1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507
|
#### PATTERN | WORDNET #############################################################################
# -*- coding: utf-8 -*-
# Copyright (c) 2010 University of Antwerp, Belgium
# Author: Tom De Smedt <tom@organisms.be>
# License: BSD (see LICENSE.txt for details).
# http://www.clips.ua.ac.be/pages/pattern
####################################################################################################
# WordNet is a lexical database for English.
# It disambiguates word senses, e.g., "tree" in the sense of a plant or in the sense of a graph.
# It groups similar word senses into sets of synonyms called synsets,
# with a short description and semantic relations to other synsets:
# - synonym = a word that is similar in meaning,
# - hypernym = a word with a broader meaning, (tree => plant)
# - hyponym = a word with a more specific meaning, (tree => oak)
# - holonym = a word that is the whole of parts, (tree => forest)
# - meronym = a word that is a part of the whole, (tree => trunk)
# - antonym = a word that is opposite in meaning.
from __future__ import absolute_import
from __future__ import unicode_literals
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
import os
import sys
import glob
from io import open
from math import log
from pattern.text import lazydict
try:
MODULE = os.path.dirname(os.path.realpath(__file__))
except:
MODULE = ""
# Path to WordNet /dict folder.
#CORPUS = ""
#os.environ["WNHOME"] = os.path.join(MODULE, CORPUS)
#os.environ["WNSEARCHDIR"] = os.path.join(MODULE, CORPUS, "dict")
import nltk
from nltk.corpus import wordnet as wn
from nltk.corpus import sentiwordnet as swn
from nltk.corpus import wordnet_ic as wn_ic
from nltk.corpus.reader.wordnet import Synset as WordNetSynset
# Make sure the necessary corpora are downloaded to the local drive
for token in ("wordnet", "wordnet_ic", "sentiwordnet"):
try:
nltk.data.find("corpora/" + token)
except LookupError:
try:
nltk.download(token, quiet = True, raise_on_error = True)
except ValueError:
# Sometimes there are problems with the default index.xml URL. Then we will try this...
from nltk.downloader import Downloader as NLTKDownloader
d = NLTKDownloader("http://nltk.github.com/nltk_data/")
d.download(token, quiet = True, raise_on_error = True)
# Use the Brown corpus for calculating information content (IC)
brown_ic = wn_ic.ic('ic-brown.dat')
IC_CORPUS, IC_MAX = brown_ic, {}
for key in IC_CORPUS:
IC_MAX[key] = max(IC_CORPUS[key].values())
# This will hold the WordNet version
VERSION = wn.get_version() or "3.0"
#---------------------------------------------------------------------------------------------------
DIACRITICS = {
"a": ("á", "ä", "â", "à", "å"),
"e": ("é", "ë", "ê", "è"),
"i": ("í", "ï", "î", "ì"),
"o": ("ó", "ö", "ô", "ò", "ō", "ø"),
"u": ("ú", "ü", "û", "ù", "ů"),
"y": ("ý", "ÿ", "ý"),
"s": ("š",),
"c": ("ç", "č"),
"n": ("ñ",),
"z": ("ž",)
}
def normalize(word):
""" Normalizes the word for synsets() or Sentiwordnet[] by removing diacritics
(PyWordNet does not take unicode) and replacing spaces with underscores.
"""
if not isinstance(word, str):
word = str(word)
if not isinstance(word, str):
try:
word = word.encode("utf-8", "ignore")
except:
pass
for k, v in DIACRITICS.items():
for v in v:
word = word.replace(v, k)
# Replace spaces with underscores
word = word.replace(" ", "_")
return word
### SYNSET #########################################################################################
NOUNS = lambda: wn.all_lemma_names(wn.NOUN)
VERBS = lambda: wn.all_lemma_names(wn.VERB)
ADJECTIVES = lambda: wn.all_lemma_names(wn.ADJ)
ADVERBS = lambda: wn.all_lemma_names(wn.ADV)
NOUN, VERB, ADJECTIVE, ADVERB = \
NN, VB, JJ, RB = \
"NN", "VB", "JJ", "RB"
_pattern2wordnet = {NN : wn.NOUN, VB : wn.VERB, JJ : wn.ADJ, RB: wn.ADV}
_wordnet2pattern = {v : k for k, v in _pattern2wordnet.items()}
_wordnet2pattern[wn.ADJ_SAT] = JJ
def synsets(word, pos=NOUN):
""" Returns a list of Synset objects, one for each word sense.
