1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742
|
# -*- coding: utf-8 -*-
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
from pattern import graph
from pattern.graph import commonsense
from builtins import str, bytes, int, dict
from builtins import map, zip, filter
from builtins import object, range
#---------------------------------------------------------------------------------------------------
class TestUtilityFunctions(unittest.TestCase):
def setUp(self):
pass
def test_deepcopy(self):
# Object with a copy() method are responsible for deep-copying themselves.
class MyObject(object):
def __init__(self, i):
self.i = i
def copy(self):
return MyObject(graph.deepcopy(self.i))
# Assert deep copy for different types.
for o1 in (
None, True, False,
"a",
1, 1.0, int(1), complex(1),
list([1]), tuple([1]), set([1]), frozenset([1]),
dict(a=1), {frozenset(["a"]): 1}, {MyObject(1): 1},
MyObject(1)):
o2 = graph.deepcopy(o1)
if isinstance(o2, (list, tuple, set, dict, MyObject)):
self.assertTrue(id(o1) != id(o2))
print("pattern.graph.deepcopy()")
def test_unique(self):
# Assert list copy with unique items.
v = graph.unique([1, 1, 1])
self.assertEqual(len(v), 1)
self.assertEqual(v[0], 1)
print("pattern.graph.unique()")
def test_coordinates(self):
# Assert 2D coordinates.
x, y = graph.coordinates(10, 10, 100, 30)
self.assertAlmostEqual(x, 96.60, places=2)
self.assertAlmostEqual(y, 60.00, places=2)
print("pattern.graph.coordinates()")
#---------------------------------------------------------------------------------------------------
class TestNode(unittest.TestCase):
def setUp(self):
# Create test graph.
self.g = graph.Graph()
self.g.add_node("a", radius=5, stroke=(0, 0, 0, 1), strokewidth=1, fill=None, text=(0, 0, 0, 1))
self.g.add_node("b", radius=5)
self.g.add_node("c", radius=5)
self.g.add_edge("a", "b")
self.g.add_edge("b", "c")
def test_node(self):
# Assert node properties.
n = self.g["a"]
self.assertTrue(isinstance(n, graph.Node))
self.assertTrue(n == self.g["a"])
self.assertTrue(n != self.g["b"])
self.assertTrue(n.graph == self.g)
self.assertTrue(n._distance == self.g.distance)
self.assertTrue(n.id == "a")
self.assertTrue(n.x == 0.0)
self.assertTrue(n.y == 0.0)
self.assertTrue(n.force.x == graph.Vector(0.0, 0.0).x)
self.assertTrue(n.force.y == graph.Vector(0.0, 0.0).y)
self.assertTrue(n.radius == 5)
self.assertTrue(n.fill is None)
self.assertTrue(n.stroke == (0, 0, 0, 1))
self.assertTrue(n.strokewidth == 1)
self.assertTrue(n.text.string == "a")
self.assertTrue(n.text.width == 85)
self.assertTrue(n.text.fill == (0, 0, 0, 1))
self.assertTrue(n.text.fontsize == 11)
self.assertTrue(n.fixed == False)
self.assertTrue(n.weight == 0)
self.assertTrue(n.centrality == 0)
print("pattern.graph.Node")
def test_edge(self):
# Assert node edges.
n1 = self.g["a"]
n2 = self.g["b"]
self.assertTrue(n1.edges[0].node1.id == "a")
self.assertTrue(n1.edges[0].node2.id == "b")
self.assertTrue(n1.links[0].id == "b")
self.assertTrue(n1.links[0] == self.g.edges[0].node2)
self.assertTrue(n1.links.edge("b") == self.g.edges[0])
self.assertTrue(n1.links.edge(n2) == self.g.edges[0])
print("pattern.graph.Node.links")
print("pattern.graph.Node.edges")
def test_flatten(self):
