1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146
|
# -*- coding: utf-8 -*-
from __future__ import unicode_literals
from __future__ import print_function
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
import random
import subprocess
from random import seed
seed(0)
from pattern import text
from pattern import en
from io import open
try:
PATH = os.path.dirname(os.path.realpath(__file__))
except:
PATH = ""
#---------------------------------------------------------------------------------------------------
class TestInflection(unittest.TestCase):
def setUp(self):
pass
def test_indefinite_article(self):
# Assert "a" or "an".
for article, word in (
("an", "hour"),
("an", "FBI"),
("a", "bear"),
("a", "one-liner"),
("a", "European"),
("a", "university"),
("a", "uterus"),
("an", "owl"),
("an", "yclept"),
("a", "year")):
self.assertEqual(en.article(word, function=en.INDEFINITE), article)
self.assertEqual(en.inflect.article("heir", function=en.DEFINITE), "the")
self.assertEqual(en.inflect.referenced("ewe"), "a ewe")
print("pattern.en.inflect.article()")
def test_pluralize(self):
# Assert "octopodes" for classical plural of "octopus".
# Assert "octopuses" for modern plural.
self.assertEqual("octopodes", en.inflect.pluralize("octopus", classical=True))
self.assertEqual("octopuses", en.inflect.pluralize("octopus", classical=False))
# Assert the accuracy of the pluralization algorithm.
from pattern.db import Datasheet
i, n = 0, 0
for sg, pl in Datasheet.load(os.path.join(PATH, "corpora", "wordforms-en-celex.csv"), encoding='utf8'):
if en.inflect.pluralize(sg) == pl:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.95)
print("pattern.en.inflect.pluralize()")
def test_singularize(self):
# Assert the accuracy of the singularization algorithm.
from pattern.db import Datasheet
i, n = 0, 0
for sg, pl in Datasheet.load(os.path.join(PATH, "corpora", "wordforms-en-celex.csv"), encoding='utf8'):
if en.inflect.singularize(pl) == sg:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.95)
print("pattern.en.inflect.singularize()")
def test_find_lemma(self):
# Assert the accuracy of the verb lemmatization algorithm.
# Note: the accuracy is higher (95%) when measured on CELEX word forms
# (probably because en.verbs has high percentage irregular verbs).
i, n = 0, 0
for v1, v2 in en.inflect.verbs.inflections.items():
if en.inflect.verbs.find_lemma(v1) == v2:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.90)
print("pattern.en.inflect.verbs.find_lemma()")
def test_find_lexeme(self):
# Assert the accuracy of the verb conjugation algorithm.
i, n = 0, 0
for v, lexeme1 in en.inflect.verbs.infinitives.items():
lexeme2 = en.inflect.verbs.find_lexeme(v)
for j in range(len(lexeme2)):
if lexeme1[j] == lexeme2[j] or \
lexeme1[j] == "" and \
lexeme1[j > 5 and 10 or 0] == lexeme2[j]:
i += 1
n += 1
self.assertTrue(float(i) / n > 0.90)
print("pattern.en.inflect.verbs.find_lexeme()")
def test_conjugate(self):
# Assert different tenses with different conjugations.
for (v1, v2, tense) in (
("be", "be", en.INFINITIVE),
("be", "am", (en.PRESENT, 1, en.SINGULAR)),
("be", "are", (en.PRESENT, 2, en.SINGULAR)),
("be", "is", (en.PRESENT, 3, en.SINGULAR)),
("be", "are", (en.PRESENT, 0, en.PLURAL)),
("be", "being", (en.PRESENT + en.PARTICIPLE,)),
("be", "was", (en.PAST, 1, en.SINGULAR)),
("be", "were", (en.PAST, 2, en.SINGULAR)),
("be", "was", (en.PAST, 3, en.SINGULAR)),
("be", "were", (en.PAST, 0, en.PLURAL)),
("be", "were", (en.PAST, 0, None)),
("be", "been", (en.PAST + en.PARTICIPLE,)),
("be", "am", "1sg"),
("be", "are", "2sg"),
("be", "is", "3sg"),
("be", "are", "1pl"),
("be", "are", "2pl"),
("be", "are", "3pl"),
("be", "are", "pl"),
("be", "being", "part"),
("be", "was", "1sgp"),
("be", "were", "2sgp"),
("be", "was", "3sgp"),
("be", "were", "1ppl"),
("be", "were", "2ppl"),
("be", "were", "3ppl"),
("be", "were", "p"),
("be", "were", "ppl"),
("be", "been", "ppart"),
("be", "am not", "1sg-"),
("be", "aren't", "2sg-"),
("be", "isn't", "3sg-"),
("be", "aren't", "1pl-"),
("be", "aren't", "2pl-"),
("be", "aren't", "3pl-"),
("be", "aren't", "pl-"),
("be", "wasn't", "1sgp-"),
("be", "weren't", "2sgp-"),
("be", "wasn't", "3sgp-"),
("be", "weren't", "1ppl-"),
("be", "weren't", "2ppl-"),
("be", "weren't", "3ppl-"),
("be", "weren't", "ppl-"),
("had", "have", "inf"),
("had", "have", "1sg"),
("had", "have", "2sg"),
("had", "has", "3sg"),
("had", "have", "pl"),
("had", "having", "part"),
("has", "had", "1sgp"),
("has", "had", "2sgp"),
("has", "had", "3sgp"),
("has", "had", "ppl"),
("has", "had", "p"),
("has", "had", "ppart"),
("will", "will", "1sg"),
("will", "will", "2sg"),
("will", "will", "3sg"),
("will", "will", "1pl"),
("imaginerify", "imaginerifying", "part"),
("imaginerify", "imaginerified", "3sgp"),
("imaginerify", None, "1sg-")):
self.assertEqual(en.inflect.conjugate(v1, tense), v2)
print("pattern.en.inflect.conjugate()")
def test_lemma(self):
# Assert the infinitive of "weren't".
v = en.inflect.lemma("weren't")
self.assertEqual(v, "be")
print("pattern.en.inflect.lemma()")
def test_lexeme(self):
