1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
|
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division
from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range
import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import unittest
import time
import re
import random
from random import seed
seed(0)
from pattern import search
from pattern.en import Sentence, parse
#---------------------------------------------------------------------------------------------------
class TestUtilityFunctions(unittest.TestCase):
def setUp(self):
pass
def test_match(self):
# Assert search._match() wildcard matching.
for s, p, b in (
("rabbit" , "rabbit", True),
("rabbits", "rabbit*", True),
("rabbits", "*abbits", True),
("rabbits", "*abbit*", True),
("rabbits", "rab*its", True),
("rabbits", re.compile(r"ra.*?"), True)):
self.assertEqual(search._match(s, p), b)
print("pattern.search._match()")
def test_unique(self):
self.assertEqual(search.unique([1, 1, 2, 2]), [1, 2])
def test_find(self):
self.assertEqual(search.find(lambda v: v > 2, [1, 2, 3, 4, 5]), 3)
def test_product(self):
# Assert combinations of list items.
self.assertEqual(list(search.product([], repeat=2)), []) # No possibilities.
self.assertEqual(list(search.product([1], repeat=0)), [()]) # One possibility: the empty set.
self.assertEqual(list(search.product([1, 2, 3], repeat=2)),
[(1, 1), (1, 2), (1, 3), (2, 1), (2, 2), (2, 3), (3, 1), (3, 2), (3, 3)])
for n, m in ((1, 9), (2, 81), (3, 729), (4, 6561)):
v = search.product([1, 2, 3, 4, 5, 6, 7, 8, 9], repeat=n)
self.assertEqual(len(list(v)), m)
print("pattern.search.product()")
def test_variations(self):
# Assert variations include the original input (the empty list has one variation = itself).
v = search.variations([])
self.assertEqual(v, [()])
# Assert variations = (1,) and ().
v = search.variations([1], optional=lambda item: item == 1)
self.assertEqual(v, [(1,), ()])
# Assert variations = the original input, (2,), (1,) and ().
v = search.variations([1, 2], optional=lambda item: item in (1, 2))
self.assertEqual(v, [(1, 2), (2,), (1,), ()])
# Assert variations are sorted longest-first.
v = search.variations([1, 2, 3, 4], optional=lambda item: item in (1, 2))
self.assertEqual(v, [(1, 2, 3, 4), (2, 3, 4), (1, 3, 4), (3, 4)])
self.assertTrue(len(v[0]) >= len(v[1]) >= len(v[2]), len(v[3]))
print("pattern.search.variations()")
def test_odict(self):
# Assert odict.append() which must be order-preserving.
v = search.odict()
v.push(("a", 1))
v.push(("b", 2))
v.push(("c", 3))
v.push(("a", 0))
v = v.copy()
self.assertTrue(isinstance(v, dict))
self.assertEqual(v.keys(), ["a", "c", "b"])
print("pattern.search.odict()")
#---------------------------------------------------------------------------------------------------
class TestTaxonomy(unittest.TestCase):
def setUp(self):
pass
def test_taxonomy(self):
# Assert Taxonomy search.
t = search.Taxonomy()
t.append("King Arthur", type="knight", value=1)
t.append("Sir Bedevere", type="knight", value=2)
t.append("Sir Lancelot", type="knight", value=3)
t.append("Sir Gallahad", type="knight", value=4)
t.append("Sir Robin", type="knight", value=5)
t.append("John Cleese", type="Sir Lancelot")
t.append("John Cleese", type="Basil Fawlty")
# Matching is case-insensitive, results are lowercase.
self.assertTrue("John Cleese" in t)
self.assertTrue("john cleese" in t)
self.assertEqual(t.classify("King Arthur"), "knight")
self.assertEqual(t.value("King Arthur"), 1)
self.assertEqual(t.parents("John Cleese"), ["basil fawlty", "sir lancelot"])
self.assertEqual(t.parents("John Cleese", recursive=True), [
"basil fawlty",
"sir lancelot",
"knight"])
self.assertEqual(t.children("knight"), [
"sir robin",
"sir gallahad",
"sir lancelot",
"sir bedevere",
"king arthur"])
self.assertEqual(t.children("knight", recursive=True), [
"sir robin",
"sir gallahad",
"sir lancelot",
"sir bedevere",
"king arthur",
"john cleese"])
print("pattern.search.Taxonomy")
def test_classifier(self):