# Assert node spreading activation.
n = self.g["a"]
self.assertTrue(set(n.flatten(depth=0)) == set([n]))
self.assertTrue(set(n.flatten(depth=1)) == set([n, n.links[0]]))
self.assertTrue(set(n.flatten(depth=2)) == set(self.g.nodes))
print("pattern.graph.Node.flatten()")
def test_text(self):
n = self.g.add_node("d", text=None)
self.assertTrue(n.text is None)
print("pattern.graph.Node.text")
#---------------------------------------------------------------------------------------------------
class TestEdge(unittest.TestCase):
def setUp(self):
# Create test graph.
self.g = graph.Graph()
self.g.add_node("a")
self.g.add_node("b")
self.g.add_edge("a", "b", weight=0.0, length=1.0, type="is-a", stroke=(0, 0, 0, 1), strokewidth=1)
def test_edge(self):
# Assert edge properties.
e = self.g.edges[0]
self.assertTrue(isinstance(e, graph.Edge))
self.assertTrue(e.node1 == self.g["a"])
self.assertTrue(e.node2 == self.g["b"])
self.assertTrue(e.weight == 0.0)
self.assertTrue(e.length == 1.0)
self.assertTrue(e.type == "is-a")
self.assertTrue(e.stroke == (0, 0, 0, 1))
self.assertTrue(e.strokewidth == 1)
print("pattern.graph.Edge")
#---------------------------------------------------------------------------------------------------
class TestGraph(unittest.TestCase):
def setUp(self):
# Create test graph.
self.g = graph.Graph(layout=graph.SPRING, distance=10.0)
self.g.add_node("a")
self.g.add_node("b")
self.g.add_node("c")
self.g.add_edge("a", "b")
self.g.add_edge("b", "c")
def test_graph(self):
# Assert graph properties.
g = self.g.copy()
self.assertTrue(len(g.nodes) == 3)
self.assertTrue(len(g.edges) == 2)
self.assertTrue(g.distance == 10.0)
self.assertTrue(g.density == 2 / 3.0)
self.assertTrue(g.is_complete == False)
self.assertTrue(g.is_sparse == False)
self.assertTrue(g.is_dense)
self.assertTrue(g._adjacency is None)
self.assertTrue(isinstance(g.layout, graph.GraphLayout))
self.assertTrue(isinstance(g.layout, graph.GraphSpringLayout))
print("pattern.graph.Graph")
def test_graph_nodes(self):
# Assert graph nodes.
g = self.g.copy()
g.append(graph.Node, "d")
g.add_node("e", base=graph.Node, root=True)
self.assertTrue("d" in g)
self.assertTrue("e" in g)
self.assertTrue(g.root == g["e"])
self.assertTrue(g["e"] == g.node("e") == g.nodes[-1])
g.remove(g["d"])
g.remove(g["e"])
self.assertTrue("d" not in g)
self.assertTrue("e" not in g)
print("pattern.graph.Graph.add_node()")
def test_graph_edges(self):
# Assert graph edges.
g = self.g.copy()
v1 = g.add_edge("d", "e") # Automatically create Node(d) and Node(e).
v2 = g.add_edge("d", "e") # Yields existing edge.
v3 = g.add_edge("e", "d") # Opposite direction.
self.assertEqual(v1, v2)
self.assertEqual(v2, g.edge("d", "e"))
self.assertEqual(v3, g.edge("e", "d"))
self.assertEqual(g["d"].links.edge(g["e"]), v2)
self.assertEqual(g["e"].links.edge(g["d"]), v3)
g.remove(g["d"])
g.remove(g["e"])
# Edges d->e and e->d should now be removed automatically.
self.assertEqual(len(g.edges), 2)
print("pattern.graph.Graph.add_edge()")
def test_cache(self):