# Assert all inflections of "be".
v = en.inflect.lexeme("be")
self.assertEqual(v, [
"be", "am", "are", "is", "being",
"was", "were", "been",
"am not", "aren't", "isn't", "wasn't", "weren't"
])
v = en.inflect.lexeme("imaginerify")
self.assertEqual(v, [
"imaginerify", "imaginerifies", "imaginerifying", "imaginerified"
])
print("pattern.en.inflect.lexeme()")
def test_tenses(self):
# Assert tense recognition.
self.assertTrue((en.inflect.PRESENT, 1, en.inflect.SINGULAR) in en.inflect.tenses("am"))
self.assertTrue("1sg" in en.inflect.tenses("am"))
self.assertTrue("1sg" in en.inflect.tenses("will"))
self.assertTrue("2sg-" in en.inflect.tenses("won't"))
self.assertTrue("part" in en.inflect.tenses("imaginarifying"))
print("pattern.en.inflect.tenses()")
def test_comparative(self):
# Assert "nice" => "nicer".
self.assertEqual(en.inflect.comparative("nice"), "nicer")
print("pattern.en.inflect.comparative()")
def test_superlative(self):
# Assert "nice" => "nicest"
self.assertEqual(en.inflect.superlative("nice"), "nicest")
# Assert "important" => "most important"
self.assertEqual(en.inflect.superlative("important"), "most important")
print("pattern.en.inflect.superlative()")
#---------------------------------------------------------------------------------------------------
class TestQuantification(unittest.TestCase):
def setUp(self):
pass
def test_extract_leading_zeros(self):
# Assert "zero zero one" => ("one", 2).
from pattern.text.en.inflect_quantify import zshift
v = zshift("zero zero one")
self.assertEqual(v, ("one", 2))
v = zshift("0 0 one")
self.assertEqual(v, ("one", 2))
print("pattern.en.quantify._extract_leading_zeros()")
def test_numerals(self):
# Assert number to numerals.
for x, s in (
( 1.5, "one point five"),
( 15, "fifteen"),
( 150, "one hundred and fifty"),
( 151, "one hundred and fifty-one"),
( 1510, "one thousand five hundred and ten"),
( 15101, "fifteen thousand one hundred and one"),
( 150101, "one hundred and fifty thousand one hundred and one"),
(1500101, "one million, five hundred thousand one hundred and one")):
self.assertEqual(en.numerals(x), s)
print("pattern.en.numerals()")
def test_number(self):
# Assert numeric string = actual number (after rounding).
for i in range(100):
x = random.random()
y = en.number(en.numerals(x, round=10))
self.assertAlmostEqual(x, y, places=10)
print("pattern.en.number()")
def test_quantify(self):
# Assert quantification algorithm.
for a, s in (
( 2 * ["carrot"], "a pair of carrots"),
( 4 * ["carrot"], "several carrots"),
( 9 * ["carrot"], "a number of carrots"),
( 19 * ["carrot"], "a score of carrots"),
( 23 * ["carrot"], "dozens of carrots"),
( 201 * ["carrot"], "hundreds of carrots"),
(1001 * ["carrot"], "thousands of carrots"),
({"carrot": 4, "parrot": 2}, "several carrots and a pair of parrots")):
self.assertEqual(en.quantify(a), s)
print("pattern.en.quantify()")
def test_reflect(self):
self.assertEqual(en.reflect(""), "a string")
self.assertEqual(en.reflect(["", "", ""]), "several strings")
self.assertEqual(en.reflect(en.reflect), "a function")
print("pattern.en.reflect()")
#---------------------------------------------------------------------------------------------------
class TestSpelling(unittest.TestCase):
def test_spelling(self):
# Assert case-sensitivity + numbers.
for a, b in (
( ".", "." ),
( "?", "?" ),
( "!", "!" ),
( "I", "I" ),
( "a", "a" ),
( "42", "42" ),
("3.14", "3.14"),
( "The", "The" ),
( "the", "the" )):
self.assertEqual(en.suggest(a)[0][0], b)
# Assert spelling suggestion accuracy.
# Note: simply training on more text will not improve accuracy.
i = j = 0.0
from pattern.db import Datasheet
for correct, wrong in Datasheet.load(os.path.join(PATH, "corpora", "spelling-birkbeck.csv"), encoding='utf8'):
for w in wrong.split(" "):
if en.suggest(w)[0][0] == correct:
i += 1
else:
j += 1
self.assertTrue(i / (i + j) > 0.70)
print("pattern.en.suggest()")
#---------------------------------------------------------------------------------------------------
class TestParser(unittest.TestCase):
def setUp(self):
pass
def test_tokenize(self):
# Assert list with two sentences.
# The tokenizer should at least handle common abbreviations and punctuation.
v = en.tokenize("The cat is eating (e.g., a fish). Yum!")
self.assertEqual(v, ["The cat is eating ( e.g. , a fish ) .", "Yum !"])
print("pattern.en.tokenize()")
def _test_morphological_rules(self, function=en.parser.morphology.apply):
""" For each word in WordNet that is not in Brill's lexicon,
test if the given tagger((word, "NN")) yields an improved (word, tag).
Returns the relative scores for nouns, verbs, adjectives and adverbs.
