File: test_vector.py

package info (click to toggle)
python-pattern 2.6%2Bgit20180818-4.1
  • links: PTS
  • area: main
  • in suites: sid, trixie
  • size: 95,160 kB
  • sloc: python: 28,135; xml: 15,085; javascript: 5,810; makefile: 194
file content (1044 lines) | stat: -rw-r--r-- 45,350 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
# -*- coding: utf-8 -*-

from __future__ import print_function
from __future__ import unicode_literals
from __future__ import division

from builtins import str, bytes, dict, int
from builtins import map, zip, filter
from builtins import object, range

from io import open

import os
import sys
sys.path.insert(0, os.path.join(os.path.dirname(__file__), ".."))
import time
import random
import unittest

from random import seed
seed(0)

from pattern import vector

from pattern.en import Text, Sentence, Word, parse
from pattern.db import Datasheet

try:
    PATH = os.path.dirname(os.path.realpath(__file__))
except:
    PATH = ""


def model(top=None):
    """ Returns a Model of e-mail messages.
        Document type=True => HAM, False => SPAM.
        Documents are mostly of a technical nature (developer forum posts).
    """
    documents = []
    for score, message in Datasheet.load(os.path.join(PATH, "corpora", "spam-apache.csv"), encoding='utf8'):
        document = vector.Document(message, stemmer="porter", top=top, type=int(score) > 0)
        documents.append(document)
    return vector.Model(documents)

#---------------------------------------------------------------------------------------------------


class TestUnicode(unittest.TestCase):

    def setUp(self):
        # Test data with different (or wrong) encodings.
        self.strings = (
            "ünîcøde",
            "ünîcøde".encode("utf-16"),
            "ünîcøde".encode("latin-1"),
            "ünîcøde".encode("windows-1252"),
            "ünîcøde",
            "אוניקאָד"
        )

    def test_decode_utf8(self):
        # Assert unicode.
        for s in self.strings:
            self.assertTrue(isinstance(vector.decode_utf8(s), str))
        print("pattern.vector.decode_utf8()")

    def test_encode_utf8(self):
        # Assert Python bytestring.
        for s in self.strings:
            self.assertTrue(isinstance(vector.encode_utf8(s), bytes))
        print("pattern.vector.encode_utf8()")

#---------------------------------------------------------------------------------------------------


class TestUtilityFunctions(unittest.TestCase):

    def setUp(self):
        pass

    def test_shi(self):
        # Assert integer hashing algorithm.
        for a, b in (
          (   100, "1c"),
          (  1000, "G8"),
          ( 10000, "2bI"),
          (100000, "Q0u")):
            self.assertEqual(vector.shi(a), b)
        print("pattern.vector.shi()")

    def test_shuffled(self):
        # Assert shuffled() <=> sorted().
        v1 = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
        v2 = vector.shuffled(v1)
        self.assertTrue(v1 != v2 and v1 == sorted(v2))
        print("pattern.vector.shuffled()")

    def test_chunk(self):
        # Assert list chunk (near-)equal size.
        for a, n, b in (
          ([1, 2, 3, 4, 5], 0, []),
          ([1, 2, 3, 4, 5], 1, [[1, 2, 3, 4, 5]]),
          ([1, 2, 3, 4, 5], 2, [[1, 2, 3], [4, 5]]),
          ([1, 2, 3, 4, 5], 3, [[1, 2], [3, 4], [5]]),
          ([1, 2, 3, 4, 5], 4, [[1, 2], [3], [4], [5]]),
          ([1, 2, 3, 4, 5], 5, [[1], [2], [3], [4], [5]]),
          ([1, 2, 3, 4, 5], 6, [[1], [2], [3], [4], [5], []])):
            self.assertEqual(list(vector.chunk(a, n)), b)
        print("pattern.vector.chunk()")

    def test_readonlydict(self):
        # Assert read-only dict.
        v = vector.readonlydict({"a": 1})
        self.assertTrue(isinstance(v, dict))
        self.assertRaises(vector.ReadOnlyError, v.__setitem__, "a", 2)
        self.assertRaises(vector.ReadOnlyError, v.__delitem__, "a")
        self.assertRaises(vector.ReadOnlyError, v.pop, "a")
        self.assertRaises(vector.ReadOnlyError, v.popitem, ("a", 2))
        self.assertRaises(vector.ReadOnlyError, v.clear)
        self.assertRaises(vector.ReadOnlyError, v.update, {"b": 2})
        self.assertRaises(vector.ReadOnlyError, v.setdefault, "b", 2)
        print("pattern.vector.readonlydict")

    def test_readonlylist(self):
        # Assert read-only list.
        v = vector.readonlylist([1, 2])
        self.assertTrue(isinstance(v, list))
        self.assertRaises(vector.ReadOnlyError, v.__setitem__, 0, 0)
        self.assertRaises(vector.ReadOnlyError, v.__delitem__, 0)
        self.assertRaises(vector.ReadOnlyError, v.append, 3)
        self.assertRaises(vector.ReadOnlyError, v.insert, 2, 3)
        self.assertRaises(vector.ReadOnlyError, v.extend, [3, 4])
        self.assertRaises(vector.ReadOnlyError, v.remove, 1)
        self.assertRaises(vector.ReadOnlyError, v.pop, 0)
        print("pattern.vector.readonlylist")