# Assert taxonomy classifier + keyword arguments.
c1 = search.Classifier(parents=lambda word, chunk=None: word.endswith("ness") and ["quality"] or [])
c2 = search.Classifier(parents=lambda word, chunk=None: chunk == "VP" and ["action"] or [])
t = search.Taxonomy()
t.classifiers.append(c1)
t.classifiers.append(c2)
self.assertEqual(t.classify("fuzziness"), "quality")
self.assertEqual(t.classify("run", chunk="VP"), "action")
print("pattern.search.Classifier")
def test_wordnet_classifier(self):
# Assert WordNet classifier parents & children.
c = search.WordNetClassifier()
t = search.Taxonomy()
t.classifiers.append(c)
self.assertEqual(t.classify("cat"), "feline")
self.assertEqual(t.classify("dog"), "canine")
self.assertTrue("domestic_cat" in t.children("cat"))
self.assertTrue("puppy" in t.children("dog"))
print("pattern.search.WordNetClassifier")
#---------------------------------------------------------------------------------------------------
class TestConstraint(unittest.TestCase):
def setUp(self):
pass
def _test_constraint(self, constraint, **kwargs):
# Assert Constraint property values with given optional parameters.
self.assertEqual(constraint.words, kwargs.get("words", []))
self.assertEqual(constraint.tags, kwargs.get("tags", []))
self.assertEqual(constraint.chunks, kwargs.get("chunks", []))
self.assertEqual(constraint.roles, kwargs.get("roles", []))
self.assertEqual(constraint.taxa, kwargs.get("taxa", []))
self.assertEqual(constraint.optional, kwargs.get("optional", False))
self.assertEqual(constraint.multiple, kwargs.get("multiple", False))
self.assertEqual(constraint.first, kwargs.get("first", False))
self.assertEqual(constraint.exclude, kwargs.get("exclude", None))
self.assertEqual(constraint.taxonomy, kwargs.get("taxonomy", search.taxonomy))
def test_fromstring(self):
# Assert Constraint string syntax.
for s, kwargs in (
( "cats", dict( words = ["cats"])),
( "Cat*", dict( words = ["cat*"])),
( "\\[cat\\]", dict( words = ["[cat]"])),
("[black cats]", dict( words = ["black cats"])),
( "black_cats", dict( words = ["black cats"])),
("black\\_cats", dict( words = ["black_cats"])),
( "NNS", dict( tags = ["NNS"])),
( "NN*|VB*", dict( tags = ["NN*", "VB*"])),
( "NP", dict(chunks = ["NP"])),
( "SBJ", dict( roles = ["SBJ"])),
( "CATS", dict( taxa = ["cats"])),
( "cats?", dict( words = ["cats"], optional=True)),
( "(cats)", dict( words = ["cats"], optional=True)),
( "\\(cats\\)", dict( words = ["(cats)"])),
( "cats+", dict( words = ["cats"], multiple=True)),
( "cats\\+", dict( words = ["cats+"])),
( "cats+dogs", dict( words = ["cats+dogs"])),
( "(cats+)", dict( words = ["cats"], optional=True, multiple=True)),
( "(cats)+", dict( words = ["cats"], optional=True, multiple=True)),
( "cats+?", dict( words = ["cats"], optional=True, multiple=True)),
( "cats?+", dict( words = ["cats"], optional=True, multiple=True)),
( "^[fat cat]?", dict( words = ["fat cat"], first=True, optional=True)),
( "[^fat cat?]", dict( words = ["fat cat"], first=True, optional=True)),
( "cats\\|dogs", dict( words = ["cats|dogs"])),
( "cats|dogs", dict( words = ["cats", "dogs"])),
( "^cat", dict( words = ["cat"], first=True)),
( "\\^cat", dict( words = ["^cat"])),
( "(cat*)+", dict( words = ["cat*"], optional=True, multiple=True)),
( "^black_cat+", dict( words = ["black cat"], multiple=True, first=True)),
( "black\[cat", dict( words = ["black[cat"])),
( "black\(cat", dict( words = ["black(cat"])),
( "black\{cat", dict( words = ["black{cat"])),
( "black\|cat", dict( words = ["black|cat"])),
( "black\!cat", dict( words = ["black!cat"])),
( "black\^cat", dict( words = ["black^cat"])),
( "black\+cat", dict( words = ["black+cat"])),
( "black\?cat", dict( words = ["black?cat"])),
( "cats|NN*", dict( words = ["cats"], tags=["NN*"]))):
self._test_constraint(search.Constraint.fromstring(s), **kwargs)