Each word can be understood in different "senses",
each of which is part of a set of synonyms (= Synset).
"""
word, pos = normalize(word), pos.lower()
try:
if pos.startswith(NOUN.lower()): # "NNS" or "nn" will also pass.
w = wn.synsets(word, pos = wn.NOUN)
elif pos.startswith(VERB.lower()):
w = wn.synsets(word, pos = wn.VERB)
elif pos.startswith(ADJECTIVE.lower()):
w = wn.synsets(word, pos = wn.ADJ)
elif pos.startswith(ADVERB.lower()):
w = wn.synsets(word, pos = wn.ADV)
else:
raise TypeError("part of speech must be NOUN, VERB, ADJECTIVE or ADVERB, not %s" % repr(pos))
return [Synset(synset) for synset in w]
except KeyError:
return []
return []
class _synset(lazydict):
def __getitem__(self, k):
for pos in ("n", "v", "a", "r"):
try:
synset = wn._synset_from_pos_and_offset(pos, k)
except:
pass
if synset:
return synset
return None
class Synset(object):
def __init__(self, synset):
""" A set of synonyms that share a common meaning.
"""
if isinstance(synset, WordNetSynset):
self._wnsynset = synset
elif isinstance(synset, Synset):
self = self
elif isinstance(synset, (tuple, int)):
if isinstance(synset, int):
synset = (synset, "NN")
offset, pos = synset
self._wnsynset = wn._synset_from_pos_and_offset(_pattern2wordnet[pos] if pos in _pattern2wordnet else pos, offset)
else:
raise NotImplementedError
self._synset = _synset
def __iter__(self):
for s in self.synonyms:
yield s
def __len__(self):
return len(self.synonyms)
def __getitem__(self, i):
return self.synonyms[i]
def __eq__(self, synset):
return isinstance(synset, Synset) and self.id == synset.id
def __ne__(self, synset):
return not self.__eq__(synset)
__repr__ = lambda self: self._wnsynset.__repr__()
@property
def id(self):
return self._wnsynset.offset()
@property
def pos(self):
""" Yields the part-of-speech tag (NOUN, VERB, ADJECTIVE or ADVERB).
"""
pos = self._wnsynset.pos()
if pos == wn.NOUN:
return NOUN
if pos == wn.VERB:
return VERB
if pos == wn.ADJ or pos == wn.ADJ_SAT:
return ADJECTIVE
if pos == wn.ADV:
return ADVERB
part_of_speech = tag = pos
@property
def synonyms(self):
""" Yields a list of word forms (i.e. synonyms), for example:
synsets("TV")[0].synonyms => ["television", "telecasting", "TV", "video"]
"""
return [s for s in self._wnsynset.lemma_names()]
senses = synonyms # Backwards compatibility; senses = list of Synsets for a word.
@property
def gloss(self):
""" Yields a descriptive string.
"""
return self._wnsynset.definition()
@property
def lexname(self):
""" Yields a category, e.g., noun.animal.
"""
return self._wnsynset.lexname()
@property
def antonym(self):
""" Yields the semantically opposite synset, for example:
synsets("death")[0].antonym => Synset("birth").
"""
p = [Synset(a.synset()) for l in self._wnsynset.lemmas() for a in l.antonyms()]
return len(p) > 0 and p or None
def meronyms(self):
""" Yields a list of synsets that are semantic members/parts of this synset, for example:
synsets("house")[0].meronyms() =>
[Synset("library"),
Synset("loft"),
Synset("porch")
]
"""
p = self._wnsynset.member_meronyms()
p += self._wnsynset.part_meronyms()
return [Synset(p) for p in p]
def holonyms(self):
""" Yields a list of synsets of which this synset is a member/part, for example:
synsets("tree")[0].holonyms() => Synset("forest").
