.
[11] S. Jin, P. Qi, 1-error estimates on the immersed interface upwind scheme for linear convection equations with piecewise constant coefficients: A simple proof, Science China Mathematics 56 (2013), 2773-2782. doi:10.1007/s11425-013-4738-2.
[12] S. Jin, X. Wen, Hamiltonian-preserving schemes for the Liouville equation with discontinuous potentials, Commun. Math. Sci. 3 (2005) 285-315.
[13] S. Jin and X. Wen, Hamiltonian-preserving schemes for the Liouville equation of geometrical optics with partial transmissions and reflections, SIAM J. Num. Anal. 44 (2006), 1801-1828.
[14] A. Kurganov, E. Tadmor, New High-Resolution Central Schemes for Nonlinear Conservation Laws and Convection Diffusion Equations, J. Comput. Phys. 160, 241-282, (2000). doi:10.1006/jcph.2000.6459.
[15] O. P. Le Maitre and O. M. Knio. Spectral Methods for Uncertainty Quantification, Scientific Computation, with Applications to Computational Fluid Dynamics. Springer, New York, 2010.
34

[16] R.J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge University Press, 2002.
[17] M. Motamed, F. Nobile, R. Tempone, A stochastic collocation method for the second order wave equation with a discontinuous random speed, Numer. Math. 123 (2012) 493-536. doi:10.1007/s00211-012-0493-5.
[18] M. P. Pettersson, G. Iaccarino and J. Nordstrm, Polynomial Chaos Methods for Hyperbolic Differential Equations, Springer, Switzerland, 2015.
[19] H. Nessyahu, E. Tadmor, Non-oscillatory central differencing for hyperbolic conservation laws, J. Comput. Phys. (1990).
[20] T. Tang, T. Zhou, Convergence Analysis for Stochastic Collocation Methods to Scalar Hyperbolic Equations with a Random Wave Speed, Commun. Comput. Phys, 8.1 (2010) 226-248. doi:10.4208/cicp.060109.130110a.
[21] J. Tryoen, O. Le Maitre, M. Ndjinga, A. Ern, Intrusive Galerkin methods with upwinding for uncertain nonlinear hyperbolic systems, J. Comput. Phys. 229 (2010) 6485-6511. doi:10.1016/j.jcp.2010.05.007.
[22] D. Xiu, Fast numerical methods for stochastic computations: a review, Comun. Comput. Phys, 5.2-4 (2009) 242-272. doi:10.1016/j.adhoc.2013.06.001.
[23] D. Xiu, Numerical Methods for Stochastic Computations, Princeton University Press, 2010.
[24] D. Xiu and G.E. Karniadakis, The Wiener-Askey polynomial chaos for stochastic differential equations. SIAM J. Sci. Comput., 24(2002), 619-644.
[25] D. Xiu, J.S. Hesthaven, High-Order Collocation Methods for Differential Equations with Random Inputs, SIAM J. Sci. Comput. 27 (2005) 1118-1139. doi:10.1137/040615201.
[26] T. Zhou, T. Tang, Convergence Analysis for Spectral Approximation to a Scalar Transport Equation with a Random Wave Speed, J. Comput. Math. 30 (2012) 643656. doi:10.4208/jcm.1206-m4012.
35