# Assert non-alpha taxonomy items.
t = search.Taxonomy()
t.append("0.5", type="0.5")
t.append("half", type="0.5")
v = search.Constraint.fromstring("0.5", taxonomy=t)
# Assert non-alpha words without taxonomy.
self.assertTrue(v.taxa == ["0.5"])
v = search.Constraint.fromstring("0.5")
# Assert exclude Constraint.
self.assertTrue(v.words == ["0.5"])
v = search.Constraint.fromstring("\\!cats|!dogs|!fish")
self.assertTrue(v.words == ["!cats"])
self.assertTrue(v.exclude.words == ["dogs", "fish"])
print("pattern.search.Constraint.fromstring")
print("pattern.search.Constraint.fromstring")
def test_match(self):
# Assert Constraint-Word matching.
R = search.Constraint.fromstring
S = lambda s: Sentence(parse(s, relations=True, lemmata=True))
W = lambda s, tag=None, index=0: search.Word(None, s, tag, index)
for constraint, tests in (
(R("cat|dog"), [(W("cat"), 1), (W("dog"), 1), (W("fish"), 0)]),
(R("cat*"), [(W("cats"), 1)]),
(R("*cat"), [(W("tomcat"), 1)]),
(R("c*t|d*g"), [(W("cat"), 1), (W("cut"), 1), (W("dog"), 1), (W("dig"), 1)]),
(R("cats|NN*"), [(W("cats", "NNS"), 1), (W("cats"), 0)]),
(R("^cat"), [(W("cat", "NN", index=0), 1), (W("cat", "NN", index=1), 0)]),
(R("*|!cat"), [(W("cat"), 0), (W("dog"), 1), (W("fish"), 1)]),
(R("my cat"), [(W("cat"), 0)]),
(R("my cat"), [(S("my cat").words[1], 1)]), # "my cat" is an overspecification of "cat"
(R("my_cat"), [(S("my cat").words[1], 1)]),
(R("cat|NP"), [(S("my cat").words[1], 1)]),
(R("dog|VP"), [(S("my dog").words[1], 0)]),
(R("cat|SBJ"), [(S("the cat is sleeping").words[1], 1)]),
(R("dog"), [(S("MY DOGS").words[1], 1)]), # lemma matches
(R("dog"), [(S("MY DOG").words[1], 1)])): # case-insensitive
for test, b in tests:
self.assertEqual(constraint.match(test), bool(b))
# Assert Constraint-Taxa matching.
t = search.Taxonomy()
t.append("Tweety", type="bird")
t.append("Steven", type="bird")
v = search.Constraint.fromstring("BIRD", taxonomy=t)
self.assertTrue(v.match(W("bird")))
self.assertTrue(v.match(S("tweeties")[0]))
self.assertTrue(v.match(W("Steven")))
print("pattern.search.Constraint.match()")
def test_string(self):
# Assert Constraint.string.
v = search.Constraint()
v.words = ["Steven\\*"]
v.tags = ["NN*"]
v.roles = ["SBJ"]
v.taxa = ["(associate) professor"]
v.exclude = search.Constraint(["bird"])
v.multiple = True
v.first = True
self.assertEqual(v.string, "^[Steven\\*|NN*|SBJ|\(ASSOCIATE\)_PROFESSOR|!bird]+")
print("pattern.search.Constraint.string")
#---------------------------------------------------------------------------------------------------
class TestPattern(unittest.TestCase):
def setUp(self):
pass
def test_pattern(self):
# Assert Pattern properties.
v = search.Pattern([
search.Constraint("a|an|the"),
search.Constraint("JJ*"),
search.Constraint("cat")], search.STRICT)
self.assertEqual(len(v), 3)
self.assertEqual(v.strict, True)
print("pattern.search.Pattern")
def test_fromstring(self):
# Assert Pattern string syntax.
v = search.Pattern.fromstring("a|an|the JJ*? cat*")
self.assertEqual(v[0].words, ["a", "an", "the"])
self.assertEqual(v[1].tags, ["JJ*"])
self.assertEqual(v[1].optional, True)
self.assertEqual(v[2].words, ["cat*"])