"""
p = self._wnsynset.member_holonyms()
p += self._wnsynset.part_holonyms()
return [Synset(p) for p in p]
def hyponyms(self, recursive=False, depth=None):
""" Yields a list of semantically more specific synsets, for example:
synsets("train")[0].hyponyms() =>
[Synset("boat train"),
Synset("car train"),
Synset("freight train"),
Synset("hospital train"),
Synset("mail train"),
Synset("passenger train"),
Synset("streamliner"),
Synset("subway train")
]
"""
p = [Synset(p) for p in self._wnsynset.hyponyms()]
if depth is None and recursive is False:
return p
if depth == 0:
return []
if depth is not None:
depth -= 1
if depth is None or depth > 0:
[p.extend(s.hyponyms(True, depth)) for s in list(p)]
return p
def hypernyms(self, recursive=False, depth=None):
""" Yields a list of semantically broader synsets.
"""
p = [Synset(p) for p in self._wnsynset.hypernyms()]
if depth is None and recursive is False:
return p
if depth == 0:
return []
if depth is not None:
depth -= 1
if depth is None or depth > 0:
[p.extend(s.hypernyms(True, depth)) for s in list(p)]
return p
@property
def hypernym(self):
""" Yields the synset that is the semantic parent, for example:
synsets("train")[0].hypernym => Synset("public transport").
"""
p = self.hypernyms()
return len(p) > 0 and p[0] or None
def similar(self):
""" Returns a list of similar synsets for adjectives and adverbs, for example:
synsets("almigthy",JJ)[0].similar() => Synset("powerful").
"""
# ALSO_SEE returns wn.Sense instead of wn.Synset in some cases:
#s = lambda x: isinstance(x, wn.Sense) and x.synset or x
p = [Synset(p) for p in self._wnsynset.similar_tos()]
p += [Synset(p) for p in self._wnsynset.also_sees()]
return p
def similarity(self, synset):
""" Returns the semantic similarity of the given synsets (0.0-1.0).
synsets("cat")[0].similarity(synsets("dog")[0]) => 0.86.
synsets("cat")[0].similarity(synsets("box")[0]) => 0.17.
"""
return self._wnsynset.lin_similarity(synset._wnsynset, IC_CORPUS)
@property
def ic(self):
offset, pos = self.id, self.pos
if pos in _pattern2wordnet:
pos = _pattern2wordnet[pos]
if pos in IC_CORPUS and offset in IC_CORPUS[pos]:
return IC_CORPUS[pos][offset] / IC_MAX[pos]
return None
@property
def weight(self):
return sentiwordnet is not None \
and sentiwordnet.synset(self.id, self.pos)[:2] \
or None
def similarity(synset1, synset2):
""" Returns the semantic similarity of the given synsets.
"""
return synset1.similarity(synset2)
def ancestor(synset1, synset2):
""" Returns the common ancestor of both synsets.
For example synsets("cat")[0].ancestor(synsets("dog")[0]) => Synset("carnivore")
"""
h1, h2 = synset1.hypernyms(recursive=True), synset2.hypernyms(recursive=True)
for s in h1:
if s in h2:
return s
least_common_subsumer = lcs = ancestor
### INFORMATION CONTENT ############################################################################
# Information Content (IC) is used to calculate semantic similarity in Synset.similarity().
# Information Content values for each synset are derived from word frequency in a given corpus.
# The idea is that less frequent words convey more information.
# Semantic similarity depends on the amount of information two concepts (synsets) have in common,
# given by the Most Specific Common Abstraction (MSCA), i.e. the shared ancestor in the taxonomy.
# http://www.d.umn.edu/~tpederse/Pubs/AAAI04PedersenT.pdf
# http://afflatus.ucd.ie/papers/ecai2004b.pdf
#IC = {} # Switch data file according to WordNet version:
#IC_CORPUS = os.path.join(MODULE, "resnik-ic" + VERSION[0] + ".txt")
