1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011
|
arXiv:1701.00103v1 [math.DS] 31 Dec 2016
On the solutions of a second-order difference
equations in terms of generalized Padovan
sequences
Yacine Halim1 and Julius Fergy T. Rabago2 1 Department of Mathematics and computer sceince
Mila University Center, Mila, Algeria Email: halyacine@yahoo.fr
2 Department of Mathematics and computer sciences, College of Science, University of the Philippines,
Gov. Pack Road, Baguio City 2600, Benguet, Philippines. Email: jfrabago@gmail.com
Abstract
This paper deals with the solution, stability character and asymptotic behavior of the rational difference equation
xn+1
=
xn-1 + , xn xn-1
n N0,
where N0 = N {0}, , , R+, and the initial conditions x-1 and x0 are non zero real numbers such that their solutions are associated to generalized Padovan numbers. Also, we investigate the two-dimensional case of the this equation given by
xn+1
=
xn-1 + , yn xn-1
yn+1
=
yn-1 + , xn yn-1
n N0,
and this generalizes the results presented in [34]. Keywords: Difference equations, general solution, stability, generalized Padovan numbers. Mathematics Subject Classification: 39A10, 40A05.
1 Introduction and preliminaries
The term difference equation refers to a specific type of recurrence relation a mathematical relationship expressing xn as some combination of xi with i < n. These equations usually appear as discrete mathematical models of many biological and environmental phenomena such as population growth and predatorprey interactions (see, e.g., [8] and [18]), and so these equations are studied
1
because of their rich and complex dynamics. Recently, the problem of finding
closed-form solutions of rational difference equations and systems of rational of
difference equations have gained considerable interest from many mathemati-
cians. In fact, countless papers have been published previously focusing on the
aforementioned topic, see for example [5, 6, 7, 16, 20] and [21]. Interestingly,
some of the solution forms of these equations are even expressible in terms of
well-known integer sequences such as the Fibonacci numbers, Horadam numbers
and Padovan numbers (see, e.g., [9, 11, 12, 14, 22, 24, 25, 26, 27, 29, 34]).
It is well-known that linear recurrences with constant coefficients, such as
the recurrence relation Fn+1 = Fn + Fn-1 defining the Fibonacci numbers, can be solved through various techniques (see, e.g., [17]). Finding the closed-
form solutions of nonlinear types of difference equations, however, are far more
interesting and challenging compared to those of linear types. In fact, as far
as we know, there has no known general method to deal with different classes
of difference equations solvable in closed-forms. Nevertheless, numerous studies
have recently dealt with finding appropriate techniques in solving closed-form
solutions of some systems of difference equations (see, e.g., [2, 5, 6, 7, 15, 23]).
Motivated by these aforementioned works, we investigate the rational differ-
ence equation
xn+1
=
xn-1 + xn xn-1
,
n N0, .
(1)
Particularly, we seek to find its closed-form solution and examine the global
stability of its positive solutions. We establish the solution form of equation
(1) using appropriate transformation reducing the equation into a linear type
difference equation. Also, we examine the solution form of the two-dimensional
analogue of equation (1) given in the following more general form
xn+1
=
xn-1 + yn xn-1
,
yn+1
=
yn-1 + xn yn-1
,
n N0.
(2)
The case = = = 1 has been studied by Tollu, Yazlik and Taskara in [34]. The authors in [34] established the solution form of system (2) (in the case = = = 1) through induction principle.
The paper is organized as follows. In the next section (Section 2), we review some definitions and important results necessary for the success of our study, and this includes a brief discussion about generalized Padovan numbers. In section 3 and 4, we established the respective solution forms of equations (1) and the system (2), and examine their respective stability properties. Finally, we end our paper with a short summary in Section 5.
2 Preliminaries
2.1 Linearized stability of an equation
Let I be an interval of real numbers and let F : Ik+1 - I
2
be a continuously differentiable function. Consider the difference equation
xn+1 = F (xn, xn-1, . . . , xn-k)
(3)
with initial values x0, x-1, . . . x-k I..