# Assert escaped control characters.
v = search.Pattern.fromstring("[\\[Figure 1\\]] VP")
self.assertEqual(v[0].words, ["[figure 1]"])
self.assertEqual(v[1].chunks, ["VP"])
# Assert messy syntax (fix brackets and whitespace, don't fix empty options).
v = search.Pattern.fromstring("[avoid][|!|messy |syntax |]")
self.assertEqual(v[0].words, ["avoid"])
self.assertEqual(v[1].words, ["", "messy", "syntax", ""])
self.assertEqual(v[1].exclude.words, [""]) # "!" = exclude everything
print("pattern.search.Pattern.fromstring()")
def test_match(self):
# Assert Pattern.match()
P = search.Pattern.fromstring
X = search.STRICT
S = lambda s: Sentence(parse(s, relations=True, lemmata=True))
for i, (pattern, test, match) in enumerate((
(P("^rabbit"), "white rabbit", None), # 0
(P("^rabbit"), "rabbit", "rabbit"), # 1
(P("rabbit"), "big white rabbit", "rabbit"), # 2
(P("rabbit*"), "big white rabbits", "rabbits"), # 3
(P("JJ|NN"), S("big white rabbits"), "big"), # 4
(P("JJ+"), S("big white rabbits"), "big white"), # 5
(P("JJ+ NN*"), S("big white rabbits"), "big white rabbits"), # 6
(P("JJ black|white NN*"), S("big white rabbits"), "big white rabbits"), # 7
(P("NP"), S("big white rabbit"), "big white rabbit"), # 8
(P("big? rabbit", X), S("big white rabbit"), "rabbit"), # 9 strict
(P("big? rabbit|NN"), S("big white rabbit"), "rabbit"), # 10 explicit
(P("big? rabbit"), S("big white rabbit"), "big white rabbit"), # 11 greedy
(P("rabbit VP JJ"), S("the rabbit was huge"), "the rabbit was huge"), # 12
(P("rabbit be JJ"), S("the rabbit was huge"), "the rabbit was huge"), # 13 lemma
(P("rabbit be JJ", X), S("the rabbit was huge"), "rabbit was huge"), # 14
(P("rabbit is JJ"), S("the rabbit was huge"), None), # 15
(P("the NP"), S("the rabid rodents"), "the rabid rodents"), # 16 overlap
(P("t*|r*+"), S("the rabid rodents"), "the rabid rodents"), # 17
(P("(DT) JJ? NN*"), S("the rabid rodents"), "the rabid rodents"), # 18
(P("(DT) JJ? NN*"), S("the rabbit"), "the rabbit"), # 19
(P("rabbit"), S("the big rabbit"), "the big rabbit"), # 20 greedy
(P("eat carrot"), S("is eating a carrot"), "is eating a carrot"), # 21
(P("eat carrot|NP"), S("is eating a carrot"), "is eating a carrot"), # 22
(P("eat NP"), S("is eating a carrot"), "is eating a carrot"), # 23
(P("eat a"), S("is eating a carrot"), "is eating a"), # 24
(P("!NP carrot"), S("is eating a carrot"), "is eating a carrot"), # 25
(P("eat !pizza"), S("is eating a carrot"), "is eating a carrot"), # 26
(P("eating a"), S("is eating a carrot"), "is eating a"), # 27
(P("eating !carrot", X), S("is eating a carrot"), "eating a"), # 28
(P("eat !carrot"), S("is eating a carrot"), None), # 28 NP chunk is a carrot
(P("eat !DT"), S("is eating a carrot"), None), # 30 eat followed by DT
(P("eat !NN"), S("is eating a carrot"), "is eating a"), # 31 a/DT is not NN
(P("!be carrot"), S("is eating a carrot"), "is eating a carrot"), # 32 is eating == eat != is
(P("!eat|VP carrot"), S("is eating a carrot"), None), # 33 VP chunk == eat
(P("white_rabbit"), S("big white rabbit"), None), # 34
(P("[white rabbit]"), S("big white rabbit"), None), # 35
(P("[* white rabbit]"), S("big white rabbit"), "big white rabbit"), # 36
(P("[big * rabbit]"), S("big white rabbit"), "big white rabbit"), # 37
(P("big [big * rabbit]"), S("big white rabbit"), "big white rabbit"), # 38
(P("[*+ rabbit]"), S("big white rabbit"), None), # 39 bad pattern: "+" is literal
)):
m = pattern.match(test)
self.assertTrue(getattr(m, "string", None) == match)
