File: 1701.00097.txt

package info (click to toggle)
python-pattern 2.6%2Bgit20180818-2
  • links: PTS
  • area: main
  • in suites: bullseye
  • size: 93,888 kB
  • sloc: python: 28,119; xml: 15,085; makefile: 194
file content (3463 lines) | stat: -rw-r--r-- 56,084 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
arXiv:1701.00097v1 [math.OA] 31 Dec 2016

TUBE ALGEBRA OF GROUP-TYPE SUBFACTORS
Dietmar Bisch, Paramita Das, Shamindra Kumar Ghosh and Narayan Rakshit
Abstract. We describe the tube algebra and its representations in the cases of diagonal and BischHaagerup subfactors possibly with a scalar 3-cocycle obstruction. We show that these categories are additively equivalent to the direct product over conjugacy classes of representation category of a centralizer subgroup (corresponding to the conjugacy class) twisted by a scalar 2-cocycle obtained from the 3-cocycle obstruction.
1. Introduction
Annular representations of planar algebras were introduced by Vaughan Jones in [Jon] to construct subfactors with principal graphs E6 and E8. In the same paper, he explicitly worked out the Temperley-Lieb example. These calculations helped in construction of new examples such as [Pet]. Recently, annular representations of subfactors and semisimple rigid C-tensor categories have become a very interesting area of research. The annular representation category turns out to be a nice braided tensor category - not necessarily semisimple - which is equivalent to the center of the original bimodule / C-tensor category in the case of finite depth / fusion categories (see [DGG2], [DGG3], [GJ]). For general depth, this category becomes equivalent to the center of a certain induced category (which is basically an extension where infinite direct sums are allowed) - see [NY], [PV]. There is also an analytic aspect of the annular representation category. Analytic properties, such as, amenabilty, Haagerup property, property (T) of the subfactor / C-tensor category can be reinterpreted in terms of annular representations.
In this paper, we deal with two group-type subfactors - the so-called diagonal and the BischHaagerup ones - possibly with 3-cocyle obstruction. The approximation properties of these two examples are well-known and depend on the associated group (see [Pop1], [Pop2] for diagonal and [BH] for Bisch-Haagerup). We determine the annular representation category. For this, we borrow techniques from [GJ], namely, we fix a `full' weight set in the object space and find the annular category over the weight set. It was shown in [GJ] that the annular representation categories over any two full weight sets are equivalent. Moreover, annular representations (in the sense of Vaughan Jones) of a subfactor N  M are the same as the annular representations of the N -N -bimodule category CNN generated by N L2(M )N .
For the diagonal subfactor, CNN is a pointed category, that is, the category of group graded vector spaces with a possibly nontrivial associator; the group is the one generated by the automorphisms used to build the diagonal subfactor and the associator is given by the 3-cocycle obstruction. When the cocycle is trivial, the annular representations were discussed in [GJ]. We consider the annular algebra over the irreducible bimodules, that is, Ocneanu's tube algebra. We show that the tube algebra is a direct sum over conjugacy classes of -algebras consisting of a matrix algebra tensored with the group algebra of the centralizer subgroup twisted by a 2-cocycle. We give the explicit dependence of the 2-cocycle on the 3-cocycle obstruction. As a result, the annular representation decomposes as (possibly infinite) direct sum of projective representations of the centralizer subgroups corresponding to the conjugacy classes.
Key words and phrases. Planar algebras, subfactors, group-type subfactors, fusion algebras, affine representations. 1

In the Bisch-Haagerup case, we consider the intermediate subfactor N  Q  M where N = QH

and M = Q  K with H, K being finite groups acting outerly on the II1 factor Q. The category of Q-Q-bimodules CQQ generated by QL2(Q)  L2(Q)Q and QL2(M )Q, is again a pointed category
N
equivalent to the category of G-graded vector spaces where G is the group generated by H and K

in Out(Q) with the associator given by the 3-cocycle obstruction. This category has special algebra

objects, namely, A = QL2(Qh)Q and B = QL2(Qk)Q. Now, the 2-category of bimodules

hH

kK

over N and M can be made equivalent to the 2-category of bimodules in CQQ over A and B. This

was a method suggested to us by Scott Morrison. However, we obtain the annular representations

straight from the actual bifinite N -N -bimodules using techniques in [GJ]. CNN unfortunately is

not pointed anymore. The set of isomorphism classes of irreducibles turns out to be complicated.

So, we consider a different weight set, namely N L2(Qg)N for g  G and obtain the annular algebra over it. As a -algebra, it turns out to be same as before, namely direct sum over conjugacy

classes of matrix algebras tensored with the group algebra of the centralizer subgroup twisted by a

2-cocycle. Thereby, the representations are also graded by the conjugacy classes and in each grade

the representations are the same as that of the corresponding centralizer subgroup twisted by the

2-cocyle.

Acknowledgement. The authors would like to thank Scott Morrison and Corey Jones for several useful discussions. A part of this work was completed during the trimester program on von Neumann algebras at the Hausdorff Institute of Mathematics and the authors would like to thank HIM for the opportunity. The first named author was supported by US NSF grants DMS-0653717 and DMS-1001560, and the Simons Foundation Collaboration Grant no. 359625.

2. Some basics on group cocycles

Let G be a group with identity element e and   Z3(G, S1) be a 3-cocycle of G, that is,  satisfies the following:
(2.1) (g1, g2, g3)(g1, g2g3, g4)(g2, g3, g4) = (g1g2, g3, g4)(g1, g2, g3g4) for all g1, g2, g3, g4  G
We will use Equation 2.1 at various instances in the article by denoting the particular elements of G which will correspond to g1, g2, g3, g4 simply by 1, 2, 3, 4 respectively. Up to 3-coboundary equivalence, we may consider  to be a normalized cocycle, i.e., (g1, g2, g3) = 1 whenever either g1, g2 or g3 is e; namely, if (g1, g2) = (g1, e, e)(e, e, g2) for all g1, g1  G, then () is normalized.
For a  G, let Ga denote the centralizer subgroup of a. The following result may be well-known to specialists but we include the statement for the sake of completeness.
Lemma 2.1. Ga  Ga  (g, h) -a (a, g, h)(g, a, h)(g, h, a) is a 2-cocycle of Ga.

Proof. Note that a(h2, h3)a(h1h2, h3)a(h1, h2h3)a(h1, h2) contain twelve terms involving . The product of the four -terms with a in the first place is

(a,
1

h1,
2

h32 )(a1 ,

h1h2,
23

h43 )(a1 ,

h1,
2

h2h3)(a,
34

h2,

h3)

=

(ah1,

h2,

h3)(h1,

h2,

h3)(a,

h2,

h3),

the product of the four -terms with a in the third place is

(h2,
2

h3,
3

a4 ) (h11

h2
2

,

h3,
3

a4 ) (h11 ,

h2 h3 ,
23

a4 ) (h1 ,

h2,

a)

=

(h1,

h2,

h3a)(h1,

h2,

h3)(h1,

h2,

a),

and the remaining product is

(h2,
2

a,
3

h3)(h1

4

1

h2
2

,

a,
3

h3)
4

(h1,
1

a,
2

h2h3
34

)(h1
1

,

a,
2

h2)
3

= (h1, h2, a)(h1, h2a, h3)(h1, h2, ah3)(h1, ah2, h3)(a, h2, h3)(h1a, h2, h3).

2

Now, since h1, h2, h3 commute with a, all terms in the grand product cancel amongst each other.

Instead of a, if we take xax-1 for any x  G, then it is natural to ask whether xax-1  (Adx  Adx) : Ga  Ga  S1 is coboundarily equivalent to a. The answer is yes; however, we will prove not just this, but a slightly general formula which will be useful later.

Proposition 2.2. For all a, x, y  G, there exists a,x,y : Ga  S1 such that (xax-1, xgy-1, yhz-1)(xgy-1, yay-1, yhz-1)(xgy-1, yhz-1, zaz-1)

= a,x,y(g)a,y,z (h)a,x,z(gh) a(g, h)
for all g, h  Ga. Thus, a,x,x is a scalar 1-cochain of Ga which implements the coboundary equivalence between xax-1  (Adx  Adx) and a.