"""
scores = []
for tag, lexicon in (
("NN", en.wordnet.NOUNS),
("VB", en.wordnet.VERBS),
("JJ", en.wordnet.ADJECTIVES),
("RB", en.wordnet.ADVERBS)):
i, n = 0, 0
for word in lexicon():
word = word.replace("_", " ")
if word not in en.lexicon:
if function([word, "NN"])[1].startswith(tag):
i += 1
n += 1
scores.append(float(i) / n)
return scores
def test_default_suffix_rules(self):
# Assert part-of-speech tag for unknown tokens.
for a, b in (
(["eating", "NN"], ["eating", "VBG"]),
(["tigers", "NN"], ["tigers", "NNS"]),
(["really", "NN"], ["really", "RB"]),
(["foolish", "NN"], ["foolish", "JJ"])):
self.assertEqual(text._suffix_rules(a), b)
# Test with words in WordNet that are not in Brill's lexicon.
# Given are the scores for detection of nouns, verbs, adjectives and adverbs.
# The baseline should increase (not decrease) when the algorithm is modified.
v = self._test_morphological_rules(function=text._suffix_rules)
self.assertTrue(v[0] > 0.91) # NN
self.assertTrue(v[1] > 0.23) # VB
self.assertTrue(v[2] > 0.38) # JJ
self.assertTrue(v[3] > 0.60) # RB
print("pattern.text._suffix_rules()")
def test_apply_morphological_rules(self):
# Assert part-of-speech tag for unknown tokens (Brill's lexical rules).
v = self._test_morphological_rules(function=en.parser.morphology.apply)
self.assertTrue(v[0] > 0.85) # NN
self.assertTrue(v[1] > 0.19) # VB
self.assertTrue(v[2] > 0.65) # JJ
self.assertTrue(v[3] > 0.59) # RB
print("pattern.en.parser.morphology.apply()")
def test_apply_context_rules(self):
# Assert part-of-speech tags based on word context.
for a, b in ( # Rule:
([["", "JJ"], ["", "JJ"], ["", ","]], [["", "JJ"], ["", "NN"], ["", ","]]), # SURROUNDTAG
([["", "NNP"], ["", "RB"]], [["", "NNP"], ["", "NNP"]]), # PREVTAG
([["", "NN"], ["", "PRP$"]], [["", "VB"], ["", "PRP$"]]), # NEXTTAG
([["phone", ""], ["", "VBZ"]], [["phone", ""], ["", "NNS"]]), # PREVWD
([["", "VB"], ["countries", ""]], [["", "JJ"], ["countries", ""]]), # NEXTWD
([["close", "VB"], ["to", ""]], [["close", "RB"], ["to", ""]]), # RBIGRAM
([["very", ""], ["much", "JJ"]], [["very", ""], ["much", "RB"]]), # LBIGRAM
([["such", "JJ"], ["as", "DT"]], [["such", "JJ"], ["as", "IN"]]), # WDNEXTWD
([["be", "VB"]], [["be", "VB"]])): # CURWD
self.assertEqual(en.parser.context.apply(a), b)
print("pattern.en.parser.context.apply()")
def test_find_tags(self):
# Assert part-of-speech-tag annotation.
v = en.parser.find_tags(["black", "cat"])
self.assertEqual(v, [["black", "JJ"], ["cat", "NN"]])
self.assertEqual(en.parser.find_tags(["felix"])[0][1], "NN")
self.assertEqual(en.parser.find_tags(["Felix"])[0][1], "NNP")
print("pattern.en.parser.find_tags()")
def test_find_chunks(self):
# Assert chunk tag annotation.
v = en.parser.find_chunks([["black", "JJ"], ["cat", "NN"]])
self.assertEqual(v, [["black", "JJ", "B-NP", "O"], ["cat", "NN", "I-NP", "O"]])
# Assert the accuracy of the chunker.
# For example, in "The very black cat must be really meowing really loud in the yard.":
# - "The very black" (NP)
# - "must be really meowing" (VP)
# - "really loud" (ADJP)
# - "in" (PP)
# - "the yard" (NP)
v = en.parser.find_chunks([
["", "DT"], ["", "RB"], ["", "JJ"], ["", "NN"],
["", "MD"], ["", "RB"], ["", "VBZ"], ["", "VBG"],
["", "RB"], ["", "JJ"],
["", "IN"],
["", "CD"], ["", "NNS"]
])
self.assertEqual(v, [
["", "DT", "B-NP", "O"], ["", "RB", "I-NP", "O"], ["", "JJ", "I-NP", "O"], ["", "NN", "I-NP", "O"],
["", "MD", "B-VP", "O"], ["", "RB", "I-VP", "O"], ["", "VBZ", "I-VP", "O"], ["", "VBG", "I-VP", "O"],
["", "RB", "B-ADJP", "O"], ["", "JJ", "I-ADJP", "O"],
["", "IN", "B-PP", "B-PNP"],
["", "CD", "B-NP", "I-PNP"], ["", "NNS", "I-NP", "I-PNP"]])
# Assert commas inside chunks.
# - "the big, black cat"
v = en.parser.find_chunks([
["", "DT"], ["", "JJ"], ["", ","], ["", "JJ"], ["", "NN"]
])
self.assertEqual(v, [
["", "DT", "B-NP", "O"],
["", "JJ", "I-NP", "O"],
["", ",", "I-NP", "O"],
["", "JJ", "I-NP", "O"],
["", "NN", "I-NP", "O"]
])
# - "big, black and furry"
v = en.parser.find_chunks([
["", "JJ"], ["", ","], ["", "JJ"], ["", "CC"], ["", "JJ"]
])
self.assertEqual(v, [
["", "JJ", "B-ADJP", "O"],
["", ",", "I-ADJP", "O"],
["", "JJ", "I-ADJP", "O"],
["", "CC", "I-ADJP", "O"],
["", "JJ", "I-ADJP", "O"]
])
# - big, and very black (= two chunks "big" and "very black")
v = en.parser.find_chunks([
["", "JJ"], ["", ","], ["", "CC"], ["", "RB"], ["", "JJ"]
])
self.assertEqual(v, [
["", "JJ", "B-ADJP", "O"],
["", ",", "O", "O"],
["", "CC", "O", "O"],
["", "RB", "B-ADJP", "O"],
["", "JJ", "I-ADJP", "O"]
])
