File: test_search.py

package info (click to toggle)
python-pattern 2.6%2Bgit20180818-4.1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 95,160 kB
  • sloc: python: 28,135; xml: 15,085; javascript: 5,810; makefile: 194
file content (550 lines) | stat: -rw-r--r-- 27,045 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division

from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range

import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
import time
import re
import random

from random import seed
seed(0)

from pattern import search
from pattern.en import Sentence, parse

#---------------------------------------------------------------------------------------------------


class TestUtilityFunctions(unittest.TestCase):

    def setUp(self):
        pass

    def test_match(self):
        # Assert search._match() wildcard matching.
        for s, p, b in (
          ("rabbit" , "rabbit", True),
          ("rabbits", "rabbit*", True),
          ("rabbits", "*abbits", True),
          ("rabbits", "*abbit*", True),
          ("rabbits", "rab*its", True),
          ("rabbits", re.compile(r"ra.*?"), True)):
            self.assertEqual(search._match(s, p), b)
        print("pattern.search._match()")

    def test_unique(self):
        self.assertEqual(search.unique([1, 1, 2, 2]), [1, 2])

    def test_find(self):
        self.assertEqual(search.find(lambda v: v > 2, [1, 2, 3, 4, 5]), 3)

    def test_product(self):
        # Assert combinations of list items.
        self.assertEqual(list(search.product([], repeat=2)), [])   # No possibilities.
        self.assertEqual(list(search.product([1], repeat=0)), [()]) # One possibility: the empty set.
        self.assertEqual(list(search.product([1, 2, 3], repeat=2)),
            [(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)])
        for n, m in ((1, 9), (2, 81), (3, 729), (4, 6561)):
            v = search.product([1, 2, 3, 4, 5, 6, 7, 8, 9], repeat=n)
            self.assertEqual(len(list(v)), m)
        print("pattern.search.product()")

    def test_variations(self):
        # Assert variations include the original input (the empty list has one variation = itself).
        v = search.variations([])
        self.assertEqual(v, [()])
        # Assert variations = (1,) and ().
        v = search.variations([1], optional=lambda item: item == 1)
        self.assertEqual(v, [(1,), ()])
        # Assert variations = the original input, (2,), (1,) and ().
        v = search.variations([1, 2], optional=lambda item: item in (1, 2))
        self.assertEqual(v, [(1, 2), (2,), (1,), ()])
        # Assert variations are sorted longest-first.
        v = search.variations([1, 2, 3, 4], optional=lambda item: item in (1, 2))
        self.assertEqual(v, [(1, 2, 3, 4), (2, 3, 4), (1, 3, 4), (3, 4)])
        self.assertTrue(len(v[0]) >= len(v[1]) >= len(v[2]), len(v[3]))
        print("pattern.search.variations()")

    def test_odict(self):
        # Assert odict.append() which must be order-preserving.
        v = search.odict()
        v.push(("a", 1))
        v.push(("b", 2))
        v.push(("c", 3))
        v.push(("a", 0))
        v = v.copy()
        self.assertTrue(isinstance(v, dict))
        self.assertEqual(v.keys(), ["a", "c", "b"])
        print("pattern.search.odict()")

#---------------------------------------------------------------------------------------------------


class TestTaxonomy(unittest.TestCase):