#---------------------------------------------------------------------------------------------------


class TestStemmer(unittest.TestCase):

    def setUp(self):
        # Test data from http://snowball.tartarus.org/algorithms/english/stemmer.html
        self.input = [
            'consign', 'consigned', 'consigning', 'consignment', 'consist', 'consisted', 'consistency',
            'consistent', 'consistently', 'consisting', 'consists', 'consolation', 'consolations',
            'consolatory', 'console', 'consoled', 'consoles', 'consolidate', 'consolidated', 'consolidating',
            'consoling', 'consolingly', 'consols', 'consonant', 'consort', 'consorted', 'consorting',
            'conspicuous', 'conspicuously', 'conspiracy', 'conspirator', 'conspirators', 'conspire',
            'conspired', 'conspiring', 'constable', 'constables', 'constance', 'constancy', 'constant',
            'generate', 'generates', 'generated', 'generating', 'general', 'generally', 'generic',
            'generically', 'generous', 'generously', 'knack', 'knackeries', 'knacks', 'knag', 'knave',
            'knaves', 'knavish', 'kneaded', 'kneading', 'knee', 'kneel', 'kneeled', 'kneeling', 'kneels',
            'knees', 'knell', 'knelt', 'knew', 'knick', 'knif', 'knife', 'knight', 'knightly', 'knights',
            'knit', 'knits', 'knitted', 'knitting', 'knives', 'knob', 'knobs', 'knock', 'knocked', 'knocker',
            'knockers', 'knocking', 'knocks', 'knopp', 'knot', 'knots', 'skies', 'spy'
        ]
        self.output = [
            'consign', 'consign', 'consign', 'consign', 'consist', 'consist', 'consist', 'consist', 'consist',
            'consist', 'consist', 'consol', 'consol', 'consolatori', 'consol', 'consol', 'consol', 'consolid',
            'consolid', 'consolid', 'consol', 'consol', 'consol', 'conson', 'consort', 'consort', 'consort',
            'conspicu', 'conspicu', 'conspiraci', 'conspir', 'conspir', 'conspir', 'conspir', 'conspir',
            'constabl', 'constabl', 'constanc', 'constanc', 'constant', 'generat', 'generat', 'generat',
            'generat', 'general', 'general', 'generic', 'generic', 'generous', 'generous', 'knack', 'knackeri',
            'knack', 'knag', 'knave', 'knave', 'knavish', 'knead', 'knead', 'knee', 'kneel', 'kneel', 'kneel',
            'kneel', 'knee', 'knell', 'knelt', 'knew', 'knick', 'knif', 'knife', 'knight', 'knight', 'knight',
            'knit', 'knit', 'knit', 'knit', 'knive', 'knob', 'knob', 'knock', 'knock', 'knocker', 'knocker',
            'knock', 'knock', 'knopp', 'knot', 'knot', 'sky', 'spi'
        ]

    def test_stem(self):
        # Assert the accuracy of the stemmer.
        i = 0
        n = len(self.input)
        for a, b in zip(self.input, self.output):
            if vector.stemmer.stem(a, cached=True) == b:
                i += 1
        self.assertEqual(float(i) / n, 1.0)
        print("pattern.vector.stemmer.stem()")

    def test_stem_case_sensitive(self):
        # Assert stemmer case-sensitivity.
        for a, b in (
          ("Ponies", "Poni"),
          ("pONIES", "pONI"),
          ("SKiES", "SKy"),
          ("cosmos", "cosmos")):
            self.assertEqual(vector.stemmer.stem(a), b)
        print("pattern.vector.stemmer.case_sensitive()")

#---------------------------------------------------------------------------------------------------


class TestDocument(unittest.TestCase):

    def setUp(self):
        # Test file for loading and saving documents.
        self.path = "test_document2.txt"

    def tearDown(self):
        if os.path.exists(self.path):
            os.remove(self.path)

    def test_stopwords(self):
        # Assert common stop words.
        for w in ("a", "am", "an", "and", "i", "the", "therefore", "they", "what", "while"):
            self.assertTrue(w in vector.stopwords["en"])
        print("pattern.vector.stopwords")

    def test_words(self):
        # Assert word split algorithm (default treats lines as spaces and ignores numbers).
        s = "The cat sat on the\nmat. 1 11."
        v = vector.words(s, filter=lambda w: w.isalpha())
        self.assertEqual(v, ["The", "cat", "sat", "on", "the", "mat"])
        # Assert custom word filter.
        v = vector.words(s, filter=lambda w: True)
        self.assertEqual(v, ["The", "cat", "sat", "on", "the", "mat", "1", "11"])
        print("pattern.vector.words()")

    def test_stem(self):
        # Assert stem with PORTER, LEMMA and pattern.en.Word.
        s = "WOLVES"
        v1 = vector.stem(s, stemmer=None)
        v2 = vector.stem(s, stemmer=vector.PORTER)
        v3 = vector.stem(s, stemmer=vector.LEMMA)
        v4 = vector.stem(s, stemmer=lambda w: "wolf*")
        v5 = vector.stem(Word(None, s, lemma="wolf*"), stemmer=vector.LEMMA)
        v6 = vector.stem(Word(None, s, type="NNS"), stemmer=vector.LEMMA)
        self.assertEqual(v1, "wolves")
        self.assertEqual(v2, "wolv")
        self.assertEqual(v3, "wolf")
        self.assertEqual(v4, "wolf*")
        self.assertEqual(v5, "wolf*")
        self.assertEqual(v6, "wolf")
        # Assert unicode output.
        self.assertTrue(isinstance(v1, str))
        self.assertTrue(isinstance(v2, str))
        self.assertTrue(isinstance(v3, str))
        self.assertTrue(isinstance(v4, str))
        self.assertTrue(isinstance(v5, str))
        self.assertTrue(isinstance(v6, str))
        print("pattern.vector.stem()")

    def test_count(self):
        # Assert wordcount with stemming, stopwords and pruning.
        w = ["The", "cats", "sat", "on", "the", "mat", "."]
        v1 = vector.count(w)
        v2 = vector.count(w, stemmer=vector.LEMMA)
        v3 = vector.count(w, exclude=["."])
        v4 = vector.count(w, stopwords=True)
        v5 = vector.count(w, stopwords=True, top=3)
        v6 = vector.count(w, stopwords=True, top=3, threshold=1)
        v7 = vector.count(w, dict=vector.readonlydict, cached=False)
        self.assertEqual(v1, {"cats": 1, "sat": 1, "mat": 1, ".": 1})
        self.assertEqual(v2, {"cat": 1, "sat": 1, "mat": 1, ".": 1})
        self.assertEqual(v3, {"cats": 1, "sat": 1, "mat": 1})
        self.assertEqual(v4, {"the": 2, "cats": 1, "sat": 1, "on": 1, "mat": 1, ".": 1})
        self.assertEqual(v5, {"the": 2, "cats": 1, ".": 1})
        self.assertEqual(v6, {"the": 2})
        # Assert custom dict class.
        self.assertTrue(isinstance(v7, vector.readonlydict))
        print("pattern.vector.count()")