#IC_MAX = 0
# def information_content(synset):
# """ Returns the IC value for the given Synset (trained on the Brown corpus).
# """
# global IC_MAX
# if not IC:
# IC[NOUN] = {}
# IC[VERB] = {}
# for s in open(IC_CORPUS).readlines()[1:]: # Skip the header.
# s = s.split()
# id, w, pos = (
# int(s[0][:-1]),
# float(s[1]),
# s[0][-1] == "n" and NOUN or VERB)
# if len(s) == 3 and s[2] == "ROOT":
# IC[pos][0] = IC[pos].get(0,0) + w
# if w != 0:
# IC[pos][id] = w
# if w > IC_MAX:
# IC_MAX = w
# return IC.get(synset.pos, {}).get(synset.id, 0.0) / IC_MAX
### WORDNET3 TO WORDNET2 ###########################################################################
# Map WordNet3 synset id's to WordNet2 synset id's.
_map32_pos1 = {NN: "n", VB: "v", JJ: "a", RB: "r"}
_map32_pos2 = {"n": NN, "v": VB, "a": JJ, "s" : JJ, "r": RB}
_map32_cache = None
def map32(id, pos=NOUN):
""" Returns an (id, pos)-tuple with the WordNet2 synset id for the given WordNet3 synset id.
Returns None if no id was found.
"""
global _map32_cache
if not _map32_cache:
_map32_cache = open(os.path.join(MODULE, "dict", "index.32"), encoding="latin-1").readlines()
_map32_cache = (x for x in _map32_cache if x[0] != ";") # comments
_map32_cache = dict(x.strip().split(" ") for x in _map32_cache)
k = pos in _map32_pos2 and pos or _map32_pos1.get(pos, "x")
k += str(id).lstrip("0")
k = _map32_cache.get(k, None)
if k is not None:
return int(k[1:]), _map32_pos2[k[0]]
return None
#### SENTIWORDNET ##################################################################################
# http://nmis.isti.cnr.it/sebastiani/Publications/LREC06.pdf
# http://nmis.isti.cnr.it/sebastiani/Publications/LREC10.pdf
sys.path.insert(0, os.path.join(MODULE, "..", ".."))
try:
from pattern.text import Sentiment
except:
class Sentiment(object):
PLACEHOLDER = True
sys.path.pop(0)
class SentiWordNet(Sentiment):
def __init__(self, path=None, language="en"):
""" A sentiment lexicon with scores from SentiWordNet.
The value for each word is a tuple with values for
polarity (-1.0-1.0), subjectivity (0.0-1.0) and intensity (0.5-2.0).
"""
Sentiment.__init__(self, path=path, language=language)
def load(self):
pass
def synset(self, id, pos=ADJECTIVE):
if pos in _pattern2wordnet:
pos = _pattern2wordnet[pos]
try:
s = wn._synset_from_pos_and_offset(pos, id)
lemma = s.lemma_names()[0]
return self[lemma]
except:
pass
return None
# Words are stored without diacritics,
# use wordnet.normalize(word).
def __getitem__(self, k):
synsets = list(swn.senti_synsets(k))
if synsets:
p, n = synsets[0].pos_score(), synsets[0].neg_score()
v = (float(p) - float(n), float(p) + float(n))
return v
else:
return None
def assessments(self, words=[], negation=True):
raise NotImplementedError
def __call__(self, s, negation=True):
raise NotImplementedError
if not hasattr(Sentiment, "PLACEHOLDER"):
sentiwordnet = SentiWordNet()
else:
sentiwordnet = None
# Backwards compatibility.
# Older code may be using pattern.en.wordnet.sentiment[w],
# which yields a (positive, negative, neutral)-tuple.
class sentiment(object):
def load(self, **kwargs):
sentiwordnet.load(**kwargs)
def __getitem__(self, w):
p, s = sentiwordnet.get(w, (0.0, 0.0))
return p < 0 and (0.0, -p, 1.0 - s) or (p, 0.0, 1.0 - s)
def __contains__(self, w):
return w in sentiwordnet
sentiment = sentiment()
#print sentiwordnet["industry"] # (0.0, 0.0)
#print sentiwordnet["horrible"] # (-0.625, 0.625)
#print sentiwordnet.synset(synsets("horrible", pos="JJ")[0].id, pos="JJ")
#print synsets("horrible", pos="JJ")[0].weight
|