Definition 1. A point x I is called an equilibrium point of equation(3) if
x = F (x, x, . . . , x).
Definition 2. Let x be an equilibrium point of equation(3).
i) The equilibrium x is called locally stable if for every > 0, there exist > 0 such that for allx-k, x-k+1, . . . x0 I with
|x-k - x| + |x-k+1 - x| + . . . + |x0 - x| < ,
we have |xn - x| < , for all n -k.
ii) The equilibrium x is called locally asymptotically stable if it is locally stable, and if there exists > 0 such that if x-1, x0 I and
|x-k - x| + |x-k+1 - x| + . . . + |x0 - x| < ,
then
lim
n+
xn
=
x.
iii) The equilibrium x is called global attractor if for all x-k, x-k+1, . . . x0 I, we have
lim
n+
xn
=
x.
iv) The equilibrium x is called global asymptotically stable if it is locally stable and a global attractor.
v) The equilibrium x is called unstable if it is not stable.
vi)
Let
pi =
f ui
(x,
x,
.
.
.
,
x),
i = 0, 1, . . . , k.
Then,
the
equation
yn+1 = p0yn + p1yn-1 + . . . + pkyn-k,
(4)
is called the linearized equation of equation (3) about the equilibrium point x.
The next result, which was given by Clark [3], provides a sufficient condition for the locally asymptotically stability of equation (3).
Theorem 1 ([3]). Consider the difference equation (4). Let pi R, then,
|p0| + |p1| + . . . + |pk| < 1
is a sufficient condition for the locally asymptotically stability of equation (3).
3
2.2 Linearized stability of the second-order systems
Let f and g be two continuously differentiable functions:
f : I2 J 2 - I, g : I2 J 2 - J, I, J R
and for n N0, consider the system of difference equations
xn+1 = f (xn, xn-1, yn, yn-1) yn+1 = g (xn, xn-1, yn, yn-1)
(5)
where (x-1, x0) I2 and (y-1, y0) J 2. Define the map H : I2 J 2 - I2 J 2 by
H(W ) = (f0(W ), f1(W ), g0(W ), g1(W ))
where W = (u0, u1, v0, v1)T , f0(W ) = f (W ), f1(W ) = u0, g0(W ) = g(W ), g1(W ) = v0. Let Wn = [xn, xn-1, yn, yn-1]T . Then, we can easily see that system (5) is equivalent to the following system written in vector form
Wn+1 = H(Wn), n = 0, 1, . . . ,
(6)
that is
xn+1
=
f (xn, xn-1, yn, yn-1)
xn
yn+1
= =
xn g (xn, xn-1, yn, yn-1)
.
yn = yn
Definition 3 (Equilibrium point). An equilibrium point (x, y) I J of system (5) is a solution of the system
x = f (x, x, y, y) , y = g (x, x, y, y) .
Furthermore, an equilibrium point W I2 J2 of system (6) is a solution of the system
W = H(W ).
Definition 4 (Stability). Let W be an equilibrium point of system (6) and . be any norm (e.g. the Euclidean norm).
1. The equilibrium point W is called stable (or locally stable) if for every > 0 exist such that W0 - W < implies Wn - W < for n 0.
2. The equilibrium point W is called asymptotically stable (or locally asymptotically stable) if it is stable and there exist > 0 such that W0-W < implies Wn - W 0, n +.
3. The equilibrium point W is said to be global attractor (respectively global attractor with basin of attraction a set G I2 J2, if for every W0 (respectively for every W0 G)
Wn - W 0, n +.
4
4. The equilibrium point W is called globally asymptotically stable (respectively globally asymptotically stable relative to G) if it is asymptotically stable, and if for every W0 (respectively for every W0 G),
Wn - W 0, n +.
5. The equilibrium point W is called unstable if it is not stable.
Remark 1. Clearly, (x, y) I J is an equilibrium point for system (5) if and only if W = (x, x, , y, y, ) I2 J2 is an equilibrium point of system (6).
From here on, by the stability of the equilibrium points of system (5), we mean the stability of the corresponding equilibrium points of the equivalent system (6).