# Assert adjacency cache is flushed when nodes, edges or direction changes.
g = self.g.copy()
g.eigenvector_centrality()
self.assertEqual(g._adjacency[0]["a"], {})
self.assertEqual(g._adjacency[0]["b"]["a"], 1.0)
g.add_node("d")
g.add_node("e")
self.assertEqual(g._adjacency, None)
g.betweenness_centrality()
self.assertEqual(g._adjacency[0]["a"]["b"], 1.0)
self.assertEqual(g._adjacency[0]["b"]["a"], 1.0)
g.add_edge("d", "e", weight=0.0)
g.remove(g.node("d"))
g.remove(g.node("e"))
print("pattern.graph.Graph._adjacency")
def test_paths(self):
# Assert node paths.
g = self.g.copy()
self.assertEqual(g.paths("a", "c"), g.paths(g["a"], g["c"]))
self.assertEqual(g.paths("a", "c"), [[g["a"], g["b"], g["c"]]])
self.assertEqual(g.paths("a", "c", length=2), [])
# Assert node shortest paths.
g.add_edge("a", "c")
self.assertEqual(g.paths("a", "c", length=2), [[g["a"], g["c"]]])
self.assertEqual(g.shortest_path("a", "c"), [g["a"], g["c"]])
self.assertEqual(g.shortest_path("c", "a"), [g["c"], g["a"]])
self.assertEqual(g.shortest_path("c", "a", directed=True), None)
g.remove(g.edge("a", "c"))
g.add_node("d")
self.assertEqual(g.shortest_path("a", "d"), None)
self.assertEqual(g.shortest_paths("a")["b"], [g["a"], g["b"]])
self.assertEqual(g.shortest_paths("a")["c"], [g["a"], g["b"], g["c"]])
self.assertEqual(g.shortest_paths("a")["d"], None)
self.assertEqual(g.shortest_paths("c", directed=True)["a"], None)
g.remove(g["d"])
print("pattern.graph.Graph.paths()")
print("pattern.graph.Graph.shortest_path()")
print("pattern.graph.Graph.shortest_paths()")
def test_eigenvector_centrality(self):
# Assert eigenvector centrality.
self.assertEqual(self.g["a"]._weight, None)
v = self.g.eigenvector_centrality()
self.assertTrue(isinstance(v["a"], float))
self.assertTrue(v["a"] == v[self.g.node("a")])
self.assertTrue(v["a"] < v["c"])
self.assertTrue(v["b"] < v["c"])
print("pattern.graph.Graph.eigenvector_centrality()")
def test_betweenness_centrality(self):
# Assert betweenness centrality.
self.assertEqual(self.g["a"]._centrality, None)
v = self.g.betweenness_centrality()
self.assertTrue(isinstance(v["a"], float))
self.assertTrue(v["a"] == v[self.g.node("a")])
self.assertTrue(v["a"] < v["b"])
self.assertTrue(v["c"] < v["b"])
print("pattern.graph.Graph.betweenness_centrality()")
def test_sorted(self):
# Assert graph node sorting
o1 = self.g.sorted(order=graph.WEIGHT, threshold=0.0)
o2 = self.g.sorted(order=graph.CENTRALITY, threshold=0.0)
self.assertEqual(o1[0], self.g["c"])
self.assertEqual(o2[0], self.g["b"])
print("pattern.graph.Graph.sorted()")
def test_prune(self):
# Assert leaf pruning.
g = self.g.copy()
g.prune(1)
self.assertEqual(len(g), 1)
self.assertEqual(g.nodes, [g["b"]])
print("pattern.graph.Graph.prune()")
def test_fringe(self):
# Assert leaf fetching.
g = self.g.copy()
self.assertEqual(g.fringe(0), [g["a"], g["c"]])
self.assertEqual(g.fringe(1), [g["a"], g["b"], g["c"]])
print("pattern.graph.Graph.fringe()")
def test_split(self):
# Asset subgraph splitting.
self.assertTrue(isinstance(self.g.split(), list))
self.assertTrue(isinstance(self.g.split()[0], graph.Graph))
print("pattern.graph.Graph.split()")
def test_update(self):
# Assert node position after updating layout algorithm.
self.g.update()
for n in self.g.nodes:
self.assertTrue(n.x != 0)
self.assertTrue(n.y != 0)
self.g.layout.reset()
for n in self.g.nodes:
self.assertTrue(n.x == 0)
self.assertTrue(n.y == 0)
print("pattern.graph.Graph.update()")
def test_copy(self):
# Assert deep copy of Graph.
g1 = self.g
g2 = self.g.copy()
self.assertTrue(set(g1) == set(g2)) # Same node id's.