Proof. We write out the three terms in the L.H.S. of the equation in the statement one by one

and expand them using Equation 2.1. In the successive steps, we just repeat the process, each

time expanding the last term coming from the previous step. In the final step, some of the terms

are decorated with numbers and strike-throughs, or underlines and alphabets, the explanation for

which is given below. These are just elementary cocycle calculations which has been exhibited,

down to the last detail. The first term is:

(xax-1, xgy-1, yhz-1)

= (x, ax-1, xghz-1)(x, agy-1, yhz-1)(x, ax-1, xgy-1)(ax-1, xgy-1, yhz-1)

= (x, ax-1, xghz-1)(x, agy-1, yhz-1)(x, ax-1, xgy-1)(a, x-1, xghz-1)(a, x-1, xgy-1)

(x-1, xgy-1, yhz-1)(a, gy-1, yhz-1)

= (x, ax-1, xghz-1)(x, agy-1, yhz-1)(x, ax-1, xgy-1)(a, x-1, xghz-1)(a, x-1, xgy-1)

(x-1, xgy-1, yhz-1)(ag, y-1, yhz-1)(a, g, y-1)(g, y-1, yhz-1)(a, g, hz-1)

= (x, ax-1, xghz-1)(x,agy-1, yhz-1 )1(x, ax-1, xgy-1)(a, x-1, xghz-1)(a, x-1, xgy-1)

A

A

B

B

(x-1, xgy-1, yhz-1)(ag, y-1,yhz-1 )2(a, g, y-1)(g,y-1, yhz-1 )7(ag, h, z-1 ) 3

C

(g,h,z-1)6(a, gh, z-1) (a, g, h)

C

The second term is:

(xgy-1, yay-1, yhz-1)

= (x, gy-1, yay-1)(x, gay-1, yhz-1)(x, gy-1, yahz-1)(gy-1, yay-1, yhz-1)

= (x, gy-1, yay-1)(x, gay-1, yhz-1)(x, gy-1, yahz-1)(g, y-1, yay-1)(y-1, yay-1, yhz-1)

(g, y-1, yahz-1)(g, ay-1, yhz-1)

= (x, gy-1, yay-1)(x, gay-1, yhz-1)(x, gy-1, yahz-1)(g, y-1, yay-1)(y-1, yay-1, yhz-1)

(g, y-1, yahz-1)(g, a, y-1)(a, y-1, yhz-1)(ga, y-1, yhz-1)(g, a, hz-1)

= (x, gy-1, yay-1)(x,gay-1, yhz-1)1(x,gy-1,yahz-1 )8(g, y-1, yay-1)(y-1, yay-1, yhz-1)

F

E

 5 (g, y-1, yahz-1)(g, 

a,

y

-1)(a,

y

-1,

yhz-1

  2 )(ga, y-1,yhz-1)(a, 

h,

z-1

)(g,ah, z-1 )

4

D

B

C

(ga, h, z-1) 3(g, a, h) 

The third term is:

(xgy-1, yhz-1, zaz-1)

= (x, gy-1, yhaz-1)(x, gy-1, yhz-1)(x, ghz-1, zaz-1)(gy-1, yhz-1, zaz-1)

3

= (x, gy-1, yhaz-1)(x, gy-1, yhz-1)(x, ghz-1, zaz-1)(g, y-1, yhaz-1)(g, y-1, yhz-1)

(y-1, yhz-1, zaz-1)(g, hz-1, zaz-1)

= (x, gy-1, yhaz-1)(x, gy-1, yhz-1)(x, ghz-1, zaz-1)(g, y-1, yhaz-1)(g, y-1, yhz-1)

(y-1, yhz-1, zaz-1)(g, h, z-1)(h, z-1, zaz-1)(gh, z-1, zaz-1)(g, h, az-1)

=

(x, gy-1,yhaz-1)8(x, 

gy-1,

yhz-1)(x,

ghz

-1 ,

zaz-1)(g,y-1, yhaz-1 )5(g,y-1, yhz-1 )

7

F
(y-1, yhz-1, zaz-1)(g,h,z-1)6(h, z-1, zaz-1)(gh, z-1, zaz-1)(gh, a, z-1)

E
(h, a, z-1)(g,ha, z-1) 4(g, h, a)

E

D

D
Thus each -term has been expressed as a product of 13 -terms. After combining these 39 terms

and noting that

(i) 8 pairs of terms cancel since g, h  Ga (the cancellations have been marked with numbers for the reader's convenience),

(ii) the last (boxed) terms on the R.H.S of the three expressions above can be combined to yield

a(g, h), we are left with the following 20 -terms which have been grouped under A,B, C,D, E, F for reasons

that will become apparent as we go along (namely, contribution towards defining the function  in

the statement of the Proposition.): A terms: = (x, ax-1, xgy-1)(x, ax-1, xghz-1) B terms: (a, x-1, xgy-1)(a, y-1, yhz-1)(a, x-1, xghz-1) C terms: (a, g, y-1)(a, h, z-1)(a, gh, z-1) D terms: (g, a, y-1)(h, a, z-1)(gh, a, z-1) E terms: (g, y-1, yay-1)(h, z-1, zaz-1)(gh, z-1, zaz-1) F terms: (x, gy-1, yay-1)(x, ghz-1, zaz-1)

The remaining 4 terms are:

(2.2)

(x-1, xgy-1, yhz-1)(y-1, yay-1, yhz-1)(x, gy-1, yhz-1)(y-1, yhz-1, zaz-1)

The second and fourth terms in expression 2.2 are again broken up using Equation 2.1 as follows:

(y-1, yay-1, yhz-1) = (y-1, y, ay-1)(y, ay-1, yhz-1)(y-1, y, ahz-1 ) 9

A

(y-1, yhz-1, zaz-1) = (y-1, y, hz-1)(y, hz-1, zaz-1)(y-1, y, haz-1 ) 9

G

F

and the first and the third terms in 2.2 taken together, is:

(x-1, xgy-1, yhz-1)(x, gy-1, yhz-1) = (x-1, x, gy-1)(x-1, x, ghz-1)

G

G

We now expand each of the terms in E, using Equation 2.1 again:

(g, y-1, yay-1) (h, z-1, zaz-1) (gh, z-1, zaz-1)

= (gy-1, y, ay-1) (g, y-1, y)

(y-1, y, ay-1)

(hz-1, z, az-1) (h, z-1, z)
(ghz-1, z, az-1) (gh, z-1, z) Call the terms in the first column as

E1

an((dzz--th11,,ezzt,,eaarzzm--s11  ))in1100the second

column as

E2.

The

new A

and F terms that popped up from breaking down 2.2, and the E1 and E2 terms are added to the

4

existing list: A terms: = (x, ax-1, xgy-1)(y, ay-1, yhz-1)(x, ax-1, xghz-1) B terms: (a, x-1, xgy-1)(a, y-1, yhz-1)(a, x-1, xghz-1) C terms: (a, g, y-1)(a, h, z-1)(a, gh, z-1) D terms: (g, a, y-1)(h, a, z-1)(gh, a, z-1) E1 terms: (gy-1, y, ay-1)(hz-1, z, az-1)(ghz-1, z, az-1) E2 terms: (g, y-1, y)(h, z-1, z)(gh, z-1, z) F terms: (x, gy-1, yay-1)(y, hz-1, zaz-1)(x, ghz-1, zaz-1) G terms: (x-1, x, gy-1)(y-1, y, hz-1)(x-1, x, ghz-1)

Thus we define a,x,y(g) = (x, ax-1, xgy-1)(a, x-1, xgy-1)(a, g, y-1)(g, a, y-1) (gy-1, y, ay-1)(g, y-1, y)(x, gy-1, yay-1)(x-1, x, gy-1). This fits the bill.

3. Diagonal Subfactors

In this section, we will describe the affine module category of the planar algebra of a diagonal
subfactor associated associated to a `G-kernel' where G is a finitely generated discrete group. Recall that G-kernel is simply an injective homomorphism  : G  Out(N ) where N is a II1 factor. If  : G  Aut(N ) is a lift of  (that is, (g) = g Inn(N ) for all g  G) and I is a set of generators of G, then the associated diagonal subfactor is given by

N  x  diag(i(x))iI  MI (N ) =: M.
Further for g1, g2  G, we may choose u(g1, g2)  U (N ) such that g1 g2 = Adu(g1,g2)g1g2 for all g1, g2  G. Associativity of multiplication in G gives us a 3-cocycle  : G3  S1 such that

(3.1)

u(g1, g2) u(g1g2, g3) = (g1, g2, g3) g1(u(g2, g3)) u(g1, g2g3)

for g1, g2, g3  G. One may easily check that the coboundary class of the 3-cocyle  in H3(G, S1) does not depend on the choice of the lift  and the unitaries u(, ); this class is referred as the

obstruction of the G-kernel . It is well-known (see [Pop1]) that the standard invariant of the above subfactor N  M depends only on the group G, its generators and the 3-cocycle obstruction.

We will find the tube algebra of the category CNN of N -N bifinite bimodules coming from this

subfactor and then find the tube representations. Note that this will suffice since, by [GJ], the rep-

resentation category of the tube algebra of CNN is (tensor) equivalent to the category of annular rep-

resentations with respect to any full weight set in ob(CNN ) (in particular,

N L2(M )N

k
N :kN

which gives the affine modules of Jones). In fact, if   1, the affine modules were obtained in

[GJ].

All

simple

objects

in

CN,N

are

invertible.

This

is

clear

because

L2(M )

=
N -N

L2(Ni ).
iI

Here

the

notation N L2(N)N (for   Aut(N )) denotes the bimodule obtained from the Hilbert space L2(N )

with left N -action being the usual left multiplication whereas the right one is twisted by . This

bimodule depends only on the class defined by  in Out(N ) up to isomorphism, and the tensor

 and the contragradient of such bimodules correspond to multiplication and inverse in Out(N ).

N

Since idN is in the set {i : i  I}, we get all such index one bimodules corresponding to any g  G,

appearing as sub-bimodules of

N L2(M )N

k
N

as we vary k.