2.3 Generalized Padovan sequence
The integer sequence defined by the recurrence relation
Pn+1 = Pn-1 + Pn-2, n N,
(7)
with the initial conditions P-2 = 0, P-1 = 0, P0 = 1 (so P0 = P1 = P2 = 1), is known as the Padovan numbers and was named after Richard Padovan. This is the same recurrence relation as for the Perrin sequence, but with different initial conditions (P0 = 3, P1 = 0, P2 = 2). The first few terms of the recurrence sequence are 1, 1, 2, 2, 3, 4, 5, 7, 9, 12, . . .. The Binet's formula for this recurrence sequence can easily be obtained and is given by
Pn
=
( (
- -
1)( )(
- -
1) )
n
+
( - 1)( ( - )(
- -
1) )
n
+
( (
- -
1)( )(
- -
1) )
n.
where
=
r2+12
6r
(the
so-called
plastic
number),
=
-
2
+i
3 2
r 6
-
2 r
and
r = 3 108 + 12 69. The plastic number corresponds to the golden number
1+ 2
5
associated
with
the
equiangular
spiral
related
to
the
conjoined
squares
in
Fibonacci numbers, that is,
lim
n
Pn+1 Pn
= .
For more informations associated with Padovan sequence, see [4] and [19].
Here we define an extension of the Padovan sequence in the following way
S-2 = 0, S-1 = 0, S0 = 1, Sn+1 = pSn-1 + qSn-2, n N. (8)
The Binet's formula for this recurrence sequence is given by
Sn
=
( (
- -
1)( )(
- -
1) )
n
+
( (
- -
1)( )(
- -
1) )
n
+
( (
- 1)( - )(
- -
1) )
n.
5
where
=
R2+12p 6R
,
=
-
2
+i
3 2
R 6
-
2p R
and R = 3 108q + 12
One can easily verify that
lim
n
Sn+1 Sn
= .
-12p3 + 81q2.
3 Closed-Form solutions and stability of equation (1)
For the rest of our discussion we assume Sn, the n-th generalized Padovan number, to satisfy the recurrence equation
Sn+1 = pSn-1 + qSn-2, n N0,
with initial conditions S-2 = 0, S-1 = 0, S0 = 1.
3.1 Closed-Form solutions of equation (1)
In this section, we derive the solution form of equation (1) through an analytical
approach.
We
put
q
=
and
p
=
,
hence
we
have
the
equation
xn+1
=
pxn-1 + xnxn-1
q
;
n N0.
(9)
Consider the equivalent form of equation (9) given by
xn+1
=
p xn
+
q xn xn-1
which, upon the change of variable xn+1 = zn+1/zn, transforms into
zn+1 = pzn-1 + qzn-2.
(10)
Now, we iterate the right hand side of equation (10) as follows
zn+1 = pzn-1 + qzn-2 = qzn-2 + p2zn-3 + qpzn-4 = p2zn-3 + 2pqzn-4 + q2zn-5 = 2pqzn-4 + (p3 + q2)zn-5 + qp2zn-6 = (p3 + q2)zn-5 + 3p2qzn-6 + 2pq2zn-7 = 3p2qzn-6 + (p4 + 3pq2)zn-7 + (p3 + q3)zn-8 = (p4 + 3pq2)zn-7 + (q3 + 4qp3)zn-8 + 3p2q2zn-9 ...
= Sn+1z0 + Sn+2z-1 + Snqz-2.
6
Hence,
xn+1
=
zn+1 zn
=
Sn+1z0 + Sn+2z-1 + Snqz-2 Snz0 + Sn+1z-1 + Sn-1qz-2.
=
Sn+1
z0 z-1
+ Sn+2
+
Sn-2
q
z-2 z-1
Sn
z0 z-1
+ Sn+1
+
Sn-1 q
z-2 z-1
=
Sn+1x0
+
Sn+2
+
Snq
1 x-1
Sn x0
+
Sn+1
+
Sn-1q
1 x-1
=
Sn+1 x0 x-1 Snx0x-1 +
+ Sn+2x-1 Sn+1x-1 +
+ Snq Sn-1q
.
