1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322
|
# Binary search tree that holds status of sweep line. Only leaves hold values.
# Operations for finding left and right neighbors of a query point p and finding which segments contain p.
# Author: Sam Lichtenberg
# Email: splichte@princeton.edu
# Date: 09/02/2013
from pauvre.lsi.helper import *
ev = 0.00000001
class T:
def __init__(self):
self.root = Node(None, None, None, None)
def contain_p(self, p):
if self.root.value is None:
return [[], []]
lists = [[], []]
self.root.contain_p(p, lists)
return (lists[0], lists[1])
def get_left_neighbor(self, p):
if self.root.value is None:
return None
return self.root.get_left_neighbor(p)
def get_right_neighbor(self, p):
if self.root.value is None:
return None
return self.root.get_right_neighbor(p)
def insert(self, key, s):
if self.root.value is None:
self.root.left = Node(s, None, None, self.root)
self.root.value = s
self.root.m = get_slope(s)
else:
(node, path) = self.root.find_insert_pt(key, s)
if path == 'r':
node.right = Node(s, None, None, node)
node.right.adjust()
elif path == 'l':
node.left = Node(s, None, None, node)
else:
# this means matching Node was a leaf
# need to make a new internal Node
if node.compare_to_key(key) < 0 or (node.compare_to_key(key)==0 and node.compare_lower(key, s) < 1):
new_internal = Node(s, None, node, node.parent)
new_leaf = Node(s, None, None, new_internal)
new_internal.left = new_leaf
if node is node.parent.left:
node.parent.left = new_internal
node.adjust()
else:
node.parent.right = new_internal
else:
new_internal = Node(node.value, node, None, node.parent)
new_leaf = Node(s, None, None, new_internal)
new_internal.right = new_leaf
if node is node.parent.left:
node.parent.left = new_internal
new_leaf.adjust()
else:
node.parent.right = new_internal
node.parent = new_internal
def delete(self, p, s):
key = p
node = self.root.find_delete_pt(key, s)
val = node.value
if node is node.parent.left:
parent = node.parent.parent
if parent is None:
if self.root.right is not None:
if self.root.right.left or self.root.right.right:
self.root = self.root.right
self.root.parent = None
else:
self.root.left = self.root.right
self.root.value = self.root.right.value
self.root.m = self.root.right.m
self.root.right = None
else:
self.root.left = None
self.root.value = None
elif node.parent is parent.left:
parent.left = node.parent.right
node.parent.right.parent = parent
else:
parent.right = node.parent.right
node.parent.right.parent = parent
else:
parent = node.parent.parent
if parent is None:
if self.root.left:
# switch properties
if self.root.left.right or self.root.left.left:
self.root = self.root.left
self.root.parent = None
else:
self.root.right = None
else:
self.root.right = None
self.root.value = None
elif node.parent is parent.left:
parent.left = node.parent.left
node.parent.left.parent = parent
farright = node.parent.left
while farright.right is not None:
farright = farright.right
farright.adjust()
else:
parent.right = node.parent.left
node.parent.left.parent = parent
farright = node.parent.left
while farright.right is not None:
farright = farright.right
farright.adjust()
return val
def print_tree(self):
self.root.print_tree()
class Node:
def __init__(self, value, left, right, parent):
self.value = value # associated line segment
self.left = left
self.right = right
self.parent = parent
self.m = None
if value is not None:
self.m = get_slope(value)
# compares line segment at y-val of p to p
# TODO: remove this and replace with get_x_at
def compare_to_key(self, p):
x0 = self.value[0][0]
y0 = self.value[0][1]
y1 = p[1]
if self.m != 0 and self.m is not None:
x1 = x0 - float(y0-y1)/self.m
return compare_by_x(p, (x1, y1))
else:
x1 = p[0]
return 0
def get_left_neighbor(self, p):
neighbor = None
n = self
if n.left is None and n.right is None:
return neighbor
last_right = None
found = False
while not found:
c = n.compare_to_key(p)