Moreover,

up to isomorphism these

are the only irreducible bimodules of CNN . Thus, the fusion algebra of CNN is just given by G. It

is then easy to verify that CNN is tensor equivalent to the category Vec(G, ) of G-graded vector

spaces with associativity constraint given by the 3-cocycle obstruction . So, our job boils down to

5

finding out the tube representations of Vec(G, ). However, we will work with bimodules in CNN instead, as the framework will be useful in the next section.
Since the standard invariant (and thereby the category CNN ) is independent of the lift , without loss of generality we assume e = idN . Further, we may set u(g1, e) = 1N = u(e, g2) for all g1, g2  G. These assumptions make the 3-cocycle  : G3  S1 normalized.
For g  G, let Xg :=N L2(Ng )N . The morphism space in CNN from object U to object V , will be denoted by CNN (U, V ). The tube morphism from Xg1 to Xg2 is then given by Tg1,g2 := Tgs1,g2
sG
where Tgs1,g2 = CNN (Xg1 Xs, Xs Xg2). Clearly, Tg1,g2 = {0} if and only if g1 and g2 are conjugates of each other. Further, if g1 = sg2s-1, then Tgs1,g2 is one-dimensional; we will fix a distinguished element in this space, namely, a(g1, s, g2) defined by

Xg1  Xs  [1]g1  [1]s a(g-1,s,g2) [u(g1, s)u(s, g2)]s  [1]g2  Xs  Xg2.

N

N

N

N

It is an easy exercise to check that the above map is indeed an N -N -linear unitary.

Before we multiply two nonzero tube morphisms a(g1, s, g2) and a(g2, t, g3), we need to know the

one dimensional spaces CNN (XsXt, Xst) = C [1]s  [1]t -s,t [u(s, t)]st and CNN (Xst, XsXt) =

N

N

N

C [1]st -s,t [u(s, t)]s  [1]t} . Following the multiplication defined in [GJ, Section 3], we have
N

a(g2,

t,

g3)



a(g1,

s,

g2)

=

s,t


N

idXg3



idXs


N

a(g2,

t,

g3)



a(g1,

s,

g2)


N

idXt



idXg1


N

s,t.

Right from the definitions, one can easily see that a(g2, t, g3)  a(g1, s, g2) sends [1]g1  [1]st to
N

[g1(u(s, t))

u(g1, s)

u(s, g2)

s (u(g2, t)u(t, g3))

u(s,

t)]st


N

[1]g3

Now,

g1(u(s, t)) u(g1, s) u(s, g2) s (u(g2, t)u(t, g3)) u(s, t) = (g1, s, t) u(g1, st) u( g1s , t) u(s, g2) s(u(g2, t)) s(u(t, g3)) u(s, t)
=sg2
(using Equation 3.1 on the first two terms) = (g1, s, t) u(g1, st) (s, g2, t) u(s, g2t ) s(u(t, g3)) u(s, t)
=tg3
(using Equation 3.1 on the third, fourth and fifth terms) = (g1, s, t) u(g1, st) (s, g2, t) (s, t, g3) u(st, g3)
(using Equation 3.1 on the last three terms) = [(g1, s, t) (s, g2, t) (s, t, g3)] u(g1, st) u(st, g3)

Thus, multiplication is given by

a(g2, t, g3)  a(g1, s, g2) = [(g1, s, t) (s, g2, t) (s, t, g3)] a(g1, st, g3).

Next we will obtain the -structure on the tube algebra which we denote by # following the

notation in [GJ]. For this, we need a standard solution to the conjugate equations for the pair

(Xs, Xs-1 ).

We

set Rs

:=

s-1,s

:

Xe



Xs-1  Xs
N

and

Rs

:=

(s, s-1, s)s,s-1

: Xe  Xs Xs-1 .
N

It is completely routine to check that (Rs, Rs) satisfies the conjugate equation and is standard. Now

6

by [GJ],

(a(g1, s, g2))# =

idXs-1


N

idXg1

 (Rs)
N



idXs-1


N

(a(g1, s, g2))


N

idXs-1



Rs


N

idXg2


N

idXs-1

.

The map (a(g1, s, g2)) sends [1]s  [1]g2 to [u(s, g2)u(g1, s)]g1  [1]s. Using all the three maps

N

N

(a(g1, s, g2)), Rs and Rs, we can express the image of [1]g2  [1]s-1 under (a(g1, s, g2))# as

N

(s, s-1, s) u(s-1, s) s-1 (u(s, g2)u(g1, s)) s-1(g1 (u(s, s-1)))

 [1]g1 .

=(s-1 ,s,s-1 )

N s-1

We will simplify the first tensor component in the following way:

(s-1, s, s-1) u(s-1, s) s-1 (u(s, g2)) s-1 u(g1, s)g1 (u(s, s-1)) = (s-1, s, s-1) (s-1, s, g2) u(s-1, sg2) (g1, s, s-1) s-1(u( g1s , s-1))
=sg2

(using Equation 3.1 on the second and third, and fourth and fifth terms separately)

= (s-1, s, s-1) (s-1, s, g2) (g1, s, s-1) (s-1, sg2, s-1) u(g2, s-1) u(s-1, g1)

(using Equation 3.1 on the third and fifth terms)

= (s-1, s, s-1) (g1, s, s-1) (s, g2, s-1) (s-1, s, g2s-1 ) u(g2, s-1) u(s-1, g1)
=s-1g1

(using Equation 2.1 on the second and fourth terms)

= (g1, s, s-1) (s, g2, s-1) (s, s-1, g1) u(g2, s-1) u(s-1, g1)

(using Equation 2.1 on the first and fourth terms)

Hence, # is given by the formula: (a(g1, s, g2))# = (g1, s, s-1) (s, g2, s-1) (s, s-1, g1) a(g2, s-1, g1).

The canonical (faithful) trace  on the tube algebra (as defined in [GJ]) is given by (a(g1, s, g2)) = g1=g2s=e. Thus, the set {a(g1, s, g2) : g1, g2, s  G satisfying g1s = sg2} becomes an orthonormal basis with respect to the inner product arising from  and #.
To have a better understanding of the -algebra structure of the tube algebra, we will now set up some notations. Let C denote the set of conjugacy classes of G. For each C  C , we pick a representative gC  C and for each g  C, we fix wg  G such that g = wg gC wg-1 and wgC = e. Also for C  C , we will denote the centralizer subgroup of gC by GC := {s  G : gC = s gC s-1}, and C will denote the 2-cocycle on GC given by C (s, t) := gC (t-1, s-1) (recall the definition of gC in Lemma 2.1).
With the above notation, we give an alternate description of -algebra structure of the tube algebra in the following proposition which will be handy in classifying the representations.

Theorem 3.1.

(i) The tube algebra T

= ((Tg1,g2 ))fin. supp.

is isomorphic

to
C C

MC  [CGC ]C

as

a -algebra where [CGC]C is the 2-cocycle twisted group algebra and MC denotes the -algebra of

finitely supported matrices whose rows and columns are indexed by elements of C.

(ii) Every Hilbert space representation  : T  L(V ) decomposes over C  C uniquely (up to

isomorphism) as an orthogonal direct sum of submodules generated by the range of the projection (a(gC , e, gC )) (which is the gC th-space of V ). (We will call a representation of T `supported on C  C ' if it is generated by its vectors in the gCth-space.) The category of C-supported representations of T is additively equivalent to representation category of [CGC ]C .

7

Proof. (i) We will send the orthonormal basis of T (discussed above) via a map  to a canonical basis of CC MC  [CGC ]C in the follwoing way: for g1, g2  C and s  G such that g1s = sg2 (implying wg-11swg2  GC )
a(g1, s, g2) - gC ,wg1 ,wg2 (wg-11swg2 ) Eg2,g1  [wg-21s-1wg1 ] where we use the family of functions a,x,y : Ga  S1 a,x,yG appearing in Proposition 2.2.
To show  preserves multiplication, consider
(a(g2, t, g3)) (a(g1, t, g2))
= gC ,wg2 ,wg3 (wg-21twg3 ) Eg3,g2  [wg-31t-1wg2 ] gC ,wg1 ,wg2 (wg-11swg2 ) Eg2,g1  [wg-21s-1wg1 ] = gC,wg1 ,wg2 (wg-11swg2 ) gC,wg2 ,wg3 (wg-21twg3 ) C (wg-31t-1wg2 , wg-21s-1wg1 ) Eg3,g1  [wg-31(st)-1wg1 ] = gC ,wg1 ,wg2 (wg-11swg2 ) gC ,wg2 ,wg3 (wg-21twg3 ) gC ,wg1 ,wg3 (wg-11stwg3 ) gC (wg-11swg2 , wg-21twg3 )
(a(g1, st, g3)) = (g1, s, t)(s, g2, t)(s, t, g3) (a(g1, st, g3)) (using Proposition 2.2) =  (a(g2, t, g3) a(g1, s, g2)) . The map  is  preserving because [(a(g1, s, g2))]
= gC,wg1 ,wg2 (wg-11swg2 ) C (wg-11swg2 , wg-21s-1wg1 ) Eg1,g2  [wg-11swg2 ] = gC,wg1 ,wg2 (wg-11swg2 ) gC (wg-11swg2 , wg-21s-1wg1 ) gC,wg2 ,wg1 (wg-21s-1wg1 ) (a(g2, s-1, g1)) = gC,wg1 ,wg1 (e) (g1, s, s-1) (s, g2, s-1) (s, s-1, g1) (a(g2, s-1, g1)) (using Proposition 2.2) =  [a(g1, s, g2)]#
where we use gC,wg1,wg1 (e) = 1 at the very last step which follows directly from the definition of a,x,y in the proof of Proposition 2.2.
(ii) The decomposition follows easily from the -algebra structure described in part (i). Fix C  C . If  : T  L(W ) is C-supported, then we can define the representation  : [CGC ]C  L(WgC ) defined by (s) =  -1(EgC,gC  [s]) . Conversely, if  : [CGC ]C  L(U ) is a representation, then one can consider the unique extension
 : T  L(l2(C)  U ) defined by  -1(Eg1,g2  [s]) := g1C Eg1,g2  (s).
Remark 3.2. Note that the canonical trace  on T corresponds to the direct sum of the canonical traces on MC  [CGC]C . Also, the -algebra Te,e (by definition) is isomorphic to the fusion algebra which is basically the group algebra CG without any nontrivial 2-cocycle twist (since e is the constant function 1 which follows from its definition in Lemma 2.1). Thus, the analytic properties (such as, amenability, Haagerup, property (T)) of the bimodule category corresponding to the subfactor N  M corresponds exactly to that of the group G; this fact was obtained by Sorin Popa long time back in [Pop1] and [Pop2]. However, the analytic properties in the higher weight spaces (as defined in [GJ]) depend on the corresponding centralizer subgroup.
4. Bisch-Haagerup Subfactors
In this section, we intend to find the tube algebra of the Bisch-Haagerup subfactor N := QH  Q  K =: M where H and K act outerly on the II1-factor Q. It is well known that the planar
8