    def test_document(self):
        # Assert Document properties.
        # Test with different input types.
        for constructor, w in (
          (vector.Document, "The cats sit on the mat."),
          (vector.Document, ["The", "cats", "sit", "on", "the", "mat"]),
          (vector.Document, {"cat": 1, "mat": 1, "sit": 1}),
          (vector.Document, Text(parse("The cats sat on the mat."))),
          (vector.Document, Sentence(parse("The cats sat on the mat.")))):
            # Test copy.
            v = constructor(w, stemmer=vector.LEMMA, stopwords=False, name="Cat", type="CAT")
            v = v.copy()
            # Test properties.
            self.assertEqual(v.name, "Cat")
            self.assertEqual(v.type, "CAT")
            self.assertEqual(v.count, 3)
            self.assertEqual(v.terms, {"cat": 1, "mat": 1, "sit": 1})
            # Test iterator decoration.
            self.assertEqual(sorted(v.features), ["cat", "mat", "sit"])
            self.assertEqual(sorted(v), ["cat", "mat", "sit"])
            self.assertEqual(len(v), 3)
            self.assertEqual(v["cat"], 1)
            self.assertEqual("cat" in v, True)
        print("pattern.vector.Document")

    def test_document_load(self):
        # Assert save + load document integrity.
        v1 = "The cats are purring on the mat."
        v1 = vector.Document(v1, stemmer=vector.PORTER, stopwords=True, name="Cat", type="CAT")
        v1.save(self.path)
        v2 = vector.Document.load(self.path)
        self.assertEqual(v1.name, v2.name)
        self.assertEqual(v1.type, v2.type)
        self.assertEqual(v1.vector, v2.vector)
        print("pattern.vector.Document.save()")
        print("pattern.vector.Document.load()")

    def test_document_vector(self):
        # Assert Vector properties.
        # Test copy.
        v = vector.Document("the cat sat on the mat").vector
        v = v.copy()
        # Test properties.
        self.assertTrue(isinstance(v, dict))
        self.assertTrue(isinstance(v, vector.Vector))
        self.assertTrue(isinstance(v.id, int))
        self.assertEqual(sorted(v.features), ["cat", "mat", "sat"])
        self.assertEqual(v.weight, vector.TF)
        self.assertAlmostEqual(v.norm, 0.58, places=2)
        self.assertAlmostEqual(v["cat"], 0.33, places=2)
        self.assertAlmostEqual(v["sat"], 0.33, places=2)
        self.assertAlmostEqual(v["mat"], 0.33, places=2)
        # Test copy + update.
        v = v({"cat": 1, "sat": 1, "mat": 1})
        self.assertEqual(sorted(v.features), ["cat", "mat", "sat"])
        self.assertAlmostEqual(v["cat"], 1.00, places=2)
        self.assertAlmostEqual(v["sat"], 1.00, places=2)
        self.assertAlmostEqual(v["mat"], 1.00, places=2)
        print("pattern.vector.Document.vector")

    def test_document_keywords(self):
        # Assert Document.keywords() based on term frequency.
        v = vector.Document(["cat", "cat", "cat", "sat", "sat", "mat"]).keywords(top=2)
        self.assertEqual(len(v), 2)
        self.assertEqual(v[0][1], "cat")
        self.assertEqual(v[1][1], "sat")
        self.assertAlmostEqual(v[0][0], 0.50, places=2)
        self.assertAlmostEqual(v[1][0], 0.33, places=2)
        print("pattern.vector.Document.keywords()")

    def test_tf(self):
        # Assert Document.term_frequency() (= weights used in Vector for orphaned documents).
        v = vector.Document("the cat sat on the mat")
        for feature, weight in v.vector.items():
            self.assertEqual(v.term_frequency(feature), weight)
            self.assertAlmostEqual(v.term_frequency(feature), 0.33, places=2)
        print("pattern.vector.Document.tf()")

    def test_tfidf(self):
        # Assert tf-idf for documents not in a model.
        v = [[0.0, 0.4, 0.6], [0.6, 0.4, 0.0]]
        v = [dict(enumerate(v)) for v in v]
        m = vector.Model([vector.Document(x) for x in v], weight=vector.TFIDF)
        v = [vector.sparse(v) for v in vector.tf_idf(v)]
        self.assertEqual(sorted(m[0].vector.items()), sorted(v[0].items()))
        self.assertAlmostEqual(v[0][2], 0.42, places=2)
        self.assertAlmostEqual(v[1][0], 0.42, places=2)
        print("pattern.vector.tf_idf()")

    def test_cosine_similarity(self):
        # Test cosine similarity for documents not in a model.
        v1 = vector.Document("the cat sat on the mat")
        v2 = vector.Document("a cat with a hat")
        self.assertAlmostEqual(v1.cosine_similarity(v2), 0.41, places=2)
        print("pattern.vector.Document.similarity()")
        print("pattern.vector.cosine_similarity()")
        print("pattern.vector.l2_norm()")