The above computations prove the following result.
Theorem 2. Let {xn}n-1 be a solution of (9). Then, for n = 1, 2, . . . ,
xn
=
Sn+1x-1 + Snx0x-1 Snx-1 + Sn-1x0x-1
+ +
qSn-1 qSn-2
.
(11)
where the initial conditions x-1, x0 R - F , with F is the Forbidden Set of equation (9) given by
F=
(x-1, x0) : Snx-1 + Sn-1x0x-1 + qSn-2 = 0 .
n=-1
If = = , then from (11) we get
xn
=
Pn+1x-1 Pnx-1 +
+ Pnx0x-1 Pn-1 x0 x-1
+ +
qPn-1 qPn-2
.
Hence, for = = we have Sn = Pn, n N, and consequently we get the solution given in [34].
3.2 Global stability of solutions of equation (1)
In this section we study the global stability character of the solutions of equation
(9). It is easy to show that eqrefeq1 has a unique positive equilibrium point given by x = . Let I = (0, +), and consider the function f : I2 - I defined by
f (x,
y)
=
py + xy
q
.
Theorem 3. The equilibrium point x is locally asymptotically stable.
Proof. The linearized equation of equation (9) about the equilibrium x is
yn+1 = t1yn + t2yn-1
7
where
t1
=
f x
(x,
x)
=
-
R6
pR2 + + pR2
12p2 + + 12p2
6qR
+
48p3 R2
and
t2
=
f y
(x,
x)
=
- R6
+
6qR pR2 + 12p2
+
48p3 R2
and the characteristic polynomial is
2 + t1 + t2 = 0.
Consider the two functions defined by
a() = 2, b() = -(t1 + t2).
We have Then
pR2 + 12p2 + 12qR
R6
+
pR2
+
12p2
+
48p3 R2
< 1.
|b()| < |a()| , : || = 1
Thus, by Rouche's theorem, all zeros of P () = a() - b() = 0 lie in || < 1. So, by Theorem (1) we get that x is locally asymptotically stable.
Theorem 4. The equilibrium point x is globally asymptotically stable.
Proof. Let {xn}n-k be a solution of equation (9). By Theorem (3) we need only to prove that E is global attractor, that is
lim
n
xn
=
.
it follows from Theorem (2) that
Then
lim
n
xn
=
lim
n
Sn+1x-1 Snx-1 +
+ Snx0x-1 Sn-1 x0 x-1
+ +
qSn-1 qSn-2
=
Sn lim
x Sn+1
Sn -1
+
x0 x-1
+
q
Sn-1 Sn
n Sn
x-1
+
Sn-1 Sn
x0
x-1
+
q Sn-2
Sn
=
lim
n
x-1
Sn+1 Sn
x-1
+
x0 x-1
+
q
Sn-1 Sn
+
Sn-1 Sn
x0
x-1
1
( ) q
Sn+1
-
p q
Sn-1
+ q Sn
=
lim
n
x-1 x-1 +
+
1
x0
x-1
1
x0 x-1
+
+
q
1
+
p
lim
n
xn
=
.
8
Example 1. For confirming results of this section, we consider the following
numerical example. Let = 2, = 5 and = 4 in (1), then we obtain the
equation
xn+1
=
2xn-1 + 5 4xnxn-1
.
(12)
Assume x-1 = 3 and x0 = 0.2, (see Fig. 1).
x(n)
5
4.5
4
3.5
3
2.5
2
1.5
1
0.5
0
10
20
30
40
50
60
70
n
Figure 1: This figure shows that the solution of the equation (12) is global attractor, that is, lim xn = .
n
4 Closed-form and stability of solutions of system (2)
4.1 Closed-form solutions of system (2)
In this section, we derive the respective solution form of system (2). We put
q
=
and
p=
.
Hence,
we
have
the
system
xn+1
=
pxn-1 + ynxn-1
q
,
yn+1
=
pyn-1 + xn yn-1
q
,
n N0
(13)
The following theorem describes the form of the solutions of system (13).