# Assert cases for which we have written special rules.
# - "perhaps you" (ADVP + NP)
v = en.parser.find_chunks([["", "RB"], ["", "PRP"]])
self.assertEqual(v, [["", "RB", "B-ADVP", "O"], ["", "PRP", "B-NP", "O"]])
# - "very nice cats" (NP)
v = en.parser.find_chunks([["", "RB"], ["", "JJ"], ["", "PRP"]])
self.assertEqual(v, [["", "RB", "B-NP", "O"], ["", "JJ", "I-NP", "O"], ["", "PRP", "I-NP", "O"]])
print("pattern.en.parser.find_chunks()")
def test_find_labels(self):
# Assert relation tag annotation (SBJ/OBJ).
v = en.parser.find_labels([
["", "", "NP"], ["", "", "NP"],
["", "", "VP"], ["", "", "VP"],
["", "", "NP"]])
self.assertEqual(v, [
["", "", "NP", "NP-SBJ-1"], ["", "", "NP", "NP-SBJ-1"],
["", "", "VP", "VP-1"], ["", "", "VP", "VP-1"],
["", "", "NP", "NP-OBJ-1"]])
print("pattern.en.parser.find_labels()")
def test_find_prepositions(self):
# Assert preposition tag annotation (PP + NP).
v = en.parser.find_prepositions([
["", "", "NP"],
["", "", "VP"],
["", "", "PP"],
["", "", "NP"],
["", "", "NP"], ])
self.assertEqual(v, [
["", "", "NP", "O"],
["", "", "VP", "O"],
["", "", "PP", "B-PNP"],
["", "", "NP", "I-PNP"],
["", "", "NP", "I-PNP"]])
# Assert PNP's with consecutive PP's.
v = en.parse("The cat was looking at me from up on the roof with interest.", prepositions=True)
self.assertEqual(v,
"The/DT/B-NP/O cat/NN/I-NP/O " \
"was/VBD/B-VP/O looking/VBG/I-VP/O " \
"at/IN/B-PP/B-PNP me/PRP/B-NP/I-PNP " \
"from/IN/B-PP/B-PNP up/IN/I-PP/I-PNP on/IN/I-PP/I-PNP the/DT/B-NP/I-PNP roof/NN/I-NP/I-PNP " \
"with/IN/B-PP/B-PNP interest/NN/B-NP/I-PNP " \
"././O/O"
)
print("pattern.en.parser.find_prepositions()")
def test_find_lemmata(self):
# Assert lemmata for nouns and verbs.
v = en.parser.find_lemmata([["cats", "NNS"], ["wearing", "VBG"], ["hats", "NNS"]])
self.assertEqual(v, [
["cats", "NNS", "cat"],
["wearing", "VBG", "wear"],
["hats", "NNS", "hat"]])
print("pattern.en.parser.find_lemmata()")
def test_named_entity_recognition(self):
# Assert named entities.
v = en.parser.parse("Arnold Schwarzenegger is cool.", chunks=False)
self.assertEqual(v,
"Arnold/NNP-PERS Schwarzenegger/NNP-PERS is/VBZ cool/JJ ./."
)
print("pattern.en.parser.entities.apply()")
def test_parse(self):
# Assert parsed output with Penn Treebank II tags (slash-formatted).
# 1) "the black cat" is a noun phrase, "on the mat" is a prepositional noun phrase.
v = en.parser.parse("The black cat sat on the mat.")
self.assertEqual(v,
"The/DT/B-NP/O black/JJ/I-NP/O cat/NN/I-NP/O " + \
"sat/VBD/B-VP/O " + \
"on/IN/B-PP/B-PNP the/DT/B-NP/I-PNP mat/NN/I-NP/I-PNP ././O/O"
)
# 2) "the black cat" is the subject, "a fish" is the object.
v = en.parser.parse("The black cat is eating a fish.", relations=True)
self.assertEqual(v,
"The/DT/B-NP/O/NP-SBJ-1 black/JJ/I-NP/O/NP-SBJ-1 cat/NN/I-NP/O/NP-SBJ-1 " + \
"is/VBZ/B-VP/O/VP-1 eating/VBG/I-VP/O/VP-1 " + \
"a/DT/B-NP/O/NP-OBJ-1 fish/NN/I-NP/O/NP-OBJ-1 ././O/O/O"
)
# 3) "chasing" and "mice" lemmata are "chase" and "mouse".
v = en.parser.parse("The black cat is chasing mice.", lemmata=True)
self.assertEqual(v,
"The/DT/B-NP/O/the black/JJ/I-NP/O/black cat/NN/I-NP/O/cat " + \
"is/VBZ/B-VP/O/be chasing/VBG/I-VP/O/chase " + \
"mice/NNS/B-NP/O/mouse ././O/O/."
)
# 4) Assert str.
self.assertTrue(isinstance(v, str))
# 5) Assert str for faulty input (bytestring with unicode characters).
self.assertTrue(isinstance(en.parse("ø ü"), str))
self.assertTrue(isinstance(en.parse("ø ü", tokenize=True, tags=False, chunks=False), str))
self.assertTrue(isinstance(en.parse("ø ü", tokenize=False, tags=False, chunks=False), str))
self.assertTrue(isinstance(en.parse("o u", encoding="ascii"), str))
# 6) Assert optional parameters (i.e., setting all to False).
self.assertEqual(en.parse("ø ü.", tokenize=True, tags=False, chunks=False), "ø ü .")
self.assertEqual(en.parse("ø ü.", tokenize=False, tags=False, chunks=False), "ø ü.")
# 7) Assert the accuracy of the English tagger.
i, n = 0, 0
for corpus, a in (("tagged-en-wsj.txt", (0.968, 0.945)), ("tagged-en-oanc.txt", (0.929, 0.932))):
with open(os.path.join(PATH, "corpora", corpus), encoding='utf8') as f:
sentences = f.readlines()
for sentence in sentences:
sentence = sentence.strip()
s1 = [w.split("/") for w in sentence.split(" ")]
s2 = [[w for w, pos in s1]]
s2 = en.parse(s2, tokenize=False)
s2 = [w.split("/") for w in s2.split(" ")]
for j in range(len(s1)):
if s1[j][1] == s2[j][1].split("-")[0]:
i += 1
n += 1
#print(corpus, float(i) / n)
self.assertTrue(float(i) / n > (en.parser.model and a[0] or a[1]))
print("pattern.en.parse()")
def test_tagged_string(self):
# Assert splitable TaggedString with language and tags properties.
v = en.parser.parse("The black cat sat on the mat.", relations=True, lemmata=True)
self.assertEqual(v.language, "en")
self.assertEqual(v.tags,
["word", "part-of-speech", "chunk", "preposition", "relation", "lemma"])
self.assertEqual(v.split(text.TOKENS)[0][0],
["The", "DT", "B-NP", "O", "NP-SBJ-1", "the"])
print("pattern.en.parse().split()")
def test_parsetree(self):
# Assert parsetree(s) == Text.
v = en.parsetree("The cat purs.")