self.assertTrue(id(g1["a"]) != id(g2["b"])) # Different node objects.
g3 = self.g.copy(nodes=[self.g["a"], self.g["b"]])
g3 = self.g.copy(nodes=["a", "b"])
self.assertTrue(len(g3.nodes), 2)
self.assertTrue(len(g3.edges), 1)
# Assert copy with subclasses of Node and Edge.
class MyNode(graph.Node):
pass
class MyEdge(graph.Edge):
pass
g4 = graph.Graph()
g4.append(MyNode, "a")
g4.append(MyNode, "b")
g4.append(MyEdge, "a", "b")
g4 = g4.copy()
self.assertTrue(isinstance(g4.nodes[0], MyNode))
self.assertTrue(isinstance(g4.edges[0], MyEdge))
print("pattern.graph.Graph.copy()")
#---------------------------------------------------------------------------------------------------
class TestGraphLayout(unittest.TestCase):
def setUp(self):
# Create test graph.
self.g = graph.Graph(layout=graph.SPRING, distance=10.0)
self.g.add_node("a")
self.g.add_node("b")
self.g.add_node("c")
self.g.add_edge("a", "b")
self.g.add_edge("b", "c")
def test_layout(self):
# Assert GraphLayout properties.
gl = graph.GraphLayout(graph=self.g)
self.assertTrue(gl.graph == self.g)
self.assertTrue(gl.bounds == (0, 0, 0, 0))
self.assertTrue(gl.iterations == 0)
gl.update()
self.assertTrue(gl.iterations == 1)
print("pattern.graph.GraphLayout")
class TestGraphSpringLayout(TestGraphLayout):
def test_layout(self):
# Assert GraphSpringLayout properties.
gl = self.g.layout
self.assertTrue(gl.graph == self.g)
self.assertTrue(gl.k == 4.0)
self.assertTrue(gl.force == 0.01)
self.assertTrue(gl.repulsion == 50)
self.assertTrue(gl.bounds == (0, 0, 0, 0))
self.assertTrue(gl.iterations == 0)
gl.update()
self.assertTrue(gl.iterations == 1)
self.assertTrue(gl.bounds[0] < 0)
self.assertTrue(gl.bounds[1] < 0)
self.assertTrue(gl.bounds[2] > 0)
self.assertTrue(gl.bounds[3] > 0)
print("pattern.graph.GraphSpringLayout")
def test_distance(self):
# Assert 2D distance.
n1 = graph.Node()
n2 = graph.Node()
n1.x = -100
n2.x = +100
d = self.g.layout._distance(n1, n2)
self.assertEqual(d, (200.0, 0.0, 200.0, 40000.0))
print("pattern.graph.GraphSpringLayout._distance")
def test_repulsion(self):
# Assert repulsive node force.
gl = self.g.layout
d1 = gl._distance(self.g["a"], self.g["c"])[2]
gl.update()
d2 = gl._distance(self.g["a"], self.g["c"])[2]
self.assertTrue(d2 > d1)
self.g.layout.reset()
print("pattern.graph.GraphSpringLayout._repulse()")
def test_attraction(self):
# Assert attractive edge force.
gl = self.g.layout
self.g["a"].x = -100
self.g["b"].y = +100
d1 = gl._distance(self.g["a"], self.g["b"])[2]
gl.update()
d2 = gl._distance(self.g["a"], self.g["b"])[2]
self.assertTrue(d2 < d1)
print("pattern.graph.GraphSpringLayout._attract()")
#---------------------------------------------------------------------------------------------------
class TestGraphTraversal(unittest.TestCase):
def setUp(self):