Theorem 5. Let {xn, yn}n-1 be a solution of (13). Then for n = 1, 2, . . . ,
9
xn =
Sn+1y-1 Sny-1 +
+ Snx0y-1 Sn-1 x0 y-1
+ +
qSn-1 qSn-2
,
Sn+1x-1 Snx-1 +
+ Sny0x-1 Sn-1y0x-1
+ +
qSn-1 qSn-2
,
if n is even, if n is odd,
(14)
yn =
Sn+1 x-1 Snx-1 +
+ Sny0x-1 Sn-1 y0 x-1
+ +
qSn-1 qSn-2
,
Sn+1 y-1 Sny-1 +
+ Snx0y-1 Sn-1 x0 y-1
+ +
qSn-1 qSn-2
,
if n is even, if n is odd,
(15)
where the initial conditions x-1, x0, y-1 and y0 R \ (F1 F2), with F1 and F2 are the forbidden sets of equation (9) given by
F1 =
(x-1, x0, y-1, y0) : Snx-1 + Sn-1y0x-1 + qSn-2 = 0 ,
n=-1
and
F2 =
(x-1, x0, y-1, y0) : Sny-1 + Sn-1x0y-1 + qSn-2 = 0 .
n=-1
Proof. The closed-form solution of (13) can be established through a similar approach we used in proving the one-dimensional case. However, for convenience, we shall prove the theorem by induction. For the basis step, we have
x1
=
px-1 + q y0x-1
and
y1
=
py-1 + x0 y-1
q
,
so the result clearly holds for n = 0. Suppose that n > 0 and that our assumption holds for n - 1. That is,
x2n-2
=
S2n-1y-1 S2n-2y-1
+ S2n-2x0y-1 + S2n-3x0y-1
+ +
qS2n-3 qS2n-4
,
x2n-1
=
S2nx-1 + S2n-1y0x-1 + qS2n-2 S2n-1x-1 + S2n-2y0x-1 + qS2n-3
,
y2n-2
=
S2n-1 x-1 S2n-2x-1
+ +
S2n-2 y0 c-1 S2n-3 y0 x-1
+ +
qS2n-3 qS2n-4
,
y2n-1
=
S2ny-1 + S2n-1x0y-1 + qS2n-2 S2n-1y-1 + S2n-2x0y-1 + qS2n-3
.
10
Now it follows from system (13) that
x2n
=
px2n-2 + q y2n-1x2n-2
=
p
S2n-1 S2n-2
y-1 y-1
+ S2n-2x0y-1 + S2n-3x0y-1
+ qS2n-3 + qS2n-4
+q
S2ny-1 + S2n-1x0y-1 + qS2n-2 S2n-1y-1 + S2n-2x0y-1 + qS2n-3
S2n-1y-1 + S2n-2x0y-1 + qS2n-3 S2n-2y-1 + S2n-3x0y-1 + qS2n-4
=
p(S2n-1 y-1
+ S2n-2x0y-1 + qS2n-3) + q(S2n-2y-1 + S2n-3x0y-1 S2ny-1 + S2n-1x0y-1 + qS2n-2
+ qS2n-4)
So, we have
x2n
=
S2n+1y-1 S2ny-1 +
+ S2nx0y-1 S2n-1 x0 y-1
+ +
qS2n-1 qS2n-2
.
Also it follows from system (13) that
y2n
=
py2n-2 + q x2n-1 y2n-2
=
p
S2n-1x-1 S2n-2x-1
+ S2n-2y0x-1 + S2n-3y0x-1
+ qS2n-3 + qS2n-4
+q
S2nx-1 + S2n-1y0x-1 + qS2n-2 S2n-1x-1 + S2n-2y0c-1 + qS2n-3
S2n-1x-1 + S2n-2y0x-1 + qS2n-3 S2n-2x-1 + S2n-3y0x-1 + qS2n-4
=
p(S2n-1 x-1
+ S2n-2y0x-1 + qS2n-3) + q(S2n-2x-1 + S2n-3y0x-1 S2nx-1 + S2n-1y0x-1 + qS2n-2
+ qS2n-4) .