self.assertTrue(isinstance(v, en.Text))
print("pattern.en.parsetree()")
def test_split(self):
# Assert split(parse(s)) == Text.
v = en.split(en.parse("The cat purs."))
self.assertTrue(isinstance(v, en.Text))
print("pattern.en.split()")
def test_tag(self):
# Assert [("black", "JJ"), ("cats", "NNS")].
v = en.tag("black cats")
self.assertEqual(v, [("black", "JJ"), ("cats", "NNS")])
v = en.tag("")
self.assertEqual(v, [])
print("pattern.en.tag()")
def test_ngrams(self):
# Assert n-grams with and without punctuation marks / sentence marks.
s = "The cat is napping."
v1 = en.ngrams(s, n=2)
v2 = en.ngrams(s, n=3, punctuation=en.PUNCTUATION.strip("."))
self.assertEqual(v1, [("The", "cat"), ("cat", "is"), ("is", "napping")])
self.assertEqual(v2, [("The", "cat", "is"), ("cat", "is", "napping"), ("is", "napping", ".")])
s = "The cat purrs. The dog barks."
v1 = en.ngrams(s, n=2)
v2 = en.ngrams(s, n=2, continuous=True)
self.assertEqual(v1, [("The", "cat"), ("cat", "purrs"), ("The", "dog"), ("dog", "barks")])
self.assertEqual(v2, [("The", "cat"), ("cat", "purrs"), ("purrs", "The"), ("The", "dog"), ("dog", "barks")])
print("pattern.en.ngrams()")
def test_command_line(self):
# Assert parsed output from the command-line (example from the documentation).
p = ["python3", "-m", "pattern.en", "-s", "Nice cat.", "-OTCRL"]
with subprocess.Popen(p, stdout=subprocess.PIPE) as p:
p.wait()
v = p.stdout.read().decode('utf-8')
v = v.strip()
self.assertEqual(v, "Nice/JJ/B-NP/O/O/nice cat/NN/I-NP/O/O/cat ././O/O/O/.")
print("python3 -m pattern.en")
#---------------------------------------------------------------------------------------------------
class TestParseTree(unittest.TestCase):
def setUp(self):
# Parse sentences to test on.
# Creating a Text creates Sentence, Chunk, PNP and Word.
# Creating a Sentence tests Sentence.append() and Sentence.parse_token().
self.text = "I'm eating pizza with a fork. What a tasty pizza!"
self.text = en.Text(en.parse(self.text, relations=True, lemmata=True))
def test_copy(self):
# Assert deepcopy of Text, Sentence, Chunk, PNP and Word.
self.text = self.text.copy()
print("pattern.en.Text.copy()")
def test_xml(self):
# Assert XML export and import.
self.text = en.Text.from_xml(self.text.xml)
print("pattern.en.Text.xml")
print("pattern.en.Text.from_xml()")
def test_text(self):
# Assert Text.
self.assertEqual(self.text.sentences[0].string, "I 'm eating pizza with a fork .")
self.assertEqual(self.text.sentences[1].string, "What a tasty pizza !")
print("pattern.en.Text")
def test_sentence(self):
# Assert Sentence.
v = self.text[0]
self.assertTrue(v.start == 0)
self.assertTrue(v.stop == 8)
self.assertTrue(v.string == "I 'm eating pizza with a fork .")
self.assertTrue(v.subjects == [self.text[0].chunks[0]])
self.assertTrue(v.verbs == [self.text[0].chunks[1]])
self.assertTrue(v.objects == [self.text[0].chunks[2]])
self.assertTrue(v.nouns == [self.text[0].words[3], self.text[0].words[6]])
# Sentence.string must be unicode.
self.assertTrue(isinstance(v.string, str))
self.assertTrue(isinstance(str(v), str))
print("pattern.en.Sentence")
def test_sentence_constituents(self):
# Assert in-order list of Chunk, PNP and Word.
v = self.text[0].constituents(pnp=True)
self.assertEqual(v, [
self.text[0].chunks[0],
self.text[0].chunks[1],
self.text[0].chunks[2],
self.text[0].pnp[0],
self.text[0].words[7],
])
print("pattern.en.Sentence.constituents()")
def test_slice(self):
# Assert sentence slice.
v = self.text[0].slice(start=4, stop=6)
self.assertTrue(v.parent == self.text[0])
self.assertTrue(v.string == "with a")
# Assert sentence slice tag integrity.
self.assertTrue(v.words[0].type == "IN")
self.assertTrue(v.words[1].chunk is None)
print("pattern.en.Slice")
def test_chunk(self):
# Assert chunk with multiple words ("a fork").
v = self.text[0].chunks[4]
self.assertTrue(v.start == 5)
self.assertTrue(v.stop == 7)
self.assertTrue(v.string == "a fork")
self.assertTrue(v.lemmata == ["a", "fork"])
self.assertTrue(v.words == [self.text[0].words[5], self.text[0].words[6]])
self.assertTrue(v.head == self.text[0].words[6])
self.assertTrue(v.type == "NP")
self.assertTrue(v.role is None)
self.assertTrue(v.pnp is not None)
# Assert chunk that is subject/object of the sentence ("pizza").
v = self.text[0].chunks[2]
self.assertTrue(v.role == "OBJ")
self.assertTrue(v.relation == 1)
self.assertTrue(v.related == [self.text[0].chunks[0], self.text[0].chunks[1]])
self.assertTrue(v.subject == self.text[0].chunks[0])
self.assertTrue(v.verb == self.text[0].chunks[1])
self.assertTrue(v.object is None)
# Assert chunk traversal.
self.assertEqual(v.nearest("VP"), self.text[0].chunks[1])
self.assertEqual(v.previous(), self.text[0].chunks[1])
self.assertEqual(v.next(), self.text[0].chunks[3])
print("pattern.en.Chunk")
def test_chunk_conjunctions(self):
# Assert list of conjunct/disjunct chunks ("black cat" AND "white cat").
v = en.Sentence(en.parse("black cat and white cat"))
self.assertEqual(v.chunk[0].conjunctions, [(v.chunk[1], en.AND)])
print("pattern.en.Chunk.conjunctions()")
def test_chunk_modifiers(self):
# Assert list of nearby adjectives and adverbs with no role, for VP.
v = en.Sentence(en.parse("Perhaps you should go."))