# Create test graph.
self.g = graph.Graph()
self.g.add_edge("a", "b", weight=0.5)
self.g.add_edge("a", "c")
self.g.add_edge("b", "d")
self.g.add_edge("d", "e")
self.g.add_node("x")
def test_search(self):
# Assert depth-first vs. breadth-first search.
def visit(node):
a.append(node)
def traversable(node, edge):
if edge.node2.id == "e":
return False
g = self.g
a = []
graph.depth_first_search(g["a"], visit, traversable)
self.assertEqual(a, [g["a"], g["b"], g["d"], g["c"]])
a = []
graph.breadth_first_search(g["a"], visit, traversable)
self.assertEqual(a, [g["a"], g["b"], g["c"], g["d"]])
print("pattern.graph.depth_first_search()")
print("pattern.graph.breadth_first_search()")
def test_paths(self):
# Assert depth-first all paths.
g = self.g.copy()
g.add_edge("a", "d")
for id1, id2, length, path in (
("a", "a", 1, [["a"]]),
("a", "d", 3, [["a", "d"], ["a", "b", "d"]]),
("a", "d", 2, [["a", "d"]]),
("a", "d", 1, []),
("a", "x", 1, [])):
p = graph.paths(g, id1, id2, length)
self.assertEqual(p, path)
print("pattern.graph.paths()")
def test_edges(self):
# Assert path of nodes to edges.
g = self.g
p = [g["a"], g["b"], g["d"], g["x"]]
e = list(graph.edges(p))
self.assertEqual(e, [g.edge("a", "b"), g.edge("b", "d"), None])
print("pattern.graph.edges()")
def test_adjacency(self):
# Assert adjacency map with different settings.
a = [
graph.adjacency(self.g),
graph.adjacency(self.g, directed=True),
graph.adjacency(self.g, directed=True, reversed=True),
graph.adjacency(self.g, stochastic=True),
graph.adjacency(self.g, heuristic=lambda id1, id2: 0.1),
]
for i in range(len(a)):
a[i] = sorted((id1, sorted((id2, round(w, 2)) for id2, w in p.items())) for id1, p in a[i].items())
self.assertEqual(a[0], [
("a", [("b", 0.75), ("c", 1.0)]),
("b", [("a", 0.75), ("d", 1.0)]),
("c", [("a", 1.0)]),
("d", [("b", 1.0), ("e", 1.0)]),
("e", [("d", 1.0)]),
("x", [])])
self.assertEqual(a[1], [
("a", [("b", 0.75), ("c", 1.0)]),
("b", [("d", 1.0)]),
("c", []),
("d", [("e", 1.0)]),
("e", []),
("x", [])])
self.assertEqual(a[2], [
("a", []),
("b", [("a", 0.75)]),
("c", [("a", 1.0)]),
("d", [("b", 1.0)]),
("e", [("d", 1.0)]),
("x", [])])
self.assertEqual(a[3], [
("a", [("b", 0.43), ("c", 0.57)]),
("b", [("a", 0.43), ("d", 0.57)]),
("c", [("a", 1.0)]),
("d", [("b", 0.5), ("e", 0.5)]),
("e", [("d", 1.0)]),
("x", [])])
self.assertEqual(a[4], [
("a", [("b", 0.85), ("c", 1.1)]),
("b", [("a", 0.85), ("d", 1.1)]),
("c", [("a", 1.1)]),
("d", [("b", 1.1), ("e", 1.1)]),
("e", [("d", 1.1)]),
("x", [])])
print("pattern.graph.adjacency()")
def test_dijkstra_shortest_path(self):
# Assert Dijkstra's algorithm (node1 -> node2).
g = self.g.copy()
g.add_edge("d", "a")
for id1, id2, heuristic, directed, path in (
("a", "d", None, False, ["a", "d"]),
("a", "d", None, True, ["a", "b", "d"]),
("a", "d", lambda id1, id2: id1 == "d" and id2 == "a" and 1 or 0, False, ["a", "b", "d"])):
p = graph.dijkstra_shortest_path(g, id1, id2, heuristic, directed)
self.assertEqual(p, path)
print("pattern.graph.dijkstra_shortest_path()")
def test_dijkstra_shortest_paths(self):