    def setUp(self):
        pass

    def test_taxonomy(self):
        # Assert Taxonomy search.
        t = search.Taxonomy()
        t.append("King Arthur", type="knight", value=1)
        t.append("Sir Bedevere", type="knight", value=2)
        t.append("Sir Lancelot", type="knight", value=3)
        t.append("Sir Gallahad", type="knight", value=4)
        t.append("Sir Robin", type="knight", value=5)
        t.append("John Cleese", type="Sir Lancelot")
        t.append("John Cleese", type="Basil Fawlty")
        # Matching is case-insensitive, results are lowercase.
        self.assertTrue("John Cleese" in t)
        self.assertTrue("john cleese" in t)
        self.assertEqual(t.classify("King Arthur"), "knight")
        self.assertEqual(t.value("King Arthur"), 1)
        self.assertEqual(t.parents("John Cleese"), ["basil fawlty", "sir lancelot"])
        self.assertEqual(t.parents("John Cleese", recursive=True), [
            "basil fawlty",
            "sir lancelot",
            "knight"])
        self.assertEqual(t.children("knight"), [
            "sir robin",
            "sir gallahad",
            "sir lancelot",
            "sir bedevere",
            "king arthur"])
        self.assertEqual(t.children("knight", recursive=True), [
            "sir robin",
            "sir gallahad",
            "sir lancelot",
            "sir bedevere",
            "king arthur",
            "john cleese"])
        print("pattern.search.Taxonomy")

    def test_classifier(self):
        # Assert taxonomy classifier + keyword arguments.
        c1 = search.Classifier(parents=lambda word, chunk=None: word.endswith("ness") and ["quality"] or [])
        c2 = search.Classifier(parents=lambda word, chunk=None: chunk == "VP" and ["action"] or [])
        t = search.Taxonomy()
        t.classifiers.append(c1)
        t.classifiers.append(c2)
        self.assertEqual(t.classify("fuzziness"), "quality")
        self.assertEqual(t.classify("run", chunk="VP"), "action")
        print("pattern.search.Classifier")

    def test_wordnet_classifier(self):
        # Assert WordNet classifier parents & children.
        c = search.WordNetClassifier()
        t = search.Taxonomy()
        t.classifiers.append(c)
        self.assertEqual(t.classify("cat"), "feline")
        self.assertEqual(t.classify("dog"), "canine")
        self.assertTrue("domestic_cat" in t.children("cat"))
        self.assertTrue("puppy" in t.children("dog"))
        print("pattern.search.WordNetClassifier")

#---------------------------------------------------------------------------------------------------


class TestConstraint(unittest.TestCase):

    def setUp(self):
        pass

    def _test_constraint(self, constraint, **kwargs):
        # Assert Constraint property values with given optional parameters.
        self.assertEqual(constraint.words,    kwargs.get("words",    []))
        self.assertEqual(constraint.tags,     kwargs.get("tags",     []))
        self.assertEqual(constraint.chunks,   kwargs.get("chunks",   []))
        self.assertEqual(constraint.roles,    kwargs.get("roles",    []))
        self.assertEqual(constraint.taxa,     kwargs.get("taxa",     []))
        self.assertEqual(constraint.optional, kwargs.get("optional", False))
        self.assertEqual(constraint.multiple, kwargs.get("multiple", False))
        self.assertEqual(constraint.first,    kwargs.get("first",    False))
        self.assertEqual(constraint.exclude,  kwargs.get("exclude",  None))
        self.assertEqual(constraint.taxonomy, kwargs.get("taxonomy", search.taxonomy))

