1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581
|
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# pauvre - just a pore plotting package
# Copyright (c) 2016-2018 Darrin T. Schultz. All rights reserved.
#
# This file is part of pauvre.
#
# pauvre is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# pauvre is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with pauvre. If not, see <http://www.gnu.org/licenses/>.
# TODO
# import the pauvre rcParams
# Cleanup everything
import pandas as pd
pd.set_option('display.max_columns', 500)
pd.set_option('display.width', 1000)
import numpy as np
import os
import pauvre.rcparams as rc
from pauvre.functions import GFFParse, print_images, timestamp
from pauvre import gfftools
from pauvre.lsi.lsi import intersection
import progressbar
import platform
import sys
import time
import warnings
# for the shuffling algorithm
from itertools import product
# Biopython stuff
from Bio import SeqIO
from Bio.Align import substitution_matrices
# following this tutorial to install helvetica
# https://github.com/olgabot/sciencemeetproductivity.tumblr.com/blob/master/posts/2012/11/how-to-set-helvetica-as-the-default-sans-serif-font-in.md
global hfont
hfont = {'fontname':'Helvetica'}
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
from matplotlib.colors import LinearSegmentedColormap, Normalize
import matplotlib.patches as patches
def shuffle_optimize_gffs(args, GFFs):
"""This function takes in a list of GFF objects and reshuffles the
individual files such that the resulting sequence of GFF files has
the minimum number of intersections when plotting synteny
if args.optimum_order, then the program will find the global minimum
arrangement using the first GFF file as the anchor.
if not args.optimum_order, then the program will find the local minimum
shuffle between every input pair of GFF files to plot in the best way possible
given the input order.
returns a list of GFF files from which the user can calculate plotting coordinates
"""
# we use the first-input gff as the topmost sequence,
# and then find the best synteny match for the remaining sequences
shuffled_gffs = []
if args.optimum_order:
firstgff = GFFs[0]
# save the first gff file unadultered
shuffled_gffs.append(firstgff)
nextgffs = GFFs[1:]
while len(nextgffs) > 0:
obs_list = []
for i in range(len(nextgffs)):
# every observation will be stored here as a tuple.
# zeroth element is the num intersections with the current gff
# first element is the index of nextgffs
# second element is the GFF object
shuffles = nextgffs[i].shuffle()
for k in range(len(shuffles)):
shuf = shuffles[k]
coords = firstgff.couple(shuf, this_y = 0, other_y = 1)
num_inters = len(intersection(coords))
obs_list.append((num_inters, i, shuf))
#print(obs_list[-1])
intersections, gffixs, shufs = zip(*obs_list)
# get the index of the shuffled gff with the least number of
# intersections to the current one against which we are comparing
#print("intersections", intersections)
selected_ix = intersections.index(min(intersections))
# save this gff to shuffled gffs to use later for plotting
shuffled_gffs.append(shufs[selected_ix])
# remove the origin of the shuffled gff from nextgffs
del nextgffs[gffixs[selected_ix]]
#print("global minimum was {} intersections".format(min(intersections)))
# now update the firstgff to the latest shuffled one we collected
firstgff = shufs[selected_ix]
# plot the gff files in the order in which you input them,
# but shuffle them to the order with least intersections
else:
# first we need to find the best arrangement by finding the combinations
# that share the most unique genes
genes_series = [GFFs[i].get_unique_genes() for i in range(len(GFFs))]
combinations_indices = [0]
remaining_indices = list(range(1, len(GFFs)))
done = False
biggest_intersection_index = -1
biggest_intersection_value = 0
current_remaining_indices_index = 0
while not done:
#get the len of the intersection
#print("combinations_indices: {}".format(combinations_indices))
#print("current_remaining_indices_index: {}".format(current_remaining_indices_index))
#print("remaining_indices[current_remaining_indices_index]: {}".format(remaining_indices[current_remaining_indices_index]))
#print("genes_series[remaining_indices[current_remaining_indices_index]]: {}".format(genes_series[remaining_indices[current_remaining_indices_index]]))
this_intersection_value = len(genes_series[combinations_indices[-1]] &\
genes_series[remaining_indices[current_remaining_indices_index]])
if this_intersection_value > biggest_intersection_value:
biggest_intersection_value = this_intersection_value
biggest_intersection_index = current_remaining_indices_index
if current_remaining_indices_index < len(remaining_indices)-1:
current_remaining_indices_index += 1
else:
combinations_indices.append(remaining_indices[biggest_intersection_index])
del remaining_indices[biggest_intersection_index]
biggest_intersection_value = 0
current_remaining_indices_index = 0
biggest_intersection_index = -1
if len(remaining_indices) == 0:
done = True
# The best order of genes with the most shared genes
#I don't know if this is really that useful though since many species will overlap.