algebra of N  M depends on the group G generated by H and K in Out(Q) and the scalar 3-cocycle obstruction (up to 2-coboundary) (see [BH, BDG]).

We first lay down the strategy to achieve our goal. Instead of computing the tube algebra of CNN directly (unlike the case of diagonal subfactors because the irreducible bimodules of CNN for Bisch-Haagerup subfactors, are not so easy to work with), we will consider the affine annular algebra with respect to a particular full weight set (in the sense of [GJ, Definition 3.4]) in ob(CNN ), and then cut it down by the Irr CNN .
We need to set up some notations for this. Pick a representative map Out(Q)  G  g  g  Aut(Q) such that g = gInn(Q), and |H : H  Aut(Q), |K : K  Aut(Q) are homomorphisms. Now, if X =N L2(M )M , Y =N L2(Q)Q and Z =Q L2(M )M , then

m
X X N = Y ( Z Z )( Y Y )( Z Z )( Z Z )Y.

Q

Q

Q

QQ

Q

We know that ( Y

Y

) =
Q-Q

hH

QL2(Qh )Q

and

(

Z

Z

)

=
Q-Q

QL2(Qk )Q.
kK

So,

XX

k
N

=

N -N

N L2(Qk1 h1 k2 h2 km )N

=
N -N

k1 ,k2 ,...K

h1,h2,...H

N L2(Qk1h1k2h2km )N
k1,k2,...K h1,h2,...H

Since the subgroups H and K generate G, therefore the set  := Xg := N L2(Qg )N g  G forms

a full since

weight set Xg = Xgh

in for

CNN . all g

It is possible to reduce the indexing  G, h  H. However, we will not do

set G of the weight set that since by reducing

 further, the weight

set, one needs to work with coset representative which makes the calculations more cumbersome.

4.1. Morphism spaces in CNN .
For the affine annular algebra over G (indexing the above set), we do not need all morphism spaces of CNN . We will instead concentrate on morphisms between elements of  and their tensor products. Before that, we need more notations. Choose a map u : G  G  U (Q) such that g1 g2 = Adu(g1,g2)g1g2 and

(4.1)

u (H  H  K  K  G  {e}  {e}  G) = {1Q}.

Again, associativity of multiplication in G and condition 4.1 will give us a 3-cocycle  satisfying Equation 3.1 and

(4.2)

|HHH  1  |KKK .

This along with Equation 2.1, implies (g, l, l-1) = (gl, l-1, l) and (l-1, l, g) = (l, l-1, lg) for

all g  G, l  H  K. We will now prove a lemma on scalar cocycles which lets us choose the map

u in such a way that the 3-cocycle  gets simplified making our calculations easy.

Lemma 4.1. Any scalar 3-cocycle  of a group G generated by subgroups H and K, is coboundarily equivalent to  which satisfies the relation 4.2 as well as

(4.3)

(g, l, l-1) = 1 = (l-1, l, g) for all g  G, l  H  K.

Proof. Consider the subsets AH = (H  H), AK = (K  K), VH = (H  H), and VK = (K  K) of G  G, and the order 2 bijections G  G  (g1, g2)^ (g1, g2)^= (g1g2, g2-1)  G  G and G  G  (g1, g2) (g1, g2)= (g1-1, g1g2)  G  G (where H = H \ {e} and K = K \ {e}). Note that AH and AK (resp. VH and VK ) are separately closed under^(resp. ) and have no fixed points. Now, AH  VK = (K \ H)  (H \ K) (resp. AK  VH = (H \ K)  (K \ H)) is mapped into AH \ VK (resp. AK \ VH ) under^and into VK \ AH (resp. VH \ AK ) under. We choose
9

(i) a representative in each orbit of ^ inside AH  AK such that the representative of the orbit containing (k, h)  AH  VK is chosen as (kh, h-1) and the representative of the one containing (h, k)  AK  VH is chosen as (hk, k-1),
(ii) a representative in each orbit of  inside VH  VK such that the representative of the orbit containing (k, h)  AH  VK is chosen as (k-1, kh) and the representative of the one containing (h, k)  AK  VH is chosen as (h-1, hk).
Let A (resp. V ) be the set of representatives in AH  AK (resp. VH  VK ). From our choice, it can be verified that A  V = . Define  : G  G  T by:
(a) |GG\(AV ) = 1, (b) (g, l) = (g, l, l-1) = (gl, l-1, l) for (g, l)  A, (c) (l, g) = (l-1, l, g) = (l, l-1, lg) for (l, g)  V . It follows that 2() is normalized since  is also so, and 2() satisfies the relation 4.2 since (H  H  K  K)  (A  V ) =  (where 2 denotes the 2-cochain map). Thus, the 3-cocycle  = 2()   is normalized and satisfies relation 4.2.
For relation 4.3, we consider g  G and l  H  K. Without loss of generality, we assume g = e = l. So, (g, l), (gl, l-1) ( resp. (l, g), (l-1, lg) ) is an orbit of ^(resp. ) in AH  AK (resp. VH  VK ), and  takes the value (g, l, l-1) = (gl, l-1, l) (resp. (l-1, l, g) = (l, l-1, lg)) on the representative of the orbit and 1 on the other. This implies
(g, l, l-1) = (gl, l-1) (g, l) (g, l, l-1) = 1
since (g, e) = 1 = (l, l-1), and similarly (l-1, l, g) = 1.

By the above lemma, without loss of generality, we may assume  satisfies:

(4.4)

(i) (g1, l, l-1) = 1 = (g1, l, l-1)

(ii) (g1, g2, l)

=

(g1, g2l, l-1)

(iii) (g1, l, g2)

=

(g1l, l-1, lg2)

(iv) (l, g1, g2)

=

(l-1, lg1, g2)

(v)

u(g1, l)

=

u(g1l, l-1)

(vi)

u(l, g2)

=

l u(l-1, lg2)

for all g1, g2  G, l  H  K (where (ii), (iii) and (iv) are immediate implication of (i) and 2.1). We will need the relation 4.4 only when l  H; however, we gave the general version, in case any
reader is interested to see the actual 2-category of N  M instead of just CNN .

Proposition 4.2. The morphism space CNN (Xg1, Xg2) is zero unless g1 and g2 give the same H-H double coset, and if they do, the space has a basis given by





   

Xg1

 [x]g1 - [h1 (x)u(h1, g1)u(g2, h2)]g2  Xg2

Bg1,g2 :=

g2

  

denoted

by

the

symbol

h1

h2

 

g1





h1, h2  H

   

such that

.

h1g1 = g2h2

  





Proof. By Frobenius reciprocity, dimC (CNN (Xg1 , Xg2 )) = dimC CNN N L2(N )N , Xg1  Xg2 .
N

Again Xg1  Xg2 =

N

Q-Q

g1 [Q  H] g2 where the left and right actions of Q on Q  H is twisted

by g1 and g2 respectively. Any element of CNN N L2(N )N , g1 [Q  H] g2 corresponds to an

10

element of Q  H (the image of ^1), say y = yh h. By N -N linearity, we will have g1(n) yh =
hH
yh h(g2(n)) for all n  N, h  H, equivalently
n -g11(yh) = -g11(yh) -g11(h(g2(n))) for all n  N, h  H.

The following is a well-known fact for the fixed-point subfactor N  Q of an outer action of H. For y  Q and   Aut(Q), the following are equivalent:

(i) y = 0 and ny = y(n) for all n  N = QH ,

(ii) y0 :=

y y

 U (Q) and Ady0    {h : h  H}.

By the above fact, y = 0 only when there exists h1, h2  H such that -g11h1g2h2  Inn(Q),

equivalently g1 and g2 generate the same H-H double coset. In particular, yh = 0 unless h belongs to

H y0

 g1Hg2-1.