    def test_fromstring(self):
        # Assert Constraint string syntax.
        for s, kwargs in (
          (        "cats", dict( words = ["cats"])),
          (        "Cat*", dict( words = ["cat*"])),
          (   "\\[cat\\]", dict( words = ["[cat]"])),
          ("[black cats]", dict( words = ["black cats"])),
          (  "black_cats", dict( words = ["black cats"])),
          ("black\\_cats", dict( words = ["black_cats"])),
          (         "NNS", dict(  tags = ["NNS"])),
          (     "NN*|VB*", dict(  tags = ["NN*", "VB*"])),
          (          "NP", dict(chunks = ["NP"])),
          (         "SBJ", dict( roles = ["SBJ"])),
          (        "CATS", dict(  taxa = ["cats"])),
          (       "cats?", dict( words = ["cats"], optional=True)),
          (      "(cats)", dict( words = ["cats"], optional=True)),
          (  "\\(cats\\)", dict( words = ["(cats)"])),
          (       "cats+", dict( words = ["cats"], multiple=True)),
          (     "cats\\+", dict( words = ["cats+"])),
          (   "cats+dogs", dict( words = ["cats+dogs"])),
          (     "(cats+)", dict( words = ["cats"], optional=True, multiple=True)),
          (     "(cats)+", dict( words = ["cats"], optional=True, multiple=True)),
          (      "cats+?", dict( words = ["cats"], optional=True, multiple=True)),
          (      "cats?+", dict( words = ["cats"], optional=True, multiple=True)),
          ( "^[fat cat]?", dict( words = ["fat cat"], first=True, optional=True)),
          ( "[^fat cat?]", dict( words = ["fat cat"], first=True, optional=True)),
          ( "cats\\|dogs", dict( words = ["cats|dogs"])),
          (   "cats|dogs", dict( words = ["cats", "dogs"])),
          (        "^cat", dict( words = ["cat"], first=True)),
          (      "\\^cat", dict( words = ["^cat"])),
          (     "(cat*)+", dict( words = ["cat*"], optional=True, multiple=True)),
          ( "^black_cat+", dict( words = ["black cat"], multiple=True, first=True)),
          (  "black\[cat", dict( words = ["black[cat"])),
          (  "black\(cat", dict( words = ["black(cat"])),
          (  "black\{cat", dict( words = ["black{cat"])),
          (  "black\|cat", dict( words = ["black|cat"])),
          (  "black\!cat", dict( words = ["black!cat"])),
          (  "black\^cat", dict( words = ["black^cat"])),
          (  "black\+cat", dict( words = ["black+cat"])),
          (  "black\?cat", dict( words = ["black?cat"])),
          (    "cats|NN*", dict( words = ["cats"], tags=["NN*"]))):
            self._test_constraint(search.Constraint.fromstring(s), **kwargs)
        # Assert non-alpha taxonomy items.
        t = search.Taxonomy()
        t.append("0.5", type="0.5")
        t.append("half", type="0.5")
        v = search.Constraint.fromstring("0.5", taxonomy=t)
        # Assert non-alpha words without taxonomy.
        self.assertTrue(v.taxa == ["0.5"])
        v = search.Constraint.fromstring("0.5")
        # Assert exclude Constraint.
        self.assertTrue(v.words == ["0.5"])
        v = search.Constraint.fromstring("\\!cats|!dogs|!fish")
        self.assertTrue(v.words == ["!cats"])
        self.assertTrue(v.exclude.words == ["dogs", "fish"])
        print("pattern.search.Constraint.fromstring")
        print("pattern.search.Constraint.fromstring")

    def test_match(self):
        # Assert Constraint-Word matching.
        R = search.Constraint.fromstring
        S = lambda s: Sentence(parse(s, relations=True, lemmata=True))
        W = lambda s, tag=None, index=0: search.Word(None, s, tag, index)
        for constraint, tests in (
          (R("cat|dog"),  [(W("cat"), 1), (W("dog"), 1), (W("fish"), 0)]),
          (R("cat*"),     [(W("cats"), 1)]),
          (R("*cat"),     [(W("tomcat"), 1)]),
          (R("c*t|d*g"),  [(W("cat"), 1), (W("cut"), 1), (W("dog"), 1), (W("dig"), 1)]),
          (R("cats|NN*"), [(W("cats", "NNS"), 1), (W("cats"), 0)]),
          (R("^cat"),     [(W("cat", "NN", index=0), 1), (W("cat", "NN", index=1), 0)]),
          (R("*|!cat"),   [(W("cat"), 0), (W("dog"), 1), (W("fish"), 1)]),
          (R("my cat"),   [(W("cat"), 0)]),
          (R("my cat"),   [(S("my cat").words[1], 1)]),  # "my cat" is an overspecification of "cat"
          (R("my_cat"),   [(S("my cat").words[1], 1)]),
          (R("cat|NP"),   [(S("my cat").words[1], 1)]),
          (R("dog|VP"),   [(S("my dog").words[1], 0)]),
          (R("cat|SBJ"),  [(S("the cat is sleeping").words[1], 1)]),
          (R("dog"),      [(S("MY DOGS").words[1], 1)]), # lemma matches
          (R("dog"),      [(S("MY DOG").words[1], 1)])): # case-insensitive
            for test, b in tests:
                self.assertEqual(constraint.match(test), bool(b))
        # Assert Constraint-Taxa matching.
        t = search.Taxonomy()
        t.append("Tweety", type="bird")
        t.append("Steven", type="bird")
        v = search.Constraint.fromstring("BIRD", taxonomy=t)
        self.assertTrue(v.match(W("bird")))
        self.assertTrue(v.match(S("tweeties")[0]))
        self.assertTrue(v.match(W("Steven")))
        print("pattern.search.Constraint.match()")