self.assertEqual(v.chunk[2].modifiers, [v.chunk[0]]) # should <=> perhaps
print("pattern.en.Chunk.modifiers")
def test_pnp(self):
# Assert PNP chunk ("with a fork").
v = self.text[0].pnp[0]
self.assertTrue(v.string == "with a fork")
self.assertTrue(v.chunks == [self.text[0].chunks[3], self.text[0].chunks[4]])
self.assertTrue(v.pp == self.text[0].chunks[3])
print("pattern.en.PNP")
def test_word(self):
# Assert word tags ("fork" => NN).
v = self.text[0].words[6]
self.assertTrue(v.index == 6)
self.assertTrue(v.string == "fork")
self.assertTrue(v.lemma == "fork")
self.assertTrue(v.type == "NN")
self.assertTrue(v.chunk == self.text[0].chunks[4])
self.assertTrue(v.pnp is not None)
for i, tags in enumerate([
["I", "PRP", "B-NP", "O", "NP-SBJ-1", "i"],
["'m", "VBP", "B-VP", "O", "VP-1", "be"],
["eating", "VBG", "I-VP", "O", "VP-1", "eat"],
["pizza", "NN", "B-NP", "O", "NP-OBJ-1", "pizza"],
["with", "IN", "B-PP", "B-PNP", "O", "with"],
["a", "DT", "B-NP", "I-PNP", "O", "a"],
["fork", "NN", "I-NP", "I-PNP", "O", "fork"],
[".", ".", "O", "O", "O", "."]]):
self.assertEqual(self.text[0].words[i].tags, tags)
print("pattern.en.Word")
def test_word_custom_tags(self):
# Assert word custom tags ("word/part-of-speech/.../some-custom-tag").
s = en.Sentence("onion/NN/FOOD", token=[en.WORD, en.POS, "semantic_type"])
v = s.words[0]
self.assertEqual(v.semantic_type, "FOOD")
self.assertEqual(v.custom_tags["semantic_type"], "FOOD")
self.assertEqual(v.copy().custom_tags["semantic_type"], "FOOD")
# Assert addition of new custom tags.
v.custom_tags["taste"] = "pungent"
self.assertEqual(s.token, [en.WORD, en.POS, "semantic_type", "taste"])
print("pattern.en.Word.custom_tags")
def test_find(self):
# Assert first item for which given function is True.
v = text.tree.find(lambda x: x > 10, [1, 2, 3, 11, 12])
self.assertEqual(v, 11)
print("pattern.text.tree.find()")
def test_zip(self):
# Assert list of zipped tuples, using default to balance uneven lists.
v = text.tree.zip([1, 2, 3], [4, 5, 6, 7], default=0)
self.assertEqual(v, [(1, 4), (2, 5), (3, 6), (0, 7)])
print("pattern.text.tree.zip()")
def test_unzip(self):
v = text.tree.unzip(1, [(1, 4), (2, 5), (3, 6)])
self.assertEqual(v, [4, 5, 6])
print("pattern.text.tree.unzip()")
def test_unique(self):
# Assert list copy with unique items.
v = text.tree.unique([1, 1, 1])
self.assertEqual(len(v), 1)
self.assertEqual(v[0], 1)
print("pattern.text.tree.unique()")
def test_map(self):
# Assert dynamic Map().
v = text.tree.Map(lambda x: x + 1, [1, 2, 3])
self.assertEqual(list(v), [2, 3, 4])
self.assertEqual(v.items[0], 1)
print("pattern.text.tree.Map()")
#---------------------------------------------------------------------------------------------------
class TestModality(unittest.TestCase):
def setUp(self):
pass
def test_imperative(self):
# Assert True for sentences that are orders, commands, warnings.
from pattern.text.en.modality import imperative
for b, s in (
(True, "Do your homework!"),
(True, "Do not listen to me."),
(True, "Turn that off, will you."),
(True, "Let's help him."),
(True, "Help me!"),
(True, "You will help me."),
(False, "Do it if you think it is necessary."),
(False, "I hope you will help me."),
(False, "I can help you."),
(False, "I can help you if you let me.")):
self.assertEqual(imperative(en.Sentence(en.parse(s))), b)
print("pattern.en.modality.imperative()")
def test_conditional(self):
# Assert True for sentences that contain possible or imaginary situations.
from pattern.text.en.modality import conditional
for b, s in (
(True, "We ought to help him."),
(True, "We could help him."),
(True, "I will help you."),
(True, "I hope you will help me."),
(True, "I can help you if you let me."),
(False, "You will help me."),
(False, "I can help you.")):
self.assertEqual(conditional(en.Sentence(en.parse(s))), b)
# Assert predictive mood.
s = "I will help you."
v = conditional(en.Sentence(en.parse(s)), predictive=False)
self.assertEqual(v, False)
# Assert speculative mood.
s = "I will help you if you pay me."