=

yh yh

.

And This

for h  implies

H  g1Hg2-1, Ady0 h g2

for yh = 0, we have Ad-g11(y0) = g1 g1-1hg2, equivalently,

-g11 h g2 Ady0u(h,g2)

= =

g1-1hg2 where Adu(g1,g1-1hg2).

Hence, yh  C{u(g1, g1-1hg2)u(h, g2)}. Thus, the set

u(g1, h-2 1)u(h-1 1, g2) h-1 1 : h1, h2  H such that h1g1 = g2h2

forms a basis of the vector space V := {y  Q  H : g1(n)y = yg2(n) for all n  N }. To show that the set Bg1,g2 forms a basis for Hg1H = Hg2H, we need the following explicit isomorphism:

V  y - (y) := J yJ  CNN (Xg1 , Xg2 )

where J is the canonical anti-unitary of L2(Q). Set yh1,h2 := u(g1, h-2 1)u(h-1 1, g2) h-1 1 for h1g1 = g2h2. Then,

(yh1,h2)[x]g1 = h1 xu(g1, h-2 1)u(h-1 1, g2) g2 = h1 (x) h1 u(g1, h-2 1)u(h-1 1, g2) g2 .

We simplify h1 u(g1, h-2 1)u(h-1 1, g2) using Equations 3.1, 4.1 and 4.4 to get

(h1, g1, h-2 1)u(h1, g1)u(h1g1, h-2 1)u(h1, g1h-2 1) u(h1, h-1 1g2) = (h1, g1, h-2 1) u(h1, g1)u(g2h2, h-2 1) = (h1, g1, h-2 1) {u(h1, g1)u(g2, h2)} .

g2 Hence, (yh1,h2) is a unit scalar multiple of h1 h2 corresponding to (h1, h2).
g1

Remark 4.3. The maps

N L2(N )N  ^1 -Rg

i

[u(g-1, g)g-1 (bi)]g-1


N

[bi ]g



Xg-1


N

Xg

N L2(N )N  ^1 -Rg (g, g-1, g)

i

[u(g, g-1)g(bi)]g


N

[bi ]g-1



Xg


N

Xg-1

are standard solutions to conjugate equations for duality of Xg where {bi}i is a basis for the subfactor N  Q. We will also need the  of these maps, namely

Xg-1  Xg  [x]g-1  [y]g -Rg EN xg-1 (y)u(g-1, g)  N L2(N )N

N

N

Xg  Xg-1  [x]g  [y]g-1 -Rg (g, g-1, g) EN xg(y)u(g, g-1)  N L2(N )N

N

N

11

Proposition 4.4.

g3

h3 h4

g3

g2

g3

(i)

g2 := h3 h4  h1 h2 = (h3, h1, g1) (h3, g2, h2) (g3, h4, h2) h3h1 h4h2

h1 h2

g2

g1

g1

g1

 g2 

g1

(ii)  h1 h2  g1

= (h1, g1, h-2 1) h-1 1 gh2 -2 1

Proof. (i) The left side is given by [x]g1  [h3h1 (x) h3(u(h1, g1)u(g2, h2)) u(h3, g2)u(g3, h4)]g3 . Observe that
h3(u(h1, g1)u(g2, h2)) u(h3, g2)u(g3, h4) = (h3, h1, g1) u(h3h1, g1) u(h3, h1g1 ) h3 (u(g2, h2)) u(h3, g2) u(g3, h4)
=g2h2
(applying 3.1 and 4.1 on the first term) = (h3, h1, g1) (h3, g2, h2) u(h3h1, g1) u( h3g2 , h2) u(g3, h4)
=g3h4
(applying 3.1 on the second, third and fourth terms) = (h3, h1, g1) (h3, g2, h2) (g3, h4, h2) u(h3h1, g1) u(g3, h4h2)
(applying 3.1 and 4.1 on the last two terms)

which gives the required result.

g2

(ii) Note that h1 h2 is a unitary which follows right from its definition. Using part (i), one can g1

g1

g2

easily show that h-1 1

gh2 -2 1

is indeed the inverse of h1

h2 g1

where one uses the relations in 4.4.

Next, we will prove some facts about tensor product of two elements from . For g1, g2  G and g1hg2

h  H, we define h

: Xg1  Xg2  Xg1hg2 in the following way

g1 g2

N

Xg1


N

Xg2



[x]g1


N

[y]g2

-

|H

|-

1 2

[x

g1 (h (y))

u(g1, h)

u(g1h, g2)]g1hg2



Xg1hg2 .

Remark 4.5. With standard inner product computation, one can show that



g1hg2

h 

 

:

[z]g1hg2

-

|H

|-

1 2

g1 g2

i

[zu(g1h,

g2)u(g1,

h)g1 (bi)]g1


N

[h-1 (bi )]g2

=

|H

|-

1 2

i

[g1 (bi)]g1  [h-1
N

bi -g11(zu(g1h, g2)u(g1, h)) ]g2

where {bi}i is any basis of Q over N .
12

To see this, consider

g1hg2

h

[x]g1  [y]g2

g1 g2

N

, [z]g1hg2

=

|H

|-

1 2

tr

(x

g1 (h (y))

u(g1,

h)

u(g1h,

g2)

z)

=

|H |-

1 2

tr (x g1 (EN (yh-1 (bi))bi ) u(g1, h) u(g1h, g2) z)

i

=

|H |-

1 2

tr (x g1 (EN (yh-1 (bi))) (z u(g1h, g2) u(g1, h) g1(bi)))

i

=

|H |-

1 2

i

[x]g1 N [y]g2 , [h-1 (bi )]g2 , [z u(g1h, g2) u(g1, h) g1(bi)]g1



g1hg2



g1hg2

g1 g2

=

[x]g1

 [y]g2
N

,


 g1

h

 

[z]g1hg2

.

We will denote  

h

g2

g1

 by  g2

h . It is g1hg2

g1 g2

straightforward to check h

preserves inner product and thereby is an isometry. So, the

g1 g2 h

g1hg2  g1 g2

g1hg2

element

g1hg2

:=  

h

g1 g2 h  H.

h

h

g1hg2 g1

g2

 is a projection 

in End (Xg1  Xg2 ) for every
N

 

g1hg2

 





Proposition 4.6. The set

h

: h  H gives a resolution of the identity in End (Xg1 

 

g1

g2

 

N

Xg2 ).

g1 g2 h

Proof. It is enough to check
hH

g1hg2 h

=

idXg1 Xg2 . N

The left side acting on [x]g1  [y]g2
N

gives

g1 g2

= |H|-1 [g1 (bi)]g1  [h-1

i,h

N

bi -g11(x g1 (h(y))) ]g2

= |H|-1 [g1 (bi)]g1  [h-1

i,h

N

bi -g11(x)

y]g2 =

[g1 (bi)]g1  [EN

i

N

bi -g11(x)

y]g2 = [x]g1  [y]g2 .
N

13

Remark PSfrag 4.7. From Propositions 4.2 and 4.6, we may conclude that CNN (Xg1  Xg2, Xg3  Xg4) is

N

N

linearly spanned by the (linearly independent) set

g3 g4

 





   

h4

   

    

g3 g4

g3h4g4

g1h3g2

    

h1 h2 := h4

 h1 h2  h3

h1, h2, h3, h4  H .

   

g3h4g4

g1h3g2 g1

g2

   

   

h3

   





g1 g2

 

We will now prove two lemmas which will be very useful in finding the structure the annular algebra. As for notations, we will use the standard graphical representations of morphism where composition will be represented by stacking the morphisms vertically with the left most being in the top.

Lemma 4.8. (i)
(ii)

g1hs

g1hs

h

e h2

s = [(g1h, s, h2) (g1h, h1, t) (g1, h, h1)] g1hh1t

g1 h1 h2 t

hh1 g1 t

shg2

h s
h1 h2 t

g2 = (h1, th-2 1h, g2) (s, h2, h-2 1h) (h1, t, h-2 1h)

shg2
h1 e th-2 1hg2
h-2 1h t g2

Proof. (i) The left side acts on [x]g1  [y]t, gives
N

|H

|-

1 2

[xg1

(h

(h1 (y)u(h1,

t)u(s,

h2)))

u(g1, h)u(g1h,

s)]g1hs

whereas the right side yields

|H

|-

1 2

[xg1

(hh1 (y))

u(g1,

hh1)u(g1hh1,

t)u(g1hs,

h2)]g1hs

.