Hence, we have
y2n
=
S2n+1x-1 S2nx-1 +
+ S2ny0c-1 S2n-1y0x-1
+ +
qS2n-1 qS2n-2
.
Using the same argument it follows from system (13) that
x2n+1
=
px2n-1 + q y2nx2n-1
=
p
S2nx-1 + S2n-1y0x-1 + qS2n-2 S2n-1x-1 + S2n-2y0x-1 + qS2n-3
+
q
S2n+1x-1 + S2ny0x-1 + qS2n-1 S2nx-1 + S2n-1y0x-1 + qS2n-2
S2nx-1 + S2n-1y0x-1 + qS2n-2 S2n-1x-1 + S2n-2y0x-1 + qS2n-3
=
p(S2n x-1
+
S2n-1y0x-1 + qS2n-2) + q(S2n-1x-1 + S2n-2y0x-1 S2n+1x-1 + S2ny0x-1 + qS2n-1
+
qS2n-3) .
This yields
x2n+1
=
S2n+2x-1 S2n+1 x-1
+ +
S2n+1 S2ny0
y0x-1 c-1 +
+ qS2n qS2n-1
.
11
Moreover, we have
y2n+1
=
py2n-1 + q x2n y2n-1
=
p
S2ny-1 + S2n-1x0y-1 + qS2n-2 S2n-1y-1 + S2n-2x0y-1 + qS2n-3
+
q
S2n+1y-1 + S2nx0y-1 + qS2n-1 S2ny-1 + S2n-1x0y-1 + qS2n-2
S2ny-1 + S2n-1x0y-1 + qS2n-2 S2n-1y-1 + S2n-2x0y-1 + qS2n-3
=
p(S2n y-1
+
S2n-1x0y-1 + qS2n-2) + q(S2n-1y-1 + S2n-2x0y-1 S2n+1y-1 + S2nx0y-1 + qS2n-1
+
qS2n-3) ,
and this implies that
y2n+1
=
S2n+2y-1 S2n+1 y-1
+ +
S2n+1 S2n x0
x0 y-1 y-1 +
+ qS2n qS2n-1
.
This completes the proof of the theorem.
4.2 Global attractor of solutions of system (2)
Our aim in this section is to study the asymptotic behavior of positive solutions of system (13). Let I = J = (0, +), and consider the functions
f : I2 J 2 - I and g : I2 J 2 - J
defined by
f (u0, u1, v0, v1)
=
pu1 + v0u1
q
and
g(u0, u1, v0, v1)
=
pv1 + u0v1
q
,
respectively.
Lemma 1. System (9) has a unique equilibrium point in I J, namely
E=
R2
+ 12p 6R
,
R2
+ 12p 6R
.
Proof. Clearly the system
x
=
px + xy
q,
y
=
py + yx
q
,
has a unique solution in I2 J2 which is
E=
R2
+ 12p 6R
,
R2
+ 12p 6R
.
Theorem 6. The equilibrium point E is global attractor. 12
Proof. Let {xn, yn}n0 be a solution of system (9). Let n in Theorem 5. That is, we have
lim
n
x2n
=
lim
n
Sn+1 y-1 Sny-1 +
+ Snx0y-1 Sn-1 x0 y-1
+ +
qSn-1 qSn-2
Sn = lim
n Sn
Sn+1 Sn
y-1
+
x0y-1
+
q
Sn-1 Sn
y-1
+
Sn-1 Sn
x0
y-1
+
q Sn-2
Sn
=
lim
n
y-1
Sn+1 Sn
y-1
+
x0 y-1
+
q
Sn-1 Sn
+
Sn-1 Sn
x0
y-1
+
1
( ) q
Sn+1
-
p q
Sn-1
q Sn
=
y-1 y-1 +
+
1
x0y-1
+
q
1
1
x0y-1
+
+
p
= .