    def test_string(self):
        # Assert Constraint.string.
        v = search.Constraint()
        v.words = ["Steven\\*"]
        v.tags = ["NN*"]
        v.roles = ["SBJ"]
        v.taxa = ["(associate) professor"]
        v.exclude = search.Constraint(["bird"])
        v.multiple = True
        v.first = True
        self.assertEqual(v.string, "^[Steven\\*|NN*|SBJ|\(ASSOCIATE\)_PROFESSOR|!bird]+")
        print("pattern.search.Constraint.string")

#---------------------------------------------------------------------------------------------------


class TestPattern(unittest.TestCase):

    def setUp(self):
        pass

    def test_pattern(self):
        # Assert Pattern properties.
        v = search.Pattern([
            search.Constraint("a|an|the"),
            search.Constraint("JJ*"),
            search.Constraint("cat")], search.STRICT)
        self.assertEqual(len(v), 3)
        self.assertEqual(v.strict, True)
        print("pattern.search.Pattern")

    def test_fromstring(self):
        # Assert Pattern string syntax.
        v = search.Pattern.fromstring("a|an|the JJ*? cat*")
        self.assertEqual(v[0].words,    ["a", "an", "the"])
        self.assertEqual(v[1].tags,     ["JJ*"])
        self.assertEqual(v[1].optional, True)
        self.assertEqual(v[2].words,    ["cat*"])
        # Assert escaped control characters.
        v = search.Pattern.fromstring("[\\[Figure 1\\]] VP")
        self.assertEqual(v[0].words,    ["[figure 1]"])
        self.assertEqual(v[1].chunks,   ["VP"])
        # Assert messy syntax (fix brackets and whitespace, don't fix empty options).
        v = search.Pattern.fromstring("[avoid][|!|messy  |syntax |]")
        self.assertEqual(v[0].words,    ["avoid"])
        self.assertEqual(v[1].words,    ["", "messy", "syntax", ""])
        self.assertEqual(v[1].exclude.words, [""]) # "!" = exclude everything
        print("pattern.search.Pattern.fromstring()")