After striking out the similar terms, we will be left with

g1 (h (u(h1, t)u(s, h2))) u(g1, h)u(g1h, s) = u(g1, h)g1h (u(h1, t)u(s, h2)) u(g1h, s) = u(g1, h)g1h (u(h1, t)) (g1h, s, h2)u(g1h, sh2 )u(g1hs, h2)
=h1t
= (g1h, s, h2)u(g1, h)(g1h, h1, t)u(g1h, h1)u(g1hh1, t)u(g1hs, h2) = [(g1h, s, h2)(g1h, h1, t)(g1, h, h1)] (u(g1, hh1)u(g1hh1, t)u(g1hs, h2))

(ii) The action of left side on [x]t  [y]g2 is
N

|H

|-

1 2

[h1 (x)u(h1, t)u(s, h2)

s (h(y))

u(s, h)u(sh, g2)]shg2

=

|H

|-

1 2

h1

x t(h-2 1h(y)

u(h1, t)u(s, h2) u(s, h)u(sh, g2)
shg2

14

and the right side on the same is

|H

|-

1 2

h1

=

|H

|-

1 2

h1

x t(h-2 1h(y) u(t, h-2 1h)u(th-2 1h, g2) u(h1, th-2 1hg2) shg2 x t(h-2 1h(y) h1 (u(t, h-2 1h)) (h1, th-2 1h, g2)u(h1, th-2 1h)u(h1th-2 1h, g2) shg2

=

(h1,

th-2 1h,

g2)

|H |-

1 2

h1

x t(h-2 1h(y)

=

(h1,

th-2 1h,

g2)(h1,

t,

h-2 1h)

|H |-

1 2

(h1, t, h-2 1h)u(h1, t)u( h1t , h-2 1h) u(sh, g2)

=sh2

shg2

h1

x t(h-2 1h(y)

u(h1, t) (s, h2, h-2 1h)u(s, h2) u(s, h) u(sh, g2)

.
shg2

Lemma 4.9. g2h2g3

g1 g2h2g3

g1

h2

h1

(i)

g2 = [(g1h1, g2, h2) (g1h1, g2h2, g3)]

h1

g3

g1h1g2h2g3 h2

g1h1g2

g1h1g2 g3

g1h1g2

g1h1g2 g3

h1

g3

h2

(ii)

g2 = [(g1h1, g2, h2) (g1h1, g2h2, g3)]

g1h1g2h2g3

g1

h2

g2h2g3

h1 g1 g2h2g3

Proof. The left side acting on [x]g1h1g2  [y]g3 gives
N

|H |-1

i

[xu(g1h1,

g2)u(g1,

h1)g1 (bi)]g1


N

[-h11(bi )g2 (h2(y))

u(g2,

h2)u(g2h2,

g3 )]g2 h2 g3

= |H|-1 [xu(g1h1, g2)u(g1, h1)g1 (bi)]g1

i,j


N

[EN

(bi h1

(g2(h2 (y))

u(g2,

h2)u(g2h2,

g3))

bj )

-h11(bj )]g2h2g3

= |H|-1

j

[xu(g1h1,

g2)u(g1,

h1)g1

(h1

(g2(h2 (y))

u(g2,

h2)u(g2h2,

g3))

bj )]g1


N

[-h11(bj )]g2h2g3

= |H|-1 [x g1h1g2 (h2 (y)) u(g1h1, g2)u(g1, h1) g1 (h1 (u(g2, h2)u(g2h2, g3))) g1(bj )]g1

j


N

[-h11(bj )]g2h2g3 .

Simplifying the underlined expression, we get

u(g1h1, g2) g1h1 (u(g2, h2)u(g2h2, g3)) u(g1, h1) = (g1h1, g2, h2) u(g1h1g2, h2)u(g1h1, g2h2) g1h1 (u(g2h2, g3)) u(g1, h1) = (g1h1, g2, h2) u(g1h1g2, h2) (g1h1, g2h2, g3)u(g1h1g2h2, g3)u(g1h1, g2h2g3) u(g1, h1).

This is exactly what we wanted from the right side acting on [x]g1h1g2  [y]g3.
N
(ii) This follows from taking  on both sides.
15

4.2. The affine annular algebra over the weight set  indexed by G.

Let A denote the affine annular algebra of CNN with respect to G which indexes the weight set . In our set up, the indexing set G is more important rather than the set ; for instance, Xh and Xe are identical in   ob(CNN ) when h  H.

We will recall the definition of A here. For g1, g2  G, we have a vector space Ag1,g2 which is the

quotient of the vector space

CNN Xg1  W , W  Xg2 over the subspace generated by

W ob(CNN )

N

N

elements of the form

a



(idXg1


N

f)

-

(f


N

idXg2 )



a

for a  CNN

Xg1  Z , W  Xg2

N

N

and

f  CNN (W, Z). We denote the quotient map by g1,g2. We will also use the notation gW1,g2 (resp.,

gs1,g2) for the restriction map g1,g2

(resp., g1,g2

for

CNN Xg1 W , W Xg2

N

N

CNN Xg1 Xs , XsXg2

N

N

s  G). Further, AW g1,g2 and Asg1,g2 will denote the range of the maps gW1,g2 and gs1,g2 respectively.

Notation. For any two vectors v1 and v2 in any vector space, we will write v1  v2 when span v1 = span v2.

 

 s g2 

 





   

 

h2

 

   





   

 

sh2g2

   

Proposition 4.10. Ag1,g2 is linearly spanned by the set

gs1,g2

 

h1

e

 

h1, h2

 H, s  G

.





   

 

g1s

 

   





  

 

e

 

  











g1 s



We denote the above element by a(h1, g1, s, h2, g2). Note that h1g1 = s h2g2 s-1.

Proof. Since the weight set  = {Xs : s  G} is full, we may use the relation satisfied by the

quotient map g1,g2 to say Ag1,g2 = span sGAsg1,g2 . So, by Remark 4.7, Ag1,g2 can be linearly

 s g2 

 

h4

 

 

sh4g2

generated

by

elements

of

the

form

gs1 ,g2

 

h1

h2

 

for

h1,

h2,

h3,

h4



H,

s



G.





 g1h3s





 

h3

 

g1 s

16

g

h-1 1 h2

Using Proposition 4.4, we may write

h1gh2 

h1 h-2 1

g

g
ee g

satisfied by the quotient map and setting t := h3sh-2 1, we get

= idXg . Again, using the relation

 s g2 



 

h4

 

 

 

sh4g2

 

t

gs1 ,g2

 

h1

h2

 



gt 1 ,g2

 

h3

h2





 g1h3s

 

s







 

h3

 

 

g1 s

s g2



h4

 



sh4g2 

s

 


N

idXg2





h1

h2 g1h3s



idXg1


N

h-3 1

th-2 1 .



h3

 

g1 s

We then apply Lemma 4.8 (i) and (ii) to get

 s g2 



 

h4

 



 

sh4g2

 

gs1 ,g2

 

h1

h2

 



gt 1 ,g2

 







 g1h3s









 

h3

 



g1 s

t g2 h2h4 
th2h4g2

th2h4g2



h3

e h-3 1th2h4g2



g1t

 

h1 h2

e

 

.

g1th2

g1

t

 

e gh1t-2 1

 

where the three vertically stacked discs correspond to their composition. Once we apply the multiplication of these discs as stated in Proposition 4.4 (i), it becomes clear that the resultant (up to a unit scalar) is indeed of the form mentioned in the statement of this proposition.

We will next unravel the multiplication in A.

Remark 4.11. Multiplication of affine annular morphisms is given by

gt2,g3 (c)  gs1,g2 (d)

=

Xs Xt
g1 ,gN3

idXs


N

c



d


N

idXt

for c  CNN (Xg2  Xt , Xt  Xg3) and d  CNN (Xg1  Xs , Xs  Xg2). Using Proposition 4.6, we can rewrite the above as

gt2,g3 (c)  gs1,g2 (d)

 sht

s t

=

gs1h,tg3

 

h

hH

s

t


N

idXg3



idXs


N

c



d


N

idXt



idXg1


N

h . 
sht

Proposition 4.12.
(h2, g2, t)(t, h3, g3) a(h2, g2, t, h3, g3)  (h1, g1, s)(s, h2, g2) a(h1, g1, s, h2, g2) = h2=h2 (s, t, h3g3)(s, h2g2, t)(h1g1, s, t) [(h1, g1, st) (st, h3, g3) a(h1, g1, st, h3, g3)]
17

Proof. The above remark lets us express the element [a(h2, g2, t, h3, g3)  a(h1, g1, s, h2, g2)] as a sum over h  H of













 

sht

gs1h,tg3

  

h

s t
























N

idXg3



idXs 


N









t g3  s g2



h3

 

 

h2

 

th3g3

 

sh2g2

 

h2

e

 



 

h1

e



g2t

 

 

g1s


N

idXt

  



idXg1


N





e

 

 

e

 

g2 t

g1 s









s

t

 

 h .


sht

 











=: bh say

We could use Lemma 4.9 at three instances in the above expression of bh, and thereby we may rewrite bh up to a unit scalar as

(4.5)

sht g3 h3
shth3g3 h





idXs


N

h2

s

th3g3

h2

e   sh2g2t

g2t

e

g2t 
  h1

g1s t

sh2g2



e g1s


N

idXt





h g1sht .
e

s th3g3

sh2g2 t

g1 sht

In the above expression 4.5, using Lemma 4.8 (ii), we could make the disc in the fourth term pass through the bottom box in the third term to its top. As a result, expression 4.5 turns out to be a scalar multiple of

(4.6)

sht g3 h3
shth3g3 h



th3g3



idXs


N

h2

e g2t



s g2t

h2 sh2g2t
h1 e

g1s t h
 g1sht .