and
lim
n
x2n+1
=
lim
n
Sn+1x-1 Snx-1 +
+ Sny0x-1 Sn-1y0x-1
+ +
qSn-1 qSn-2
Sn = lim
n Sn
Sn+1 Sn
x-1
+
y0x-1
+
q
Sn-1 Sn
x-1
+
Sn-1 Sn
y0
x-1
+
q Sn-2
Sn
=
lim
n
x-1
Sn+1 Sn
x-1
+
y0x-1
+
q
Sn-1 Sn
+
Sn-1 Sn
y0
x-1
+
1
( ) q
Sn+1
-
p q
Sn-1
q Sn
=
x-1 x-1 +
+
1
y0
x-1
1
y0x-1
+
+
q
1
+
p
= .
Then
lim
n
xn
=
.
Similarly,
we
obtain
lim
n
yn
=
.
Thus,
we
have
nlim(xn, yn) = E.
Example 2. As an illustration of our results, we consider the following numer-
ical example. Let = 2, = 3 and = 5 in system (2), then we obtain the
system
xn+1
=
2xn-1 + 3 5ynxn-1
,
yn+1
=
2yn-1 + 3 5xnyn-1
,
n N0
(16)
Assume x-1 = 1.2, x0 = 3.6, y-1 = 2.3 and y0 = 0.8. (See Fig. 2).
13
x(n), y(n)
3.5
3
2.5
2
1.5
1
0.5
0
0
10
20
30
40
50
60
70
n
Figure 2: This figure shows that the solution of the system (16) is global at-
tractor,
that
is
lim
n
xn
=
E.
5 Summary and Recommendations
In this work, we have successfully established the closed-form solution of the rational difference equation
xn+1
=
xn-1 + xn xn-1
as well as the closed-form solutions of its corresponding two-dimensional case
xn+1
=
xn-1 + yn xn-1
,
yn+1
=
yn-1 + xn yn-1
.
Also, we obtained stability results for the positive solutions of these systems.
Particularly, we have shown that the positive solutions of each of these equations
tends to a computable finite number, and is in fact expressible in terms of the
well-known plastic number. Meanwhile, for future investigation, one could also
derive the closed-form solution and examine the stability of solutions of the
system
xn+1
=
xn-1 - yn xn-1
,
yn+1
=
yn-1 xn yn-1
.
This work we leave to the interested readers.
14
References
[1] J. B. Bacani and J. F. T. Rabago, On linear recursive sequences with coefficients in arithmetic-geometric progressions, Appl. Math. Sci., 9(52) (2015), 2595-2607.
[2] L. Brand, A sequence defined by a difference equation, Am. Math. Mon., 62 (1955), 489-492.
[3] C. W. Clark, A delayed recruitement of a population dynamics with an application to baleen whale population, J. Math. Biol., 3 (1976), 381-391.
[4] B. M. M. De Weger, Padua and pisa are exponentially far apart, Publ. Mat., Barc., 41(2) (1997) 631-651.
[5] E. M. Elsayed, On a system of two nonlinear difference equations of order two, Proc. Jangeon Math. Soc., 18(3) (2015), 353-368.
[6] E. M. Elsayed and T. F. Ibrahim, Periodicity and solutions for some systems of nonlinear rational difference equations, Hacet. J. Math. Stat., 44(6) (2015), 1361-1390.
[7] E. M. Elsayed, Solution for systems of difference equations of rational form of order two, Comp. Appl. Math., 33(3) (2014), 751-765.
[8] G. Fulford, P. Forrester, A. Jones, Modelling with Differential and Difference Equations, Cambridge University Press, 12 June 1997.
[9] Y. Halim, Global character of systems of rational difference equations, Electron. J. Math. Analysis Appl., 3(1) (2015), 204-214.
[10] Y. Halim, Form and periodicity of solutions of some systems of higherorder difference equations, Math. Sci. Lett. 2, 5(1) (2016) 79-84.
[11] Y. Halim, A system of difference equations with solutions associated to Fibonacci numbers, Int. J. Difference Equ.,11( 1) (2016), 65-77.