# Assert Dijkstra's algorithm (node1 -> all).
g = self.g.copy()
g.add_edge("d", "a")
a = [
graph.dijkstra_shortest_paths(g, "a"),
graph.dijkstra_shortest_paths(g, "a", directed=True),
graph.dijkstra_shortest_paths(g, "a", heuristic=lambda id1, id2: id1 == "d" and id2 == "a" and 1 or 0)
]
for i in range(len(a)):
a[i] = sorted(a[i].items())
self.assertEqual(a[0], [
("a", ["a"]),
("b", ["a", "b"]),
("c", ["a", "c"]),
("d", ["a", "d"]),
("e", ["a", "d", "e"]),
("x", None)])
self.assertEqual(a[1], [
("a", ["a"]),
("b", ["a", "b"]),
("c", ["a", "c"]),
("d", ["a", "b", "d"]),
("e", ["a", "b", "d", "e"]),
("x", None)])
self.assertEqual(a[2], [
("a", ["a"]),
("b", ["a", "b"]),
("c", ["a", "c"]),
("d", ["a", "b", "d"]),
("e", ["a", "b", "d", "e"]),
("x", None)])
print("pattern.graph.dijkstra_shortest_paths()")
def test_floyd_warshall_all_pairs_distance(self):
# Assert all pairs path distance.
p1 = graph.floyd_warshall_all_pairs_distance(self.g)
p2 = sorted((id1, sorted((id2, round(w, 2)) for id2, w in p.items())) for id1, p in p1.items())
self.assertEqual(p2, [
("a", [("a", 0.00), ("b", 0.75), ("c", 1.00), ("d", 1.75), ("e", 2.75)]),
("b", [("a", 0.75), ("b", 0.00), ("c", 1.75), ("d", 1.00), ("e", 2.00)]),
("c", [("a", 1.00), ("b", 1.75), ("c", 2.00), ("d", 2.75), ("e", 3.75)]),
("d", [("a", 1.75), ("b", 1.00), ("c", 2.75), ("d", 0.00), ("e", 1.00)]),
("e", [("a", 2.75), ("b", 2.00), ("c", 3.75), ("d", 1.00), ("e", 2.00)]),
("x", [])])
# Assert predecessor tree.
self.assertEqual(graph.predecessor_path(p1.predecessors, "a", "d"), ["a", "b", "d"])
print("pattern.graph.floyd_warshall_all_pairs_distance()")
#---------------------------------------------------------------------------------------------------
class TestGraphPartitioning(unittest.TestCase):
def setUp(self):
# Create test graph.
self.g = graph.Graph()
self.g.add_edge("a", "b", weight=0.5)
self.g.add_edge("a", "c")
self.g.add_edge("b", "d")
self.g.add_edge("d", "e")
self.g.add_edge("x", "y")
self.g.add_node("z")
def test_union(self):
self.assertEqual(graph.union([1, 2], [2, 3]), [1, 2, 3])
def test_intersection(self):
self.assertEqual(graph.intersection([1, 2], [2, 3]), [2])
def test_difference(self):
self.assertEqual(graph.difference([1, 2], [2, 3]), [1])
def test_partition(self):
# Assert unconnected subgraph partitioning.
g = graph.partition(self.g)
self.assertTrue(len(g) == 3)
self.assertTrue(isinstance(g[0], graph.Graph))
self.assertTrue(sorted(g[0].keys()), ["a", "b", "c", "d", "e"])
self.assertTrue(sorted(g[1].keys()), ["x", "y"])
self.assertTrue(sorted(g[2].keys()), ["z"])
print("pattern.graph.partition()")
def test_clique(self):