# In a future implementation of this program it might be necessary to do sub-sorting of this list to get the lest number of line intersections
print("The best gene combination is {}".format(combinations_indices))
# now we rearrange the GFFs to the best order
new_GFFs = [GFFs[i] for i in combinations_indices]
# If we're adding another copy of the top one, add it here before shuffling
if args.sandwich:
new_GFFs.append(new_GFFs[0])
shuffles = [new_GFFs[i].shuffle() for i in range(len(new_GFFs))]
#print([len(shuffles[i]) for i in range(len(shuffles))])
cumulative_least_shuffled_value = 999999999999999999999999999999999999
bar = progressbar.ProgressBar()
for combination in bar(list(product(*shuffles))):
num_intersections = []
#I have no idea what this list comprehension does anymore.
first_genes = [str(combination[i].features[combination[i].features['featType'].isin(['gene', 'rRNA', 'CDS', 'tRNA'])]['name'].head(n=1)).split()[1] for i in range(len(combination))]
# skip to the next iteration if all the genes aren't the same
if args.start_with_aligned_genes and len(set(first_genes)) != 1:
continue
for i in range(len(new_GFFs) - 1):
j = i + 1
#figure out the best shuffle the next sequence
coords = combination[i].couple(combination[j], this_y = i, other_y = j)
num_intersections.append(len(intersection(coords)))
if sum(num_intersections) < cumulative_least_shuffled_value:
shuffled_gffs = combination
cumulative_least_shuffled_value = sum(num_intersections)
print("\nnew fewest global intersections: {}".format(sum(num_intersections)))
return shuffled_gffs
def black_colormap():
zeroone = np.linspace(0, 1, 100)
colorrange = [(0,0,0,x) for x in zeroone]
blosumvals = substitution_matrices.load("BLOSUM62").values()
minblosum = int(min(blosumvals))
maxblosum = int(max(blosumvals))
colormap = {i: colorrange[int(translate(i, minblosum, maxblosum, 0, 99))]
for i in range(minblosum, maxblosum + 1, 1)}
return colormap
def translate(value, left_min, left_max, right_min, right_max):
"""This code maps values from the left range and interpolates to the
corresponding range on the right. This is used to translate the amino acid
substition matrix scores to a scale between 0 and 1 for making alphamaps.
I don't know if this works if the directionality of the ranges are swapped.
IE [5, -10] mapped to [0, 1]
args:
<value> - the value in [<left_min>:<left_max>] to scale between
[<right_min>:<right_max>]
<left_min> - the 'min' of the left (source) range
<left_max> - the 'max' of the left (source) range
<right_min> - the 'min' of the right (target) range
<right_max> the 'max' of the right (target) range
output:
the <value>(float) scaled between <right_min> and <right_max>
"""
# Figure out how 'wide' each range is
left_span = left_max - left_min
right_span = right_max - right_min
# Convert the left range into a 0-1 range (float)
value_scaled = float(value - left_min) / float(left_span)
# Convert the 0-1 range into a value in the right range.
return right_min + (value_scaled * right_span)
def _samplename_warning(samplename, filename):
warnings.warn("""
There is a sample in your fasta alignments that
does not match the samplenames from the gff filenames. Please
rename this samplename to not contain any spaces or underscores.