if c < 1 and n.left:
n = n.left
elif c==1 and n.right:
n = n.right
last_right = n.parent
else:
found = True
c = n.compare_to_key(p)
if c==0:
if n is n.parent.right:
return n.parent
else:
goright = None
if last_right:
goright =last_right.left
return self.get_lr(None, goright)[0]
# n stores the highest-value in the left subtree
if c==-1:
goright = None
if last_right:
goright = last_right.left
return self.get_lr(None, goright)[0]
if c==1:
neighbor = n
return neighbor
def get_right_neighbor(self, p):
neighbor = None
n = self
if n.left is None and n.right is None:
return neighbor
last_left = None
found = False
while not found:
c = n.compare_to_key(p)
if c==0 and n.right:
n = n.right
elif c < 0 and n.left:
n = n.left
last_left = n.parent
elif c==1 and n.right:
n = n.right
else:
found = True
c = n.compare_to_key(p)
# can be c==0 and n.left if at root node
if c==0:
if n.parent is None:
return None
if n is n.parent.right:
goleft = None
if last_left:
goleft = last_left.right
return self.get_lr(goleft, None)[1]
else:
return self.get_lr(n.parent.right, None)[1]
if c==1:
goleft = None
if last_left:
goleft = last_left.right
return self.get_lr(goleft, None)[1]
if c==-1:
return n
return neighbor
# travels down a single direction to get neighbors
def get_lr(self, left, right):
lr = [None, None]
if left:
while left.left:
left = left.left
lr[1] = left
if right:
while right.right:
right = right.right
lr[0] = right
return lr
def contain_p(self, p, lists):
c = self.compare_to_key(p)
if c==0:
if self.left is None and self.right is None:
if compare_by_x(p, self.value[1])==0:
lists[1].append(self.value)
else:
lists[0].append(self.value)
if self.left:
self.left.contain_p(p, lists)
if self.right:
self.right.contain_p(p, lists)
elif c < 0:
if self.left:
self.left.contain_p(p, lists)
else:
if self.right:
self.right.contain_p(p, lists)
def find_insert_pt(self, key, seg):
if self.left and self.right:
if self.compare_to_key(key) == 0 and self.compare_lower(key, seg)==1:
return self.right.find_insert_pt(key, seg)
elif self.compare_to_key(key) < 1:
return self.left.find_insert_pt(key, seg)
else:
return self.right.find_insert_pt(key, seg)
# this case only happens at root
elif self.left:
if self.compare_to_key(key) == 0 and self.compare_lower(key, seg)==1:
return (self, 'r')
elif self.compare_to_key(key) < 1:
return self.left.find_insert_pt(key, seg)
else:
return (self, 'r')
else:
return (self, 'n')
# adjusts stored segments in inner nodes
def adjust(self):
value = self.value
m = self.m
parent = self.parent
node = self
# go up left as much as possible
while parent and node is parent.right:
node = parent
parent = node.parent
# parent to adjust will be on the immediate right
if parent and node is parent.left:
parent.value = value
parent.m = m
def compare_lower(self, p, s2):
y = p[1] - 10
key = get_x_at(s2, (p[0], y))
return self.compare_to_key(key)
# returns matching leaf node, or None if no match
# when deleting, you don't delete below--you delete above! so compare lower = -1.
def find_delete_pt(self, key, value):
if self.left and self.right:
# if equal at this pt, and this node's value is less than the seg's slightly above this pt
if self.compare_to_key(key) == 0 and self.compare_lower(key, value)==-1:
return self.right.find_delete_pt(key, value)
if self.compare_to_key(key) < 1:
return self.left.find_delete_pt(key, value)
else:
return self.right.find_delete_pt(key, value)
elif self.left:
if self.compare_to_key(key) < 1:
return self.left.find_delete_pt(key, value)
else:
return None
# is leaf
else:
if self.compare_to_key(key)==0 and segs_equal(self.value, value):
return self
else:
return None
# also prints depth of each node
def print_tree(self, l=0):
l += 1
if self.left:
self.left.print_tree(l)
if self.left or self.right:
print('INTERNAL: {0}'.format(l))
else:
print('LEAF: {0}'.format(l))
print(self)
print(self.value)
if self.right:
self.right.print_tree(l)
|