#---------------------------------------------------------------------------------------------------


class TestModel(unittest.TestCase):

    def setUp(self):
        # Test model.
        self.model = vector.Model(documents=(
            vector.Document("cats purr", name="cat1", type="cåt"),
            vector.Document("cats meow", name="cat2", type="cåt"),
            vector.Document("dogs howl", name="dog1", type="døg"),
            vector.Document("dogs bark", name="dog2", type="døg")
        ))

    def test_model(self):
        # Assert Model properties.
        v = self.model
        self.assertEqual(list(v), v.documents)
        self.assertEqual(len(v), 4)
        self.assertEqual(sorted(v.terms), ["bark", "cats", "dogs", "howl", "meow", "purr"])
        self.assertEqual(sorted(v.terms), sorted(v.vector.keys()))
        self.assertEqual(v.weight, vector.TFIDF)
        self.assertEqual(v.lsa, None)
        self.assertEqual(v.vectors, [d.vector for d in v.documents])
        self.assertAlmostEqual(v.density, 0.22, places=2)
        print("pattern.vector.Model")

    def test_model_append(self):
        # Assert Model.append().
        self.assertRaises(vector.ReadOnlyError, self.model.documents.append, None)
        self.model.append(vector.Document("birds chirp", name="bird"))
        self.assertEqual(self.model[0]._vector, None)
        self.assertEqual(len(self.model), 5)
        self.model.remove(self.model.document("bird"))
        print("pattern.vector.Model.append()")

    def test_model_save(self):
        # Assert Model save & load.
        self.model.save("test_model.pickle", update=True)
        self.model._update()
        model = vector.Model.load("test_model.pickle")
        # Assert that the precious cache is saved and reloaded.
        self.assertTrue(len(model._df) > 0)
        self.assertTrue(len(model._cos) > 0)
        self.assertTrue(len(model.vectors) > 0)
        os.remove("test_model.pickle")
        print("pattern.vector.Model.save()")
        print("pattern.vector.Model.load()")

    def test_model_export(self):
        # Assert Orange and Weka ARFF export formats.
        for format, src in (
            (vector.ORANGE,
                "bark\tcats\tdogs\thowl\tmeow\tpurr\tm#name\tc#type\n"
                "0\t0.3466\t0\t0\t0\t0.6931\tcat1\tcåt\n"
                "0\t0.3466\t0\t0\t0.6931\t0\tcat2\tcåt\n"
                "0\t0\t0.3466\t0.6931\t0\t0\tdog1\tdøg\n"
                "0.6931\t0\t0.3466\t0\t0\t0\tdog2\tdøg"),
            (vector.WEKA,
                "@RELATION 5885744\n"
                "@ATTRIBUTE bark NUMERIC\n"
                "@ATTRIBUTE cats NUMERIC\n"
                "@ATTRIBUTE dogs NUMERIC\n"
                "@ATTRIBUTE howl NUMERIC\n"
                "@ATTRIBUTE meow NUMERIC\n"
                "@ATTRIBUTE purr NUMERIC\n"
                "@ATTRIBUTE class {døg,cåt}\n"
                "@DATA\n0,0.3466,0,0,0,0.6931,cåt\n"
                "0,0.3466,0,0,0.6931,0,cåt\n"
                "0,0,0.3466,0.6931,0,0,døg\n"
                "0.6931,0,0.3466,0,0,0,døg")):
            self.model.export("test_%s.txt" % format, format=format)
            with open("test_%s.txt" % format, encoding="utf-8") as f:
                v = f.read()
            v = v.replace("\r\n", "\n")
            for line in src.split("\n"):
                self.assertTrue(line in src)
            os.remove("test_%s.txt" % format)
        print("pattern.vector.Model.export()")

    def test_df(self):
        # Assert document frequency: "cats" appears in 1/2 documents,"purr" in 1/4.
        self.assertEqual(self.model.df("cats"), 0.50)
        self.assertEqual(self.model.df("purr"), 0.25)
        self.assertEqual(self.model.df("????"), 0.00)
        print("pattern.vector.Model.df()")

    def test_idf(self):
        # Assert inverse document frequency: log(1/df).
        self.assertAlmostEqual(self.model.idf("cats"), 0.69, places=2)
        self.assertAlmostEqual(self.model.idf("purr"), 1.39, places=2)
        self.assertEqual(self.model.idf("????"), None)
        print("pattern.vector.Model.idf()")

    def test_tfidf(self):
        # Assert term frequency - inverse document frequency: tf * idf.
        self.assertAlmostEqual(self.model[0].tfidf("cats"), 0.35, places=2) # 0.50 * 0.69
        self.assertAlmostEqual(self.model[0].tfidf("purr"), 0.69, places=2) # 0.50 * 1.39
        self.assertAlmostEqual(self.model[0].tfidf("????"), 0.00, places=2)
        print("pattern.vector.Document.tfidf()")

    def test_frequent_concept_sets(self):
        # Assert Apriori algorithm.
        v = self.model.frequent(threshold=0.5)
        if sys.version > "3":
            self.assertCountEqual(sorted(list(v.keys())), [frozenset(["dogs"]), frozenset(["cats"])])
        else:
            self.assertItemsEqual(sorted(list(v.keys())), [frozenset(["dogs"]), frozenset(["cats"])])
        print("pattern.vector.Model.frequent()")

    def test_cosine_similarity(self):
        # Assert document cosine similarity.
        v1 = self.model.similarity(self.model[0], self.model[1])
        v2 = self.model.similarity(self.model[0], self.model[2])
        v3 = self.model.similarity(self.model[0], vector.Document("cats cats"))
        self.assertAlmostEqual(v1, 0.20, places=2)
        self.assertAlmostEqual(v2, 0.00, places=2)
        self.assertAlmostEqual(v3, 0.45, places=2)
        # Assert that Model.similarity() is aware of LSA reduction.
        self.model.reduce(2)
        v1 = self.model.similarity(self.model[0], self.model[1])
        v2 = self.model.similarity(self.model[0], self.model[2])
        self.assertAlmostEqual(v1, 1.00, places=2)
        self.assertAlmostEqual(v2, 0.00, places=2)
        self.model.lsa = None
        print("pattern.vector.Model.similarity()")