# Assert chunk with head at the front.
s = S("Felix the cat")
self.assertEqual(P("felix").match(s).string, "Felix the cat")
# Assert negation + custom greedy() function.
s = S("the big white rabbit")
g = lambda chunk, constraint: len([w for w in chunk if not constraint.match(w)]) == 0
self.assertEqual(P("!white").match(s).string, "the big white rabbit") # a rabbit != white
self.assertEqual(P("!white", greedy=g).match(s), None) # a white rabbit == white
# Assert taxonomy items with spaces.
s = S("Bugs Bunny is a giant talking rabbit.")
t = search.Taxonomy()
t.append("rabbit", type="rodent")
t.append("Bugs Bunny", type="rabbit")
self.assertEqual(P("RABBIT", taxonomy=t).match(s).string, "Bugs Bunny")
# Assert None, the syntax cannot handle taxonomy items that span multiple chunks.
s = S("Elmer Fudd fires a cannon")
t = search.Taxonomy()
t.append("fire cannon", type="violence")
self.assertEqual(P("VIOLENCE").match(s), None)
# Assert regular expressions.
s = S("a sack with 3.5 rabbits")
p = search.Pattern.fromstring("[] NNS")
p[0].words.append(re.compile(r"[0-9|\.]+"))
self.assertEqual(p.match(s).string, "3.5 rabbits")
print("pattern.search.Pattern.match()")
def test_search(self):
# Assert one match containing all words.
v = search.Pattern.fromstring("*+")
v = v.search("one two three")
self.assertEqual(v[0].string, "one two three")
# Assert one match for each word.
v = search.Pattern.fromstring("*")
v = v.search("one two three")
self.assertEqual(v[0].string, "one")
self.assertEqual(v[1].string, "two")
self.assertEqual(v[2].string, "three")
# Assert all variations are matched (sentence starts with a NN* which must be caught).
v = search.Pattern.fromstring("(DT) JJ?+ NN*")
v = v.search(Sentence(parse("dogs, black cats and a big white rabbit")))
self.assertEqual(v[0].string, "dogs")
self.assertEqual(v[1].string, "black cats")
self.assertEqual(v[2].string, "a big white rabbit")
v = search.Pattern.fromstring("NN*")
print("pattern.search.Pattern.search()")
def test_convergence(self):
# Test with random sentences and random patterns to see if it crashes.
w = ("big", "white", "rabbit", "black", "cats", "is", "was", "going", "to", "sleep", "sleepy", "very", "or")
x = ("DT?", "JJ?+", "NN*", "VP?", "cat", "[*]")
for i in range(100):
s = " ".join(random.choice(w) for i in range(20))
s = Sentence(parse(s, lemmata=True))
p = " ".join(random.choice(x) for i in range(5))
p = search.Pattern.fromstring(p)
p.search(s)
def test_compile_function(self):
# Assert creating and caching Pattern with compile().
t = search.Taxonomy()
p = search.compile("JJ?+ NN*", search.STRICT, taxonomy=t)
self.assertEqual(p.strict, True)
self.assertEqual(p[0].optional, True)
self.assertEqual(p[0].tags, ["JJ"])
self.assertEqual(p[1].tags, ["NN*"])
self.assertEqual(p[1].taxonomy, t)
# Assert regular expression input.
p = search.compile(re.compile(r"[0-9|\.]+"))
self.assertTrue(isinstance(p[0].words[0], search.regexp))
# Assert TypeError for other input.
self.assertRaises(TypeError, search.compile, 1)
print("pattern.search.compile()")
def test_match_function(self):
# Assert match() function.
s = Sentence(parse("Go on Bors, chop his head off!"))
m1 = search.match("chop NP off", s, strict=False)
m2 = search.match("chop NP+ off", s, strict=True)
self.assertEqual(m1.constituents()[1].string, "his head")
self.assertEqual(m2.constituents()[1].string, "his head")
print("pattern.search.match()")
def test_search_function(self):
# Assert search() function.
s = Sentence(parse("Go on Bors, chop his head off!"))
m = search.search("PRP*? NN*", s)
self.assertEqual(m[0].string, "Bors")
self.assertEqual(m[1].string, "his head")
print("pattern.search.search()")
def test_escape(self):
# Assert escape() function.
self.assertEqual(search.escape("{}[]()_|!*+^."), "\\{\\}\\[\\]\\(\\)\\_\\|\\!\\*\\+\\^.")