[12] Y. Halim, N. Touafek and E. M. Elsayed, Closed forme solution of some systems of rational difference equations in terms of Fibonacci numbers, Dyn. Contin. Discrete Impulsive Syst. Ser. A, 21(5) (2014), 473-486.
[13] Y. Halim, N. Touafek and Y. Yazlik, Dynamic behavior of a secondorder nonlinear rational difference equation, Turk. J. Math., 39(6) (2015), 1004- 1018.
[14] Y. Halim and M. Bayram, On the solutions of a higher-order difference equation in terms of generalized Fibonacci sequences, Math. Methods Appl. Sci., 39 (2016), 2974-2982.
[15] Y. Halim, J. F. T. Rabago, On some solvable systems of difference equations with solutions associated to Fibonacci numberss, Electron. J. Math. Analysis Appl., 5(1) (2017), 166-178.
15
[16] A. Khaliq and E. M. Elsayed, Qualitative properties of difference equation of order six, Mathematics, 4 (24) (2016), 14 pages.
[17] P. J. Larcombe and J. F. T. Rabago, On the Jacobsthal, Horadam and geometric mean sequences, Bull. Inst. Combin. Appl., 76 (2016), 117-126.
[18] R. E. Mickens, Difference Equations: Theory, Applications and Advanced Topics, 3rd ed. Chapman and Hall/CRC, 2015.
[19] A. G. Shannon, P. G. Anderson and A. F. Horadam, Properties of Cordonnier, Perrin and Van der Laan Numbers, Int. J. Math. Educ. Sci. Technol., 37(7) (2006), 825-831.
[20] J. F. T. Rabago, Effective methods on determining the periodicity and form of solutions of some systems of non-linear difference equations, Int. J. Dynamical Systems and Differential Equations, in press.
[21] J. F. T. Rabago, An intriguing application of telescoping sums, Proceeding of 2016 Asian Mathematical Conference, to appear.
[22] S. Stevic, Representation of solutions of bilinear difference equations in terms of generalized Fibonacci sequences, Electron. J. Qual. Theory Differ. Equ., No. 67(2014), 1-15.
[23] S. Stevic, On a system of difference equations, Appl. Math. Comput., 218(2011), 33723378.
[24] D. T. Tollu, Y. Yazlik, and N. Taskara, On the solutions of two special types of Riccati difference equation via Fibonacci umbers, Adv. Differ. Equ., 174 (2013), 7 pages.
[25] D. T. Tollu, Y. Yazlik and N. Taskara, The solutions of four Riccati difference equations associated with Fibonacci numbers, Balkan J. Math., 2 (2014), 163-172.
[26] D. T. Tollu, Y. Yazlik and N. Taskara, On fourteen solvable systems of difference equations, Appl. Math. & Comp., 233 (2014), 310-319.
[27] N. Touafek, On some fractional systems of difference equations, Iranian J. Math. Sci. Info., 9(2) (2014), 303-305.
[28] N. Touafek, On a second order rational difference equation, Hacet. J. Math. Stat., 41 (2012), 867-874.
[29] N. Touafek, On some fractional systems of difference equations, Iran. J. Math. Sci. Inform., 9(2) (2014), 73-86.
[30] N. Touafek and Y. Halim, Global attractivity of a rational difference equation, Math. Sci. Lett., 2(3) (2013), 161-165.
16
[31] N. Touafek and Y. Halim, On max type difference equations: expressions of solutions, Int. J. Nonlinear Sci., 11 (2011), 396-402.
[32] N. Touafek and E. M Elsayed, On the periodicity of some systems of nonlinear difference equations, Bull. Math. Soc. Sci. Math. Roum., Nouv. Sr., 55 (2012), 217-224.
[33] N. Touafek and E. M Elsayed, On the solutions of systems of rational difference equations, Math. Comput. Modelling, 55(7) (2012), 1987-1997.
[34] Y. Yazlik, D. T. Tollu and N. Taskara, On the solutions of difference equation systems with Padovan numbers, Appl. Math., J. Chin. Univ., 4(12) (2013), 15-20.
17
|