    def test_nearest_neighbors(self):
        # Assert document nearest-neighbor search.
        v1 = self.model.neighbors(self.model[0])
        v2 = self.model.neighbors(vector.Document("cats meow"))
        v3 = self.model.neighbors(vector.Document("????"))
        self.assertEqual(v1[0][1], self.model[1])
        self.assertEqual(v2[0][1], self.model[1])
        self.assertEqual(v2[1][1], self.model[0])
        self.assertAlmostEqual(v1[0][0], 0.20, places=2)
        self.assertAlmostEqual(v2[0][0], 0.95, places=2)
        self.assertAlmostEqual(v2[1][0], 0.32, places=2)
        self.assertTrue(len(v3) == 0)
        print("pattern.vector.Model.neighbors()")

    def test_search(self):
        # Assert document vector space search.
        v1 = self.model.search(self.model[0])
        v2 = self.model.search(vector.Document("cats meow"))
        v3 = self.model.search(vector.Document("????"))
        v4 = self.model.search("meow")
        v5 = self.model.search(["cats", "meow"])
        self.assertEqual(v1, self.model.neighbors(self.model[0]))
        self.assertEqual(v2[0][1], self.model[1])
        self.assertEqual(v3, [])
        self.assertEqual(v4[0][1], self.model[1])
        self.assertEqual(v5[0][1], self.model[1])
        self.assertAlmostEqual(v4[0][0], 0.89, places=2)
        self.assertAlmostEqual(v5[0][0], 1.00, places=2)
        print("pattern.vector.Model.search()")

    def test_distance(self):
        # Assert Model document distance.
        v1 = self.model.distance(self.model[0], self.model[1], method=vector.COSINE)
        v2 = self.model.distance(self.model[0], self.model[2], method=vector.COSINE)
        v3 = self.model.distance(self.model[0], self.model[2], method=vector.EUCLIDEAN)
        self.assertAlmostEqual(v1, 0.8, places=1)
        self.assertAlmostEqual(v2, 1.0, places=1)
        self.assertAlmostEqual(v3, 1.2, places=1)
        print("pattern.vector.Model.distance()")

    def test_cluster(self):
        # Assert Model document clustering.
        v1 = self.model.cluster(method=vector.KMEANS, k=10)
        v2 = self.model.cluster(method=vector.HIERARCHICAL, k=1)
        self.assertTrue(isinstance(v1, list) and len(v1) == 10)
        self.assertTrue(isinstance(v2, vector.Cluster))

        def _test_clustered_documents(cluster):
            if self.model[0] in cluster:
                self.assertTrue(self.model[1] in cluster \
                        and not self.model[2] in cluster)
            if self.model[2] in cluster:
                self.assertTrue(self.model[3] in cluster \
                        and not self.model[1] in cluster)
        v2.traverse(_test_clustered_documents)
        print("pattern.vector.Model.cluster()")

    def test_centroid(self):
        # Assert centroid of recursive Cluster.
        v = vector.Cluster(({"a": 1}, vector.Cluster(({"a": 2}, {"a": 4}))))
        self.assertAlmostEqual(vector.centroid(v)["a"], 2.33, places=2)
        print("pattern.vector.centroid()")

    def test_lsa(self):
        # Assert Model.reduce() LSA reduction.
        self.model.reduce(2)
        self.assertTrue(isinstance(self.model.lsa, vector.LSA))
        self.model.lsa = None
        print("pattern.vector.Model.reduce()")

    def test_feature_selection(self):
        # Assert information gain feature selection.
        m = vector.Model((
            vector.Document("the cat sat on the mat", type="cat", stopwords=True),
            vector.Document("the dog howled at the moon", type="dog", stopwords=True)
        ))
        v = m.feature_selection(top=3, method=vector.IG, threshold=0.0)
        self.assertEqual(v, ["at", "cat", "dog"])
        # Assert Model.filter().
        v = m.filter(v)
        self.assertTrue("at" in v.terms)
        self.assertTrue("cat" in v.terms)
        self.assertTrue("dog" in v.terms)
        self.assertTrue("the" not in v.terms)
        self.assertTrue("mat" not in v.terms)
        print("pattern.vector.Model.feature_selection()")
        print("pattern.vector.Model.filter()")

    def test_information_gain(self):
        # Assert information gain weights.
        # Example from http://www.comp.lancs.ac.uk/~kc/Lecturing/csc355/DecisionTrees_given.pdf
        m = vector.Model([
            vector.Document({"wind": 1}, type=False),
            vector.Document({"wind": 0}, type=True),
            vector.Document({"wind": 0}, type=True),
            vector.Document({"wind": 0}, type=True),
            vector.Document({"wind": 1}, type=True),
            vector.Document({"wind": 1}, type=False),
            vector.Document({"wind": 1}, type=False)], weight=None
        )
        self.assertAlmostEqual(m.information_gain("wind"), 0.52, places=2)
        # Example from http://rutcor.rutgers.edu/~amai/aimath02/PAPERS/14.pdf
        m = vector.Model([
            vector.Document({"3": 1}, type=True),
            vector.Document({"3": 5}, type=True),
            vector.Document({"3": 1}, type=False),
            vector.Document({"3": 7}, type=True),
            vector.Document({"3": 2}, type=False),
            vector.Document({"3": 2}, type=True),
            vector.Document({"3": 6}, type=False),
            vector.Document({"3": 4}, type=True),
            vector.Document({"3": 0}, type=False),
            vector.Document({"3": 9}, type=True)], weight=None
        )
        self.assertAlmostEqual(m.ig("3"), 0.571, places=3)
        self.assertAlmostEqual(m.gr("3"), 0.195, places=3)
        print("patten.vector.Model.information_gain()")
        print("patten.vector.Model.gain_ratio()")

    def test_entropy(self):
        # Assert Shannon entropy calculcation.
        self.assertAlmostEqual(vector.entropy([1, 1]), 1.00, places=2)
        self.assertAlmostEqual(vector.entropy([2, 1]), 0.92, places=2)
        self.assertAlmostEqual(vector.entropy([0.5, 0.5]), 1.00, places=2)
        self.assertAlmostEqual(vector.entropy([0.6]), 0.44, places=2)
        print("pattern.vector.entropy()")

    def test_condensed_nearest_neighbor(self):
        # Assert CNN for data reduction.
        v = vector.Model((
            vector.Document("woof", type="dog"),
            vector.Document("meow", type="cat"),  # redundant
            vector.Document("meow meow", type="cat")
        ))
        self.assertTrue(len(v.cnn()) < len(v))
        print("pattern.vector.Model.condensed_nearest_neighbor()")

    def test_classifier(self):
        # Assert that the model classifier is correctly saved and loaded.
        p = "test.model.tmp"
        v = vector.Model([vector.Document("chirp", type="bird")])
        v.train(vector.SVM)
        v.save(p)
        v = vector.Model.load(p)
        self.assertTrue(isinstance(v.classifier, vector.SVM))
        os.unlink(p)
        print("pattern.vector.Model.classifier")
        print("pattern.vector.Model.train()")