v = conditional(en.Sentence(en.parse(s)), predictive=False)
self.assertEqual(v, True)
print("pattern.en.modality.conditional()")
def test_subjunctive(self):
# Assert True for sentences that contain wishes, judgments or opinions.
from pattern.text.en.modality import subjunctive
for b, s in (
(True, "I wouldn't do that if I were you."),
(True, "I wish I knew."),
(True, "I propose that you be on time."),
(True, "It is a bad idea to be late."),
(False, "I will be late.")):
self.assertEqual(subjunctive(en.Sentence(en.parse(s))), b)
print("pattern.en.modality.subjunctive()")
def test_negated(self):
# Assert True for sentences that contain "not", "n't" or "never".
for b, s in (
(True, "Not true?"),
(True, "Never true."),
(True, "Isn't true."),):
self.assertEqual(en.negated(en.Sentence(en.parse(s))), b)
print("pattern.en.negated()")
def test_mood(self):
# Assert imperative mood.
v = en.mood(en.Sentence(en.parse("Do your homework!")))
self.assertEqual(v, en.IMPERATIVE)
# Assert conditional mood.
v = en.mood(en.Sentence(en.parse("We ought to help him.")))
self.assertEqual(v, en.CONDITIONAL)
# Assert subjunctive mood.
v = en.mood(en.Sentence(en.parse("I wouldn't do that if I were you.")))
self.assertEqual(v, en.SUBJUNCTIVE)
# Assert indicative mood.
v = en.mood(en.Sentence(en.parse("The weather is nice today.")))
self.assertEqual(v, en.INDICATIVE)
print("pattern.en.mood()")
def test_modality(self):
# Assert -1.0 => +1.0 representing the degree of certainty.
v = en.modality(en.Sentence(en.parse("I wish it would stop raining.")))
self.assertTrue(v < 0)
v = en.modality(en.Sentence(en.parse("It will surely stop raining soon.")))
self.assertTrue(v > 0)
# Assert the accuracy of the modality algorithm.
# Given are the scores for the CoNLL-2010 Shared Task 1 Wikipedia uncertainty data:
# http://www.inf.u-szeged.hu/rgai/conll2010st/tasks.html#task1
# The baseline should increase (not decrease) when the algorithm is modified.
from pattern.db import Datasheet
from pattern.metrics import test
sentences = []
for certain, sentence in Datasheet.load(os.path.join(PATH, "corpora", "uncertainty-conll2010.csv"), encoding='utf8'):
sentence = en.parse(sentence, chunks=False, light=True)
sentence = en.Sentence(sentence)
sentences.append((sentence, int(certain) > 0))
A, P, R, F = test(lambda sentence: en.modality(sentence) > 0.5, sentences)
#print(A, P, R, F)
self.assertTrue(A > 0.69)
self.assertTrue(P > 0.72)
self.assertTrue(R > 0.63)
self.assertTrue(F > 0.68)
print("pattern.en.modality()")
#---------------------------------------------------------------------------------------------------
class TestSentiment(unittest.TestCase):
def setUp(self):
pass
def test_sentiment_avg(self):
# Assert 2.5.
from pattern.text import avg
v = avg([1, 2, 3, 4])
self.assertEqual(v, 2.5)
print("pattern.text.avg")
def test_sentiment(self):
# Assert < 0 for negative adjectives and > 0 for positive adjectives.
self.assertTrue(en.sentiment("wonderful")[0] > 0)
self.assertTrue(en.sentiment("horrible")[0] < 0)
self.assertTrue(en.sentiment(en.wordnet.synsets("horrible", pos="JJ")[0])[0] < 0)
self.assertTrue(en.sentiment(en.Text(en.parse("A bad book. Really horrible.")))[0] < 0)
# Assert that :) and :( are recognized.
self.assertTrue(en.sentiment(":)")[0] > 0)
self.assertTrue(en.sentiment(":(")[0] < 0)
# Assert the accuracy of the sentiment analysis (for the positive class).
# Given are the scores for Pang & Lee's polarity dataset v2.0:
# http://www.cs.cornell.edu/people/pabo/movie-review-data/
# The baseline should increase (not decrease) when the algorithm is modified.
from pattern.db import Datasheet
from pattern.metrics import test
reviews = []
for score, review in Datasheet.load(os.path.join(PATH, "corpora", "polarity-en-pang&lee1.csv"), encoding='utf8'):
reviews.append((review, int(score) > 0))
from time import time
t = time()
A, P, R, F = test(lambda review: en.positive(review), reviews)
#print(A, P, R, F)
self.assertTrue(A > 0.752)
self.assertTrue(P > 0.772)
self.assertTrue(R > 0.715)
self.assertTrue(F > 0.743)
# Assert the accuracy of the sentiment analysis on short text (for the positive class).
# Given are the scores for Pang & Lee's sentence polarity dataset v1.0:
# http://www.cs.cornell.edu/people/pabo/movie-review-data/
reviews = []
for score, review in Datasheet.load(os.path.join(PATH, "corpora", "polarity-en-pang&lee2.csv"), encoding='utf8'):
reviews.append((review, int(score) > 0))
A, P, R, F = test(lambda review: en.positive(review), reviews)
#print(A, P, R, F)
self.assertTrue(A > 0.654)
self.assertTrue(P > 0.660)
self.assertTrue(R > 0.636)
self.assertTrue(F > 0.648)
print("pattern.en.sentiment()")
def test_sentiment_twitter(self):
sanders = os.path.join(PATH, "corpora", "polarity-en-sanders.csv")
if os.path.exists(sanders):
# Assert the accuracy of the sentiment analysis on tweets.
# Given are the scores for Sanders Twitter Sentiment Corpus:
# http://www.sananalytics.com/lab/twitter-sentiment/
# Positive + neutral is taken as polarity >= 0.0,
# Negative is taken as polarity < 0.0.
# Since there are a lot of neutral cases,
# and the algorithm predicts 0.0 by default (i.e., majority class) the results are good.
# Distinguishing negative from neutral from positive is a much harder task
from pattern.db import Datasheet
from pattern.metrics import test
reviews = []
for i, id, date, tweet, polarity, topic in Datasheet.load(sanders):
if polarity != "irrelevant":
reviews.append((tweet, polarity in ("positive", "neutral")))
A, P, R, F = test(lambda review: en.positive(review, threshold=0.0), reviews)
#print(A, P, R, F)
self.assertTrue(A > 0.824)
self.assertTrue(P > 0.879)
self.assertTrue(R > 0.911)
self.assertTrue(F > 0.895)
def test_sentiment_assessment(self):
# Assert that en.sentiment() has a fine-grained "assessments" property.
v = en.sentiment("A warm and pleasant day.").assessments
self.assertTrue(v[1][0][0] == "pleasant")
self.assertTrue(v[1][1] > 0)
print("pattern.en.sentiment().assessments")
def test_polarity(self):
# Assert that en.polarity() yields en.sentiment()[0].
s = "A great day!"