    def test_match(self):
        # Assert Pattern.match()
        P = search.Pattern.fromstring
        X = search.STRICT
        S = lambda s: Sentence(parse(s, relations=True, lemmata=True))
        for i, (pattern, test, match) in enumerate((
          (P("^rabbit"),                  "white rabbit",     None),                  #  0
          (P("^rabbit"),                        "rabbit",     "rabbit"),              #  1
          (P("rabbit"),               "big white rabbit",     "rabbit"),              #  2
          (P("rabbit*"),              "big white rabbits",    "rabbits"),             #  3
          (P("JJ|NN"),              S("big white rabbits"),   "big"),                 #  4
          (P("JJ+"),                S("big white rabbits"),   "big white"),           #  5
          (P("JJ+ NN*"),            S("big white rabbits"),   "big white rabbits"),   #  6
          (P("JJ black|white NN*"), S("big white rabbits"),   "big white rabbits"),   #  7
          (P("NP"),                 S("big white rabbit"),    "big white rabbit"),    #  8
          (P("big? rabbit", X),     S("big white rabbit"),    "rabbit"),              #  9 strict
          (P("big? rabbit|NN"),     S("big white rabbit"),    "rabbit"),              # 10 explicit
          (P("big? rabbit"),        S("big white rabbit"),    "big white rabbit"),    # 11 greedy
          (P("rabbit VP JJ"),       S("the rabbit was huge"), "the rabbit was huge"), # 12
          (P("rabbit be JJ"),       S("the rabbit was huge"), "the rabbit was huge"), # 13 lemma
          (P("rabbit be JJ", X),    S("the rabbit was huge"), "rabbit was huge"),     # 14
          (P("rabbit is JJ"),       S("the rabbit was huge"), None),                  # 15
          (P("the NP"),             S("the rabid rodents"),   "the rabid rodents"),   # 16 overlap
          (P("t*|r*+"),             S("the rabid rodents"),   "the rabid rodents"),   # 17
          (P("(DT) JJ? NN*"),       S("the rabid rodents"),   "the rabid rodents"),   # 18
          (P("(DT) JJ? NN*"),       S("the rabbit"),          "the rabbit"),          # 19
          (P("rabbit"),             S("the big rabbit"),      "the big rabbit"),      # 20 greedy
          (P("eat carrot"),         S("is eating a carrot"),  "is eating a carrot"),  # 21
          (P("eat carrot|NP"),      S("is eating a carrot"),  "is eating a carrot"),  # 22
          (P("eat NP"),             S("is eating a carrot"),  "is eating a carrot"),  # 23
          (P("eat a"),              S("is eating a carrot"),  "is eating a"),         # 24
          (P("!NP carrot"),         S("is eating a carrot"),  "is eating a carrot"),  # 25
          (P("eat !pizza"),         S("is eating a carrot"),  "is eating a carrot"),  # 26
          (P("eating a"),           S("is eating a carrot"),  "is eating a"),         # 27
          (P("eating !carrot", X),  S("is eating a carrot"),  "eating a"),            # 28
          (P("eat !carrot"),        S("is eating a carrot"),  None),                  # 28 NP chunk is a carrot
          (P("eat !DT"),            S("is eating a carrot"),  None),                  # 30 eat followed by DT
          (P("eat !NN"),            S("is eating a carrot"),  "is eating a"),         # 31 a/DT is not NN
          (P("!be carrot"),         S("is eating a carrot"),  "is eating a carrot"),  # 32 is eating == eat != is
          (P("!eat|VP carrot"),     S("is eating a carrot"),  None),                  # 33 VP chunk == eat
          (P("white_rabbit"),       S("big white rabbit"),    None),                  # 34
          (P("[white rabbit]"),     S("big white rabbit"),    None),                  # 35
          (P("[* white rabbit]"),   S("big white rabbit"),    "big white rabbit"),    # 36
          (P("[big * rabbit]"),     S("big white rabbit"),    "big white rabbit"),    # 37
          (P("big [big * rabbit]"), S("big white rabbit"),    "big white rabbit"),    # 38
          (P("[*+ rabbit]"),        S("big white rabbit"),    None),                  # 39 bad pattern: "+" is literal
        )):
            m = pattern.match(test)
            self.assertTrue(getattr(m, "string", None) == match)
        # Assert chunk with head at the front.
        s = S("Felix the cat")
        self.assertEqual(P("felix").match(s).string, "Felix the cat")
        # Assert negation + custom greedy() function.
        s = S("the big white rabbit")
        g = lambda chunk, constraint: len([w for w in chunk if not constraint.match(w)]) == 0
        self.assertEqual(P("!white").match(s).string, "the big white rabbit") # a rabbit != white
        self.assertEqual(P("!white", greedy=g).match(s), None)                # a white rabbit == white
        # Assert taxonomy items with spaces.
        s = S("Bugs Bunny is a giant talking rabbit.")
        t = search.Taxonomy()
        t.append("rabbit", type="rodent")
        t.append("Bugs Bunny", type="rabbit")
        self.assertEqual(P("RABBIT", taxonomy=t).match(s).string, "Bugs Bunny")
        # Assert None, the syntax cannot handle taxonomy items that span multiple chunks.
        s = S("Elmer Fudd fires a cannon")
        t = search.Taxonomy()
        t.append("fire cannon", type="violence")
        self.assertEqual(P("VIOLENCE").match(s), None)
        # Assert regular expressions.
        s = S("a sack with 3.5 rabbits")
        p = search.Pattern.fromstring("[] NNS")
        p[0].words.append(re.compile(r"[0-9|\.]+"))
        self.assertEqual(p.match(s).string, "3.5 rabbits")
        print("pattern.search.Pattern.match()")