#---------------------------------------------------------------------------------------------------


class TestApriori(unittest.TestCase):

    def setUp(self):
        pass

    def test_apriori(self):
        # Assert frequent sets frequency.
        v = vector.apriori((
            [1, 2, 4],
            [1, 2, 5],
            [1, 3, 6],
            [1, 3, 7]
        ), support=0.5)
        self.assertTrue(len(v), 3)
        self.assertEqual(v[frozenset((1, ))], 1.0)
        self.assertEqual(v[frozenset((1, 2))], 0.5)
        self.assertEqual(v[frozenset((2, ))], 0.5)
        self.assertEqual(v[frozenset((3, ))], 0.5)

#---------------------------------------------------------------------------------------------------


class TestLSA(unittest.TestCase):

    model = None

    def setUp(self):
        # Test spam model for reduction.
        if self.__class__.model is None:
            self.__class__.model = model(top=250)
        self.model = self.__class__.model
        random.seed(0)

    def tearDown(self):
        random.seed()

    def test_lsa(self):
        # Assert LSA properties.
        k = 100
        lsa = vector.LSA(self.model, k)
        self.assertEqual(lsa.model, self.model)
        self.assertEqual(lsa.vectors, lsa.u)
        self.assertEqual(set(lsa.terms), set(self.model.vector.keys()))
        self.assertTrue(isinstance(lsa.u, dict))
        self.assertTrue(isinstance(lsa.sigma, list))
        self.assertTrue(isinstance(lsa.vt, list))
        self.assertTrue(len(lsa.u), len(self.model))
        self.assertTrue(len(lsa.sigma), len(self.model) - k)
        self.assertTrue(len(lsa.vt), len(self.model) - k)
        for document in self.model:
            v = lsa.vectors[document.id]
            self.assertTrue(isinstance(v, vector.Vector))
            self.assertTrue(len(v) <= k)
        print("pattern.vector.LSA")

    def test_lsa_concepts(self):
        # Assert LSA concept space.
        model = vector.Model((
            vector.Document("cats purr"),
            vector.Document("cats meow"),
            vector.Document("dogs howl"),
            vector.Document("dogs bark")
        ))
        model.reduce(2)
        # Intuitively, we'd expect two concepts:
        # 1) with cats + purr + meow grouped together,
        # 2) with dogs + howl + bark grouped together.
        i1, i2 = 0, 0
        for i, concept in enumerate(model.lsa.concepts):
            self.assertTrue(isinstance(concept, dict))
            if concept["cats"] > 0.5:
                self.assertTrue(concept["purr"] > 0.5)
                self.assertTrue(concept["meow"] > 0.5)
                self.assertTrue(concept["howl"] == 0.0)
                self.assertTrue(concept["bark"] == 0.0)
                i1 = i
            if concept["dogs"] > 0.5:
                self.assertTrue(concept["howl"] > 0.5)
                self.assertTrue(concept["bark"] > 0.5)
                self.assertTrue(concept["purr"] == 0.0)
                self.assertTrue(concept["meow"] == 0.0)
                i2 = i
        # We'd expect the "cat" documents to score high on the "cat" concept vector.
        # We'd expect the "dog" documents to score high on the "dog" concept vector.
        v1 = model.lsa[model.documents[0].id]
        v2 = model.lsa[model.documents[2].id]
        self.assertTrue(v1.get(i1, 0) > 0.7)
        self.assertTrue(v1.get(i2, 0) == 0.0)
        self.assertTrue(v2.get(i1, 0) == 0.0)
        self.assertTrue(v2.get(i2, 0) > 0.7)
        # Assert LSA.transform() for unknown documents.
        v = model.lsa.transform(vector.Document("cats dogs"))
        self.assertAlmostEqual(v[0], 0.34, places=2)
        self.assertAlmostEqual(v[1], 0.34, places=2)
        print("pattern.vector.LSA.concepts")
        print("pattern.vector.LSA.transform()")

    def test_model_reduce(self):
        # Test time and accuracy of model with sparse vectors of maximum 250 features.
        t1 = time.time()
        A1, P1, R1, F1, stdev = vector.KNN.test(self.model, folds=10)
        t1 = time.time() - t1
        # Test time and accuracy of model with reduced vectors of 20 features.
        self.model.reduce(dimensions=20)
        t2 = time.time()
        A2, P2, R2, F2, stdev = vector.KNN.test(self.model, folds=10)
        t2 = time.time() - t2
        self.assertTrue(len(self.model.lsa[self.model.documents[0].id]) == 20)
        self.assertTrue(t2 * 2 < t1)       # KNN over 2x faster.
        self.assertTrue(abs(F1 - F2) < 0.06) # Difference in F-score = 1-6%.
        self.model.lsa = None
        print("pattern.vector.Model.reduce()")