g1st

e

s th3g3

e

g1 sht

g1s t

Observe that the composition of the bottom box of the third term and the top box in the fourth

term (in expression 4.6) is idXg1st if h = e and zero otherwise; this follows from Proposition 4.6. Similarly, Lemma 4.8 (i) allows us to move the disc in the second term up through the bottom box

of the first term, and thereby the expression 4.6 becomes a scalar multiple of

(4.7)

sht g3

h3

(shh2g2t =)shth3g3



hh2

s g2t

s g2t

h2 sh2g2t
h1 e

g1s t h
 g1sht .

g1st

e

e

g1 sht

g1s t

Again, by Proposition 4.6, the composition of the bottom box of the first term and the top of the second term in expression 4.7 is idXshth3g3 if hh2 = h2 and zero otherwise.
18

We now consider the case h = e and h2 = h2 (= h2 say). The above discussion implies that in this case, [a(h2, g2, t, h3, g3)  a(h1, g1, s, h2, g2)] is indeed a scalar multiple of a(h1, g1, st, h3, g3). So, we need to gather the 3-cocycle arising at various steps. To obtain step 4.5, Lemma 4.9 will give the following six scalars
[(s, t, h3)(s, th3, g3)] [(sh2,g2, e)(sh2, g2, t)] [(g1, s, e)(g1, s, t)] .
Application of Lemma 4.8 (ii) (resp., (i)) while obtaining step 4.6 (resp., 4.7) from step 4.5 (resp., 4.6), yield
[(h1, g1s, t)(sh2g2,e,e)(h1, g1s, e)] (resp., (s,th3g3,e)(s, h2, g2t)(s,e,h2) ).
Thus, we obtained the equation
a(h2, g2, t, h3, g3)  a(h1, g1, s, h2, g2) = [(s, t, h3)(s, th3, g3)(sh2, g2, t)(g1, s, t)(h1, g1s, t)(s, h2, g2t)] a(h1, g1, st, h3, g3).
We will be done with the proof once we match the scalars. Applying the 3-cocycle relation 2.1 on first and second, third and sixth, fourth and fifth terms separately, we get
[(st, h3, g3)(s, t, h3g3)(t, h3, g3)] [(s, h2, g2)(s, h2g2, t)(h2, g2, t)] [(h1g1, s, t)(h1, g1, st)(h1, g1, s)]

Notation. We see that [(h1, g1, s)(s, h2, g2) a(h1, g1, s, h2, g2)] is better behaved with respect to multiplication than a(h1, g1, s, h2, g2). So, we set A(h1, g1, s, h2, g2) := [(h1, g1, s)(s, h2, g2) a(h1, g1, s, h2, g2)] and the above proposition translates as: A(h2, g2, t, h3, g3)  A(h1, g1, s, h2, g2) = h2=h2 [(s, t, h3g3)(s, h2g2, t)(h1g1, s, t)] A(h1, g1, st, h3, g3).

Next we will compute the canonical trace  on Ag,g for g  G. For this, we need orthonormal basis of CNN (N L2(N )N , Xs) for s  G with respect to the inner product given by

CNN (N L2(N )N , Xs)  CNN (N L2(N )N , Xs)  (c, d) - d  c  C.

By Proposition 4.2, CNN (N L2(N )N , Xs) is zero unless s  H. Now, Xe = Xh for all h  H. Since

NtheinQcluissiirornedmuacpib^1le,-thhe[s1p]ha.cehCNisNs(imN Lpl2y(Nth)eNc,oXnhd)itiisoonnael -edximpeecntsaitoinonal

and EN .

spanned

by

the

element

The definition of  then turns out to be (following [GJ])

Ag,g  gs,g(c) -

Rg 

sH

idXg-1


N

s


N

idXg



idXg-1


N

c



idXg-1

Xg
N

 s
N

 Rg  C.

Proposition 4.13.  (A(h1, g, s, h2, g)) = h1=h2 s=e.
19

Proof. For h  H, we need to compute the scalar

Rg 

idXg-1


N

h


N

idXg













idXg-1


N









h g

h2

 

hh2g

h1

e

 





gh 



e

 

gh

idXg-1

Xg
N

 h
N

 Rg (^1)

=

Rg 
i

idXg-1


N

h


N

idXg













idXg-1


N









h g

h2

 

hh2g

h1

e gh

   

[u (g-1 ,

g)g-1 (bi)]g-1


N

[bi ]g


N

[1]h



e

 

gh

= |H|-1 Rg 
i,j

idXg-1


N

h


N

idXg

[u(g-1, g)g-1 (bi)]g-1


N

[h1

(bi u(g,

h))

u(h1, gh)

u(hh2, g) h(bj)]h


N

[h-2 1

(bj )]g

= |H|-1 Rg
j

u(g-1, g)g-1 u(g, h) h-1 1 (u(h1, gh) u(hh2, g)h(bj ))

g-1


N

[h-2 1 (bj )]g

= |H|-1 u(g-1, g)g-1 u(g, h) h-1 1 (u(h1, gh) u(hh2, g)h(bj )) h-2 1(bj ) u(g-1, g)
j

= |H|-1 u(g-1, g)g-1 u(g, h) h-1 1 (u(h1, gh) u(hh2, g)) g-1 h-1 1h(bj )h-2 1 (bj ) u(g-1, g).
j

Pulling the sum over the last term, we get g-1 h-2 1 j h2h-1 1h(bj )bj

= h=h1h-2 1 |H| (which

is a standard fact in fixed-point subfactor of an outer action of finite group). Let us assume

h = h1h-2 1. But then, h1gh = hh2g will imply h1 = h2 and thereby h = e.

Under the assumption h = e and h1 = h2, in the above expression, the term in between u(g-1, g) and u(g-1, g), becomes 1. This gives the required result.

Corollary 4.14. The set {A(h1, g1, s, h2, g2) : h1, h2  H, s  G such that h1g1s = sh2g2} is a basis for Ag1,g2 .

Proof. This easily follows from that  is non-degenerate on A (which is a consequence of  being positive (see [GJ])).
20

We will now describe the -structure on A which we denote by #. From [GJ], the definition of (gs1,g2(c))# is the following:

gs2-,1g1

idXs-1


N

idXg1


N

Rs



idXs-1


N

c


N

idXs-1



Rs


N

idXg2


N

idXs-1

 Ag2,g1 .

Proposition 4.15. (A(h1, g1, s, h2, g2))#

= (h1g1, s, s-1) (s, h2g2, s-1) (s, s-1, h1g1) A(h2, g2, s-1, h1, g1).

Proof. Set A(h1, g1, s, h2, g2) := (h1g1, s, s-1) (s, h2g2, s-1) (s, s-1, h1g1) A(h2, g2, s-1, h1, g1). Now, we get an inner product ,   defined as

A(h1, g1, s, h2, g2) , A(h3, g3, t, h4, g4)  :=  A(h3, g3, t, h4, g4) A(h1, g1, s, h2, g2)

and extended linearly in the first and conjugate-linearly in the second variable. In fact, the basis elements are orthonormal with respect to ,  . Since   # =  (by positivity of  ([GJ])), it
will be enough to prove (A(h1, g1, s, h2, g2))#  A(h1, g1, s, h2, g2). This is equivalent to proving (a(h1, g1, s, h2, g2))#  a(h2, g2, s-1, h1, g1). This will follow from

g1 s e

idXs-1


N

idXg1


N

Rs

A

g1s



idXs-1


N

h-1 1

e sh2g2


N

idXs-1

h2

s g2



Rs


N

idXg2


N

idXs-1

C

B

s-1

g1

h1
s-1h1g1  h2 e
g2s-1

e

g2

s-1

The right side acting on [x]g2  [y]s-1 gives (up to a nonzero scalar)
N

(4.8)

i

h2 xg2(y) u(g2, s-1)

u(h2, g2s-1)u(s-1h1, g1)u(s-1, h1)s-1 (bi)

s-1


N

[h-1 1

(bi

)]g1

21

Next we compute the left side acting on [x]g2  [y]s-1 (up to a nonzero scalar) in the following way
N

-C

i

[u(s-1,

s)s-1 (bi)]s-1


N

[bi ]s


N

[x]g2


N

[y]s-1

-B [u(s-1, s)s-1 (bi)]s-1

i,j


N

h-1 1 (bi s(h2 (x)) u(s, h2)u(sh2, g2) ) u(h-1 1, sh2g2)u(g1, s)g1(bj )

g1


N

[bj ]s


N

[y]s-1

-A [u(s-1, s)s-1 (bi)]s-1 

i,j

N

h-1 1 (bi s(h2 (x)) u(s, h2)u(sh2, g2) ) u(h-1 1, sh2g2)u(g1, s)g1(bj )

EN
g1

bj s(y)u(s, s-1)



[u(s-1, s)s-1 (bi)]s-1

i


N

h-1 1 (bi s(h2 (x)) u(s, h2)u(sh2, g2) ) u(h-1 1, sh2g2)u(g1, s)g1

s(y)u(s, s-1)

g1

=

[u(s-1, s)s-1 (bi)]s-1 

i,k

N

EN bi s(h2 (x)) u(s, h2)u(sh2, g2)h1 u(h-1 1, sh2g2)u(g1, s)g1 s(y)u(s, s-1) bk h-1 1 (bk) g1