    def test_search(self):
        # Assert one match containing all words.
        v = search.Pattern.fromstring("*+")
        v = v.search("one two three")
        self.assertEqual(v[0].string, "one two three")
        # Assert one match for each word.
        v = search.Pattern.fromstring("*")
        v = v.search("one two three")
        self.assertEqual(v[0].string, "one")
        self.assertEqual(v[1].string, "two")
        self.assertEqual(v[2].string, "three")
        # Assert all variations are matched (sentence starts with a NN* which must be caught).
        v = search.Pattern.fromstring("(DT) JJ?+ NN*")
        v = v.search(Sentence(parse("dogs, black cats and a big white rabbit")))
        self.assertEqual(v[0].string, "dogs")
        self.assertEqual(v[1].string, "black cats")
        self.assertEqual(v[2].string, "a big white rabbit")
        v = search.Pattern.fromstring("NN*")
        print("pattern.search.Pattern.search()")

    def test_convergence(self):
        # Test with random sentences and random patterns to see if it crashes.
        w = ("big", "white", "rabbit", "black", "cats", "is", "was", "going", "to", "sleep", "sleepy", "very", "or")
        x = ("DT?", "JJ?+", "NN*", "VP?", "cat", "[*]")
        for i in range(100):
            s = " ".join(random.choice(w) for i in range(20))
            s = Sentence(parse(s, lemmata=True))
            p = " ".join(random.choice(x) for i in range(5))
            p = search.Pattern.fromstring(p)
            p.search(s)

    def test_compile_function(self):
        # Assert creating and caching Pattern with compile().
        t = search.Taxonomy()
        p = search.compile("JJ?+ NN*", search.STRICT, taxonomy=t)
        self.assertEqual(p.strict, True)
        self.assertEqual(p[0].optional, True)
        self.assertEqual(p[0].tags, ["JJ"])
        self.assertEqual(p[1].tags, ["NN*"])
        self.assertEqual(p[1].taxonomy, t)
        # Assert regular expression input.
        p = search.compile(re.compile(r"[0-9|\.]+"))
        self.assertTrue(isinstance(p[0].words[0], search.regexp))
        # Assert TypeError for other input.
        self.assertRaises(TypeError, search.compile, 1)
        print("pattern.search.compile()")

    def test_match_function(self):
        # Assert match() function.
        s = Sentence(parse("Go on Bors, chop his head off!"))
        m1 = search.match("chop NP off", s, strict=False)
        m2 = search.match("chop NP+ off", s, strict=True)
        self.assertEqual(m1.constituents()[1].string, "his head")
        self.assertEqual(m2.constituents()[1].string, "his head")
        print("pattern.search.match()")

    def test_search_function(self):
        # Assert search() function.
        s = Sentence(parse("Go on Bors, chop his head off!"))
        m = search.search("PRP*? NN*", s)
        self.assertEqual(m[0].string, "Bors")
        self.assertEqual(m[1].string, "his head")
        print("pattern.search.search()")

    def test_escape(self):
        # Assert escape() function.
        self.assertEqual(search.escape("{}[]()_|!*+^."), "\\{\\}\\[\\]\\(\\)\\_\\|\\!\\*\\+\\^.")
        print("pattern.search.escape()")