self.assertTrue(en.polarity(s) == en.sentiment(s)[0])
print("pattern.en.polarity()")
def test_subjectivity(self):
# Assert that en.subjectivity() yields en.sentiment()[1].
s = "A great day!"
self.assertTrue(en.subjectivity(s) == en.sentiment(s)[1])
print("pattern.en.subjectivity()")
def test_positive(self):
# Assert that en.positive() yields polarity >= 0.1.
s = "A great day!"
self.assertTrue(en.positive(s))
print("pattern.en.subjectivity()")
def test_sentiwordnet(self):
# Assert < 0 for negative words and > 0 for positive words.
try:
from pattern.text.en.wordnet import SentiWordNet
lexicon = SentiWordNet()
lexicon.load()
except ImportError as e:
# SentiWordNet data file is not installed in default location, stop test.
print(e)
return
self.assertTrue(lexicon["wonderful"][0] > 0)
self.assertTrue(lexicon["horrible"][0] < 0)
print("pattern.en.sentiment.SentiWordNet")
#---------------------------------------------------------------------------------------------------
class TestWordNet(unittest.TestCase):
def setUp(self):
pass
def test_normalize(self):
# Assert normalization of simple diacritics (WordNet does not store diacritics).
self.assertEqual(en.wordnet.normalize("cliché"), "cliche")
self.assertEqual(en.wordnet.normalize("façade"), "facade")
print("pattern.en.wordnet.normalize()")
def test_version(self):
print("WordNet " + en.wordnet.VERSION)
def test_synsets(self):
# Assert synsets by part-of-speech.
for word, pos in (
("cat", en.wordnet.NOUN),
("purr", en.wordnet.VERB),
("nice", en.wordnet.ADJECTIVE),
("nicely", en.wordnet.ADVERB),
("cat", "nn"),
("cat", "NNS")):
self.assertTrue(en.wordnet.synsets(word, pos) != [])
# Assert TypeError when part-of-speech is not NOUN, VERB, ADJECTIVE or ADVERB.
self.assertRaises(TypeError, en.wordnet.synsets, "cat", "unknown_pos")
print("pattern.en.wordnet.synsets()")
def test_synset(self):
v = en.wordnet.synsets("puma")[0]
# Assert Synset(id).
self.assertEqual(v, en.wordnet.Synset(v.id))
self.assertEqual(v.pos, en.wordnet.NOUN)
self.assertAlmostEqual(v.ic, 0.0, places=1)
self.assertTrue("cougar" in v.synonyms) # ["cougar", "puma", "catamount", ...]
self.assertTrue("feline" in v.gloss) # "large American feline resembling a lion"
# Assert WordNet relations.
s = en.wordnet.synsets
v = s("tree")[0]
self.assertTrue(v.hypernym in v.hypernyms())
self.assertTrue(s("woody plant")[0] in v.hypernyms())
self.assertTrue(s("entity")[0] in v.hypernyms(recursive=True))
self.assertTrue(s("beech")[0] in v.hyponyms())
self.assertTrue(s("red beech")[0] in v.hyponyms(recursive=True))
self.assertTrue(s("trunk")[0] in v.meronyms())
self.assertTrue(s("forest")[0] in v.holonyms())
# Assert Lin-similarity.
self.assertTrue(
v.similarity(s("flower")[0]) >
v.similarity(s("teapot")[0]))
print("pattern.en.wordnet.Synset")
def test_ancenstor(self):
# Assert least-common-subsumer algorithm.
v1 = en.wordnet.synsets("cat")[0]
v2 = en.wordnet.synsets("dog")[0]
self.assertTrue(en.wordnet.ancestor(v1, v2) == en.wordnet.synsets("carnivore")[0])
print("pattern.en.wordnet.ancestor()")
def test_map32(self):
# Assert sense mapping from WN 3.0 to 2.1.
self.assertEqual(en.wordnet.map32(18850, "JJ"), (19556, "JJ"))
self.assertEqual(en.wordnet.map32(1382437, "VB"), (1370230, "VB"))
print("pattern.en.wordnet.map32")
def test_sentiwordnet(self):
# Assert SentiWordNet is loaded correctly.
if en.wordnet.sentiwordnet is None:
return
try:
en.wordnet.sentiwordnet.load()
except ImportError:
return
v = en.wordnet.synsets("anguish")[0]
self.assertEqual(v.weight, (-0.625, 0.625))
v = en.wordnet.synsets("enzymology")[0]
self.assertEqual(v.weight, (0.125, 0.125))
print("pattern.en.wordnet.sentiwordnet")
#---------------------------------------------------------------------------------------------------
class TestWordlists(unittest.TestCase):
def setUp(self):
pass
def test_wordlist(self):
# Assert lazy loading Wordlist.
v = en.wordlist.STOPWORDS
self.assertTrue("the" in v)
# Assert Wordlist to dict.
v = dict.fromkeys(en.wordlist.STOPWORDS, True)
self.assertTrue("the" in v)
# Assert new Wordlist by adding other Wordlists.
v = en.wordlist.STOPWORDS + en.wordlist.ACADEMIC
self.assertTrue("the" in v)
self.assertTrue("dr." in v)
print("pattern.en.wordlist.Wordlist")
#---------------------------------------------------------------------------------------------------
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestInflection))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestQuantification))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestSpelling))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestParser))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestParseTree))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestModality))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestSentiment))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestWordNet))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestWordlists))
return suite
if __name__ == "__main__":
result = unittest.TextTestRunner(verbosity=1).run(suite())
sys.exit(not result.wasSuccessful())
|