print("pattern.search.escape()")
#---------------------------------------------------------------------------------------------------
class TestMatch(unittest.TestCase):
def setUp(self):
pass
def test_match(self):
# Assert Match properties.
s = Sentence(parse("Death awaits you all with nasty, big, pointy teeth."))
p = search.Pattern(sequence=[
search.Constraint(tags=["JJ"], optional=True),
search.Constraint(tags=["NN*"])])
m = p.search(s)
self.assertTrue(isinstance(m, list))
self.assertEqual(m[0].pattern, p)
self.assertEqual(m[1].pattern, p)
self.assertEqual(m[0].words, [s.words[0]])
self.assertEqual(m[1].words, [s.words[-3], s.words[-2]])
# Assert contraint "NN*" links to "Death" and "teeth", and "JJ" to "pointy".
self.assertEqual(m[0].constraint(s.words[0]), p[1])
self.assertEqual(m[1].constraint(s.words[-3]), p[0])
self.assertEqual(m[1].constraint(s.words[-2]), p[1])
# Assert constraints "JJ NN*" links to chunk "pointy teeth".
self.assertEqual(m[1].constraints(s.chunks[-1]), [p[0], p[1]])
# Assert Match.constituents() by constraint, constraint index and list of indices.
self.assertEqual(m[1].constituents(), [s.words[-3], s.words[-2]])
self.assertEqual(m[1].constituents(constraint=p[0]), [s.words[-3]])
self.assertEqual(m[1].constituents(constraint=1), [s.words[-2]])
self.assertEqual(m[1].constituents(constraint=(0, 1)), [s.words[-3], s.words[-2]])
# Assert Match.string.
self.assertEqual(m[1].string, "pointy teeth")
print("pattern.search.Match")
def test_group(self):
# Assert Match groups.
s = Sentence(parse("the big black cat eats a tasty fish"))
m = search.search("DT {JJ+} NN", s)
self.assertEqual(m[0].group(1).string, "big black")
self.assertEqual(m[1].group(1).string, "tasty")
# Assert nested groups (and syntax with additional spaces).
m = search.search("DT { JJ { JJ { NN }}}", s)
self.assertEqual(m[0].group(1).string, "big black cat")
self.assertEqual(m[0].group(2).string, "black cat")
self.assertEqual(m[0].group(3).string, "cat")
# Assert chunked groups.
m = search.search("NP {VP NP}", s)
v = m[0].group(1, chunked=True)
self.assertEqual(v[0].string, "eats")
self.assertEqual(v[1].string, "a tasty fish")
print("pattern.search.Match.group()")
def test_group_ordering(self):
# Assert group parser ordering (opened-first).
c1 = search.Constraint("1")
c2 = search.Constraint("2")
c3 = search.Constraint("3")
c4 = search.Constraint("4")
p = search.Pattern([c1, [c2, [[c3], c4]]])
self.assertEqual(p.groups[0][0].words[0], "2")
self.assertEqual(p.groups[0][1].words[0], "3")
self.assertEqual(p.groups[0][2].words[0], "4")
self.assertEqual(p.groups[1][0].words[0], "3")
self.assertEqual(p.groups[1][1].words[0], "4")
self.assertEqual(p.groups[2][0].words[0], "3")
p = search.Pattern.fromstring("1 {2 {{3} 4}}")
self.assertEqual(p.groups[0][0].words[0], "2")
self.assertEqual(p.groups[0][1].words[0], "3")
self.assertEqual(p.groups[0][2].words[0], "4")
self.assertEqual(p.groups[1][0].words[0], "3")
self.assertEqual(p.groups[1][1].words[0], "4")
self.assertEqual(p.groups[2][0].words[0], "3")
p = search.Pattern.fromstring("1 {2} {3} 4")
self.assertEqual(p.groups[0][0].words[0], "2")
self.assertEqual(p.groups[1][0].words[0], "3")
#---------------------------------------------------------------------------------------------------
def suite():
suite = unittest.TestSuite()
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestUtilityFunctions))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestTaxonomy))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestConstraint))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestPattern))
suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestMatch))
return suite
if __name__ == "__main__":
result = unittest.TextTestRunner(verbosity=1).run(suite())
sys.exit(not result.wasSuccessful())
|