=

u(s-1, s)s-1 s(h2 (x)) u(s, h2)u(sh2, g2)h1 u(h-1 1, sh2g2)u(g1, s)g1 s(y)u(s, s-1) bk s-1

k


N

h-1 1 (bk) g1

Since the second tensor component matches with that of the expression in 4.8, we will now work with the first term.
u(s-1, s)s-1 s(h2 (x)) u(s, h2)u(sh2, g2)h1 u(h-1 1, sh2g2)u(g1, s)g1 s(y)u(s, s-1) bk = h2 (x) u(s-1, s) s-1 u(s, h2)u(sh2, g2)h1 u(h-1 1, sh2g2)u(g1, s)g1 s(y)u(s, s-1) s-1 (bk)

In the last expression, we pick y and using the intertwining relation between u and , we push it leftwards all the way to the right side of the term h2(x) and it becomes h2(g2(y)). This matches the first two and the last terms with that of the first tensor component of the expression 4.8. We are left with showing the u-terms in the middle, namely

(4.9)

u(s-1, s) s-1 u(s, h2)u(sh2, g2)h1 u(h-1 1, sh2g2)u(g1, s)g1 u(s, s-1)

is a nonzero multiple of the u-terms in 4.8, that is,

(4.10)

h2 u(g2, s-1) u(h2, g2s-1)u(s-1h1, g1)u(s-1, h1)

Taking the adjoint of 4.9 and 4.10 separately, we get the same automorphism h2g2 s-1-g11-h11-s-11. Hence, we are done.
22

In order to describe the representations of A, we need a few more notations. As in Section 3, C will denote the set of conjugacy classes, gC will be a representative of C  C and for g  C, we pick wg such that g = wggC wg-1. Also, C will be the 2-cocycle gC of GC . For C  C , set SC := {(h, g)  H  G : hg  C}.
Theorem 4.16. (i) The affine annular algebra A = ((Ag1,g2))fin. supp.is isomorphic as a -algebra to MSC  [CGC ]C where MSC denotes the -algebra of finitely supported matrices with rows
C C
and columns indexed by elements of SC. (ii) Every Hilbert space representation  : A  L(V ) decomposes uniquely (up to isomorphism) as an orthogonal direct sum of submodules V C := Range  (a(e, gC , e, e, gC )) for C  C . (We will call a representation of A `supported on C  C ' if it is generated by the range of the action of the projection a(e, gC , e, e, gC ).) The category of C-supported representations of C is additively equivalent to representation category of [CGC]C .

Proof. (i) Define the map  : A - MSC  [CGC ]C by
C C

a(h1, g1, s, h2, g2) - gC,wh1g1 ,wh2g2 E(h2,g2),(h1,g1)  [wh-21g2 s-1 wh1g1 ]

extended linearly where h1g1, h2g2  C. Using the formula for multiplication and # in Propositions 4.12 and 4.15 and the cocyle relation in Proposition 2.1, one can imitate the proof of Proposition
3.1 to show that the map  serves as the required isomorphism.

(ii) Let  : A  L(V ) be a Hilbert space representation. For C1, C2  C such that C1 = C2, we need to show V C1 and V C2 are orthogonal. Taking inner product of the generating vectors, we get (a(e, gC1 , s1, h1, g)) , (a(e, gC2 , s2, h2, g)) = (a(e, gC2 , s2, h2, g))#  a(e, gC1 , s1, h1, g)) , 
which is zero unless h1 = h2 but in that case C1 and C2 have to be the same; so, the inner product
is zero.

For the decomposition, it remains to show that V  V C. Let   Vg. Note that the identity

C C

a(h, g, e, h, g) of Ag,g is a sum of orthogonal projections. So,  = (a(h, g, e, h, g)). For h 

hH

hH

H, we have (a(h, g, e, h, g)) = (a(e, gC , e, h, g) where hg  C  C and  = (a(h, g, e, e, gC )) 

V C.

The proof of equivalence of C-supported representations with representations of [CG]C is exactly the same as the proof of Theorem 3.1.

Remark 4.17. To find the tube algebra T of CNN , we need to first choose a set of representatives in the isomorphism classes of simple objects in CNN . By Propositions 4.2 and 4.4, Xg1 and Xg2 are isomorphic if and only if g1 and g2 are in the same H-H double coset where the isomorphism
g2 is implemented by h1 h2 for any h1, h2  H satisfying h1g1 = g2h2. Now for g  G, the
g1 endomorphism space End(Xg) is isomorphic to the group algebra Hg := H  g-1Hg twisted by the scalar 2-cocycle Hg  Hg  (h1, h2)  (gh1g-1, gh2g-1, g) (gh1g-1, g, h2) (g, h1, h2)  S1 via
g CHg  Hg  h - ghg-1 h  End(Xg).
g

For g  G, fix a maximal set g of mutually orthogonal minimal projections in End(Xg). Let H\G/H be a set of representatives from all the H-H double cosets in G. Then, it follows
23

that

{Range(p) : p  g} is a set of representatives in the isomorphism classes of simple

gH \G/H

objects in CNN . Hence, the tube algebra T is isomorphic (as a -algebra) to

g2,g2 (p2)  Ag1,g2  g1,g1 (p1) .
g1,g2H\G/H p1g1 ,p2g2

Remark 4.18. By [GJ, Theorem 4.2], we know that the representation categories of the affine algebra A and tube algebra T are equivalent although as -algebras they are non-isomorphic. There is one
thing to notice that this representation category (appearing in Theorem 4.16) is also equivalent to
the category of tube representations of the diagonal subfactor (as in Theorem 3.1) corresponding
to the automorphisms g, g  H  K of the II1-factor Q. This equivalence can be seen in an alternative way:
Let AHB be an extremal bifinite bimodule and P be its corresponding subfactor planar algebra (namely the `unimodular bimodule planar algebra', in the sense of [DGG1]). By Theorem 4.2 of
[GJ], the category of (Jones) affine P -modules is equivalent to the representation category of the
tube algebra of CAA := the category of bifinite A-A-bimodules generated by AHB. By [DGG2, Remark 2.16], the affine module categories corresponding to P and its dual P are equivalent. On
the other hand, the dual planar algebra is isomorphic to the subfactor planar algebra associated to
the contragradient bimodule BHA. Thus the representation category of the tube algebra of CAA is equivalent to that of CBB := the category of bifinite B-B-bimodules generated by AHB.
Next, consider an intermediate extremal finite index subfactor N  Q  M . Let  denote the bifinite bimodule N L2(M )Q. It is easy to check that the category CNN of bifinite N -N -bimodules generated by  is the same as those which come from the subfactor N  M . Let CQQ denote the smallest C-tensor category of bifinite Q-Q-bimodules coming from the subfactor N  Q as
well as Q  M . One can verify that CQQ is the same as the category of bifinite Q-Q-bimodules generated by . Hence, from the previous paragraph, the category of tube representations of CNN is equivalent to that of CQQ.
Coming back to our context of Bisch-Haagerup subfactor N = QH  Q  K as set up in the beginning of this section, it remains to show that CQQ is the C-tensor category generated by the bimodules QL2(Qg )Q for g  H  K; this is an easy computation.

References

[BH]
[BDG]
[DGG1]
[DGG2]
[DGG3] [GJ]
[CJon] [Jon] [NY]
[Pet]
[Pop1]
[Pop2]

D Bisch and U. Haagerup, Composition of subfactors: New examples of infinite depth subfactors, Ann. Sci. Ecole Norm. Sup., 29, 329-383, 1996. D Bisch, P Das and S K Ghosh, The planar algebra of group-type subfactors, J. Funct. Anal., 257, 20-46, 2009. P Das, S K Ghosh and V P Gupta, Perturbations of Planar Algebras, Math. Scand. Vol 114, No. 1 (2014), arXiv:1009.0186. P Das, S K Ghosh and V P Gupta, Affine modules and the Drinfeld Center, Math. Scand. Vol 118, No. 1 (2016), arXiv:1010.0460. P Das, S K Ghosh and V P Gupta, Drinfeld Center of planar algebra, Internat. J. Math., 25(8), 2014. S. Ghosh, C. Jones, Annular representation theory for rigid C-tensor categories J. Funct. Anal., 270, 4, 1537-1584, 2016. C. Jones, Quantum G2 categories have property (T), submitted to Int. J. Math., arXiv:1504.08338v5. V F R Jones, The annular structure of subfactors, L'Enseignement Math., 38, 2001. S. Neshveyev, M. Yamashita, Drinfeld center and representation theory for monoidal categories, arXiv:1501.07390 to appear in Comm. Math. Phys. E. Peters, A planar algebra construction of the Haagerup subfactor Int. J. Math., Vol. 21, No.8 ,(2010) 987-1045. S. Popa, Sousfacteurs, actions des groupes et cohomologie, Serie I, Comptes Rend. Acad. Sci. Paris, 309, 771-776, 1989. S. Popa, Classification of amenable subfactors of type II, Acta Math., 172, 163-255 (1994).
24

[PV]

S. Popa, S. Vaes, Representation theory for subfactors, -lattices and C*-tensor categories, Comm. Math. Phys. 340 (2015), 1239-1280.

Department of Mathematics, Vanderbilt University, Nashville, USA E-mail address: dietmar.bisch@vanderbilt.edu
Stat-Math Unit, Indian Statistical Institute, Kolkata, INDIA E-mail address: paramita.das@isical.ac.in, shami@isical.ac.in, narayan753@gmail.com

25