#---------------------------------------------------------------------------------------------------


class TestClustering(unittest.TestCase):

    model = None

    def setUp(self):
        # Test spam model for clustering.
        if self.__class__.model is None:
            self.__class__.model = model(top=10)
        self.model = self.__class__.model
        random.seed(0)

    def tearDown(self):
        random.seed()

    def test_features(self):
        # Assert unique list of vector keys.
        v = vector.features(vectors=[{"cat": 1}, {"dog": 1}])
        self.assertEqual(sorted(v), ["cat", "dog"])
        print("pattern.vector.features()")

    def test_mean(self):
        # Assert iterator mean.
        self.assertEqual(vector.mean([], 0), 0)
        self.assertEqual(vector.mean([1, 1.5, 2], 3), 1.5)
        self.assertEqual(vector.mean(range(4), 4), 1.5)
        print("pattern.vector.mean()")

    def test_centroid(self):
        # Assert center of list of vectors.
        v = vector.centroid([{"cat": 1}, {"cat": 0.5, "dog": 1}], features=["cat", "dog"])
        self.assertEqual(v, {"cat": 0.75, "dog": 0.5})
        print("pattern.vector.centroid()")

    def test_distance(self):
        # Assert distance metrics.
        v1 = vector.Vector({"cat": 1})
        v2 = vector.Vector({"cat": 0.5, "dog": 1})
        for d, method in (
          (0.55, vector.COSINE),    # 1 - ((1*0.5 + 0*1) / (sqrt(1**2 + 0**2) * sqrt(0.5**2 + 1**2)))
          (1.25, vector.EUCLIDEAN), # (1-0.5)**2 + (0-1)**2
          (1.50, vector.MANHATTAN), # abs(1-0.5) + abs(0-1)
          (1.00, vector.HAMMING),   # (True + True) / 2
          (1.11, lambda v1, v2: 1.11)):
            self.assertAlmostEqual(vector.distance(v1, v2, method), d, places=2)
        print("pattern.vector.distance()")

    def test_distancemap(self):
        # Assert distance caching mechanism.
        v1 = vector.Vector({"cat": 1})
        v2 = vector.Vector({"cat": 0.5, "dog": 1})
        m = vector.DistanceMap(method=vector.COSINE)
        for i in range(100):
            self.assertAlmostEqual(m.distance(v1, v2), 0.55, places=2)
            self.assertAlmostEqual(m._cache[(v1.id, v2.id)], 0.55, places=2)
        print("pattern.vector.DistanceMap")

    def _test_k_means(self, seed):
        # Assert k-means clustering accuracy.
        A = []
        n = 100
        m = dict((d.vector.id, d.type) for d in self.model[:n])
        for i in range(30):
            # Create two clusters of vectors.
            k = vector.kmeans([d.vector for d in self.model[:n]], k=2, seed=seed)
            # Measure the number of spam in each clusters.
            # Ideally, we have a cluster without spam and one with only spam.
            i = len([1 for v in k[0] if m[v.id] == False])
            j = len([1 for v in k[1] if m[v.id] == False])
            A.append(max(i, j) * 2.0 / n)
        # Return average accuracy after 10 tests.
        return sum(A) / 30.0

    def test_k_means_random(self):
        # Assert k-means with random initialization.
        v = self._test_k_means(seed=vector.RANDOM)
        self.assertTrue(v >= 0.6)
        print("pattern.vector.kmeans(seed=RANDOM)")

    def test_k_means_kmpp(self):
        # Assert k-means with k-means++ initialization.
        # Note: vectors contain the top 10 features - see setUp().
        # If you include more features (more noise?) accuracy and performance will drop.
        v = self._test_k_means(seed=vector.KMPP)
        self.assertTrue(v >= 0.8)
        print("pattern.vector.kmeans(seed=KMPP)")

    def test_hierarchical(self):
        # Assert cluster contains nested clusters and/or vectors.
        def _test_cluster(cluster):
            for nested in cluster:
                if isinstance(nested, vector.Cluster):
                    v1 = set((v.id for v in nested.flatten()))
                    v2 = set((v.id for v in cluster.flatten()))
                    self.assertTrue(nested.depth < cluster.depth)
                    self.assertTrue(v1.issubset(v2))
                else:
                    self.assertTrue(isinstance(nested, vector.Vector))
            self.assertTrue(isinstance(cluster, list))
            self.assertTrue(isinstance(cluster.depth, int))
            self.assertTrue(isinstance(cluster.flatten(), list))
        n = 50
        m = dict((d.vector.id, d.type) for d in self.model[:n])
        h = vector.hierarchical([d.vector for d in self.model[:n]], k=2)
        h.traverse(_test_cluster)
        # Assert the accuracy of hierarchical clustering (shallow test).
        # Assert that cats are separated from dogs.
        v = (
            vector.Vector({"feline": 1, " lion": 1, "mane": 1}),
            vector.Vector({"feline": 1, "tiger": 1, "stripe": 1}),
            vector.Vector({"canine": 1, "wolf": 1, "howl": 1}),
            vector.Vector({"canine": 1, "dog": 1, "bark": 1})
        )
        h = vector.hierarchical(v)
        self.assertTrue(len(h[0][0]) == 2)
        self.assertTrue(len(h[0][1]) == 2)
        self.assertTrue(v[0] in h[0][0] and v[1] in h[0][0] or v[0] in h[0][1] and v[1] in h[0][1])
        self.assertTrue(v[2] in h[0][0] and v[3] in h[0][0] or v[2] in h[0][1] and v[3] in h[0][1])
        print("pattern.vector.Cluster()")
        print("pattern.vector.hierarchical()")

#---------------------------------------------------------------------------------------------------


class TestClassifier(unittest.TestCase):

    model = None

    def setUp(self):
        # Test model for training classifiers.
        if self.__class__.model is None:
            self.__class__.model = model()
        self.model = self.__class__.model

    def _test_classifier(self, Classifier, **kwargs):
        # Assert classifier training + prediction for trivial cases.
        v = Classifier(seed=0, **kwargs)
        test_doc1 = None
        test_doc2 = None

        for document in self.model:
            if isinstance(v, vector.IGTree):
                if test_doc1 is None and document.type is True:
                    test_doc1 = document
                if test_doc2 is None and document.type is False:
                    test_doc2 = document
            v.train(document)

        for type, message in (
          (False, "win money"),
          (True, "fix bug")):
            if not isinstance(v, vector.IGTree):
                self.assertEqual(v.classify(message), type)

        if isinstance(v, vector.IGTree):
            self.assertEqual(v.classify(test_doc1), True)
            self.assertEqual(v.classify(test_doc2), False)