# Assert node cliques.
v = graph.clique(self.g, "a")
self.assertEqual(v, ["a", "b"])
self.g.add_edge("b", "c")
v = graph.clique(self.g, "a")
self.assertEqual(v, ["a", "b", "c"])
v = graph.cliques(self.g, 2)
self.assertEqual(v, [["a", "b", "c"], ["b", "d"], ["d", "e"], ["x", "y"]])
print("pattern.graph.clique()")
print("pattern.graph.cliques()")
#---------------------------------------------------------------------------------------------------
class TestGraphMaintenance(unittest.TestCase):
def setUp(self):
pass
def test_unlink(self):
# Assert remove all edges to/from Node(a).
g = graph.Graph()
g.add_edge("a", "b")
g.add_edge("a", "c")
graph.unlink(g, g["a"])
self.assertTrue(len(g.edges) == 0)
# Assert remove edges between Node(a) and Node(b)
g = graph.Graph()
g.add_edge("a", "b")
g.add_edge("a", "c")
graph.unlink(g, g["a"], "b")
self.assertTrue(len(g.edges) == 1)
print("pattern.graph.unlink()")
def test_redirect(self):
# Assert transfer connections of Node(a) to Node(d).
g = graph.Graph()
g.add_edge("a", "b")
g.add_edge("c", "a")
g.add_node("d")
graph.redirect(g, g["a"], "d")
self.assertTrue(len(g["a"].edges) == 0)
self.assertTrue(len(g["d"].edges) == 2)
self.assertTrue(g.edge("d", "c").node1 == g["c"])
print("pattern.graph.redirect()")
def test_cut(self):
# Assert unlink Node(b) and redirect a->c and a->d.
g = graph.Graph()
g.add_edge("a", "b")
g.add_edge("b", "c")
g.add_edge("b", "d")
graph.cut(g, g["b"])
self.assertTrue(len(g["b"].edges) == 0)
self.assertTrue(g.edge("a", "c") is not None)
self.assertTrue(g.edge("a", "d") is not None)
print("pattern.graph.cut()")
def test_insert(self):
g = graph.Graph()
g.add_edge("a", "b")
g.add_node("c")
graph.insert(g, g["c"], g["a"], g["b"])
self.assertTrue(g.edge("a", "b") is None)
self.assertTrue(g.edge("a", "c") is not None)
self.assertTrue(g.edge("c", "b") is not None)
print("pattern.graph.insert()")
#---------------------------------------------------------------------------------------------------
class TestGraphCommonsense(unittest.TestCase):
def setUp(self):
pass
def test_halo(self):
# Assert concept halo (e.g., latent related concepts).
g = commonsense.Commonsense()
v = [concept.id for concept in g["rose"].halo]
self.assertTrue("red" in v)
self.assertTrue("romance" in v)
# Concept.properties is the list of properties (adjectives) in the halo.
v = g["rose"].properties
self.assertTrue("red" in v)
self.assertTrue("romance" not in v)
print("pattern.graph.commonsense.Concept.halo")
print("pattern.graph.commonsense.Concept.properties")
def test_field(self):
# Assert semantic field (e.g., concept taxonomy).
g = commonsense.Commonsense()
v = [concept.id for concept in g.field("color")]
self.assertTrue("red" in v)
self.assertTrue("green" in v)
self.assertTrue("blue" in v)
print("pattern.graph.commonsense.Commonsense.field()")
def test_similarity(self):
# Assert that tiger is more similar to lion than to spoon
# (which is common sense).
g = commonsense.Commonsense()
w1 = g.similarity("tiger", "lion")
w2 = g.similarity("tiger", "spoon")
self.assertTrue(w1 > w2)
print("pattern.graph.commonsense.Commonsense.similarity()")
#---------------------------------------------------------------------------------------------------
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestUtilityFunctions))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestNode))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestEdge))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraph))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraphLayout))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraphSpringLayout))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraphTraversal))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraphPartitioning))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraphMaintenance))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestGraphCommonsense))
return suite
if __name__ == "__main__":
result = unittest.TextTestRunner(verbosity=1).run(suite())
sys.exit(not result.wasSuccessful())
|