#---------------------------------------------------------------------------------------------------


class TestMatch(unittest.TestCase):

    def setUp(self):
        pass

    def test_match(self):
        # Assert Match properties.
        s = Sentence(parse("Death awaits you all with nasty, big, pointy teeth."))
        p = search.Pattern(sequence=[
            search.Constraint(tags=["JJ"], optional=True),
            search.Constraint(tags=["NN*"])])
        m = p.search(s)
        self.assertTrue(isinstance(m, list))
        self.assertEqual(m[0].pattern, p)
        self.assertEqual(m[1].pattern, p)
        self.assertEqual(m[0].words, [s.words[0]])
        self.assertEqual(m[1].words, [s.words[-3], s.words[-2]])
        # Assert contraint "NN*" links to "Death" and "teeth", and "JJ" to "pointy".
        self.assertEqual(m[0].constraint(s.words[0]), p[1])
        self.assertEqual(m[1].constraint(s.words[-3]), p[0])
        self.assertEqual(m[1].constraint(s.words[-2]), p[1])
        # Assert constraints "JJ NN*" links to chunk "pointy teeth".
        self.assertEqual(m[1].constraints(s.chunks[-1]), [p[0], p[1]])
        # Assert Match.constituents() by constraint, constraint index and list of indices.
        self.assertEqual(m[1].constituents(), [s.words[-3], s.words[-2]])
        self.assertEqual(m[1].constituents(constraint=p[0]), [s.words[-3]])
        self.assertEqual(m[1].constituents(constraint=1), [s.words[-2]])
        self.assertEqual(m[1].constituents(constraint=(0, 1)), [s.words[-3], s.words[-2]])
        # Assert Match.string.
        self.assertEqual(m[1].string, "pointy teeth")
        print("pattern.search.Match")

    def test_group(self):
        # Assert Match groups.
        s = Sentence(parse("the big black cat eats a tasty fish"))
        m = search.search("DT {JJ+} NN", s)
        self.assertEqual(m[0].group(1).string, "big black")
        self.assertEqual(m[1].group(1).string, "tasty")
        # Assert nested groups (and syntax with additional spaces).
        m = search.search("DT { JJ { JJ { NN }}}", s)
        self.assertEqual(m[0].group(1).string, "big black cat")
        self.assertEqual(m[0].group(2).string, "black cat")
        self.assertEqual(m[0].group(3).string, "cat")
        # Assert chunked groups.
        m = search.search("NP {VP NP}", s)
        v = m[0].group(1, chunked=True)
        self.assertEqual(v[0].string, "eats")
        self.assertEqual(v[1].string, "a tasty fish")
        print("pattern.search.Match.group()")

    def test_group_ordering(self):
        # Assert group parser ordering (opened-first).
        c1 = search.Constraint("1")
        c2 = search.Constraint("2")
        c3 = search.Constraint("3")
        c4 = search.Constraint("4")
        p = search.Pattern([c1, [c2, [[c3], c4]]])
        self.assertEqual(p.groups[0][0].words[0], "2")
        self.assertEqual(p.groups[0][1].words[0], "3")
        self.assertEqual(p.groups[0][2].words[0], "4")
        self.assertEqual(p.groups[1][0].words[0], "3")
        self.assertEqual(p.groups[1][1].words[0], "4")
        self.assertEqual(p.groups[2][0].words[0], "3")
        p = search.Pattern.fromstring("1 {2 {{3} 4}}")
        self.assertEqual(p.groups[0][0].words[0], "2")
        self.assertEqual(p.groups[0][1].words[0], "3")
        self.assertEqual(p.groups[0][2].words[0], "4")
        self.assertEqual(p.groups[1][0].words[0], "3")
        self.assertEqual(p.groups[1][1].words[0], "4")
        self.assertEqual(p.groups[2][0].words[0], "3")
        p = search.Pattern.fromstring("1 {2} {3} 4")
        self.assertEqual(p.groups[0][0].words[0], "2")
        self.assertEqual(p.groups[1][0].words[0], "3")

#---------------------------------------------------------------------------------------------------


def suite():
    suite = unittest.TestSuite()
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestUtilityFunctions))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestTaxonomy))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestConstraint))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestPattern))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestMatch))
    return suite

if __name__ == "__main__":

    result = unittest.TextTestRunner(verbosity=1).run(suite())
    sys.exit(not result.wasSuccessful())