        # Assert classifier properties.
        self.assertEqual(v.binary, True)
        self.assertEqual(sorted(v.classes), [False, True])
        self.assertTrue(isinstance(v.features, list))
        self.assertTrue("ftp" in v.features)
        # Assert saving + loading.
        v.save(Classifier.__name__)
        v = Classifier.load(Classifier.__name__)
        if not isinstance(v, vector.IGTree):
            self.assertEqual(v.classify("win money"), False)
            self.assertEqual(v.classify("fix bug"), True)
        os.remove(Classifier.__name__)
        # Assert untrained classifier returns None.
        v = Classifier(**kwargs)
        self.assertEqual(v.classify("herring"), None)
        print("pattern.vector.%s.train()" % Classifier.__name__)
        print("pattern.vector.%s.classify()" % Classifier.__name__)
        print("pattern.vector.%s.save()" % Classifier.__name__)

    def test_classifier_vector(self):
        # Assert Classifier._vector() (translates input from train() and classify() to a Vector).
        v = vector.Classifier()._vector
        self.assertEqual(("cat", {"cat": 0.5, "purs": 0.5}), v(vector.Document("the cat purs", type="cat")))
        self.assertEqual(("cat", {"cat": 0.5, "purs": 0.5}), v({"cat": 0.5, "purs": 0.5}, type="cat"))
        self.assertEqual(("cat", {"cat": 0.5, "purs": 0.5}), v(["cat", "purs"], type="cat"))
        self.assertEqual(("cat", {"cat": 0.5, "purs": 0.5}), v("cat purs", type="cat"))
        print("pattern.vector.Classifier._vector()")

    def test_nb(self):
        # Assert Bayesian probability classification.
        self._test_classifier(vector.NB)
        # Assert the accuracy of the classifier.
        A, P, R, F, o = vector.NB.test(self.model, folds=10, method=vector.BERNOUILLI)
        #print(A, P, R, F, o)
        self.assertTrue(P >= 0.88)
        self.assertTrue(R >= 0.89)
        self.assertTrue(F >= 0.88)

    def test_igtree(self):
        # Assert information gain tree classification.
        self._test_classifier(vector.IGTree, method=vector.GAINRATIO)
        # Assert the accuracy of the classifier.
        A, P, R, F, o = vector.IGTREE.test(self.model, folds=10, method=vector.GAINRATIO)
        #print(A, P, R, F, o)
        self.assertTrue(P >= 0.87)
        self.assertTrue(R >= 0.88)
        self.assertTrue(F >= 0.89)

    def test_knn(self):
        # Assert nearest-neighbor classification.
        self._test_classifier(vector.KNN, k=10, distance=vector.COSINE)
        # Assert the accuracy of the classifier.
        A, P, R, F, o = vector.KNN.test(self.model, folds=10, k=2, distance=vector.COSINE)
        #print(A, P, R, F, o)
        self.assertTrue(P >= 0.91)
        self.assertTrue(R >= 0.92)
        self.assertTrue(F >= 0.92)

    def test_slp(self):
        random.seed(1)
        # Assert single-layer averaged perceptron classification.
        self._test_classifier(vector.SLP)
        # Assert the accuracy of the classifier.
        A, P, R, F, o = vector.SLP.test(self.model, folds=10, iterations=3)
        # print(A, P, R, F, o)
        self.assertTrue(P >= 0.90)
        self.assertTrue(R >= 0.91)
        self.assertTrue(F >= 0.91)

    def test_svm(self):
        try:
            from pattern.vector import svm
        except ImportError as e:
            print(e)
            return
        # Assert support vector classification.
        self._test_classifier(vector.SVM, type=vector.SVC, kernel=vector.LINEAR)
        # Assert the accuracy of the classifier.
        A, P, R, F, o = vector.SVM.test(self.model, folds=10, type=vector.SVC, kernel=vector.LINEAR)
        #print(A, P, R, F, o)
        self.assertTrue(P >= 0.93)
        self.assertTrue(R >= 0.93)
        self.assertTrue(F >= 0.93)

    def test_liblinear(self):
        # If LIBLINEAR can be loaded,
        # assert that it is used for linear SVC (= 10x faster).
        try:
            from pattern.vector import svm
        except ImportError as e:
            print(e)
            return
        if svm.LIBLINEAR:
            classifier1 = vector.SVM(
                      type =  vector.CLASSIFICATION,
                    kernel =  vector.LINEAR,
                extensions = (vector.LIBSVM, vector.LIBLINEAR))
            classifier2 = vector.SVM(
                      type =  vector.CLASSIFICATION,
                    kernel =  vector.RBF,
                extensions = (vector.LIBSVM, vector.LIBLINEAR))
            classifier3 = vector.SVM(
                      type =  vector.CLASSIFICATION,
                    kernel =  vector.LINEAR,
                extensions = (vector.LIBSVM,))
            self.assertEqual(classifier1.extension, vector.LIBLINEAR)
            self.assertEqual(classifier2.extension, vector.LIBSVM)
            self.assertEqual(classifier3.extension, vector.LIBSVM)
        print("pattern.vector.svm.LIBSVM")
        print("pattern.vector.svm.LIBLINEAR")

#---------------------------------------------------------------------------------------------------


def suite():
    suite = unittest.TestSuite()
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestUnicode))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestUtilityFunctions))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestStemmer))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestDocument))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestModel))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestApriori))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestLSA))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestClustering))
    suite.addTest(unittest.TestLoader().loadTestsFromTestCase(TestClassifier))
    return suite

if __name__ == "__main__":

    result = unittest.TextTestRunner(verbosity=1).run(suite())
    sys.exit(not result.wasSuccessful())