IE for sample 'NC016', '>NC_016_-_ND6' will not work but
'>NC016_-_ND6' will work.
Erroneous name: {}
File: {}""".format(samplename, os.path.basename(filename)))
def _samplelength_warning(samplename, genename, featType, gfflen, alnlen):
raise Warning("""The length of the protein alignment isn't the same as the
length in the GFF file for the sample. Maybe you used a sequence in the
alignment that is different from the annotation source? Check if the
stop codons are deleted/inserted from either the GFF or alignment. The
protein alignment length should be 3 less than the gff length if the
stop codons were included in the gff annotation.
Another possibility is that the RNA that is generating this error has
post-transcriptional modifications that complete the stop codon. In
this case, you can fudge the stop position in the gff file (increase
the value by one or two) to make the plotting script run.
Sample name: {}
feat type: {}
gene name: {}
gff length: {}
aln length: {}""".format(samplename, featType, genename, gfflen, alnlen))
def _nosample_warning(samplename, alngenename, gffnames):
raise Warning("""One of the gff files doesn't contain a sequence that the
alignment file indicates should be present. Either the alignment file
is misnamed or the sequence name in the GFF file is not what you
intended.
Sample name: {}
aln gene name: {}
gff names: {}""".format(samplename, alngenename, gffnames))
def get_alignments(args):
"""
this reads in all the alignments from the fasta directory.
"""
# This is a dict object with key as
filelist = {os.path.splitext(x)[0]:os.path.join(os.path.abspath(args.aln_dir), x)
for x in os.listdir(args.aln_dir)
if os.path.splitext(x)[1]}
print("file list is:")
print(filelist)
# one entry in seq_dict is:
# {seqname: {"featType": featType,
# "seqs": {samplename: seq},
# "indices": {samplename: indices}}
seqs_dict = {}
# go through every gene in the genelist
for genename in filelist:
thisFeatType = ""
seqs_list = {}
indices_list = {}
#print("We found the following samplenames: {}".format(args.samplenames), file = sys.stderr)
# this block handles reading in the fasta files to interpret the alignments
for record in SeqIO.parse(filelist[genename], "fasta"):
# get the sample name and make sure that the sample names match
samplename = record.id.replace("_", " ").split()[0]
#print("Looking at sample: {}".format(samplename), file=sys.stderr)
if samplename not in args.samplenames:
#if there's a sequence in the fasta that we did not specify
# in the command, ignore that sequence
_samplename_warning(samplename, filelist[genename])
else:
# first, get the sample features
samplegff = args.samplenames[samplename].features
featType = samplegff.loc[samplegff['name'] == genename, 'featType'].to_string().split()[1]
# now we determine if this is a prot alignment or a nucleotide aln
if featType in ['gene', 'CDS']:
final_seq = "".join([x*3 for x in record.seq])
elif featType == 'rRNA':
final_seq = str(record.seq)
# we now need to verify that the protein sequence is
# the length of the gene in the gff file. Do this by removing
# gaps in the alignment
gfffilt = samplegff.loc[samplegff['name'] == genename, 'width']
if len(gfffilt) == 0:
_nosample_warning(samplename, genename, list(samplegff['name']))
gfflen = int(gfffilt)
aln = final_seq.replace("-", "")
alnlen = len(aln)
if gfflen != alnlen:
_samplelength_warning(samplename, genename, featType, gfflen, alnlen)
# If we've made it this far without any errors, then incorporate the
# indices for each index
#print("start_index", start_index)
final_indices = [-1] * len(final_seq)
# up until the next for loop, here we are determining which
# direction to move in. Reverse sequences decrease from the start
strand = samplegff.loc[samplegff['name'] == genename, 'strand'].to_string().split()[1]
if strand == '+':
direction = 1
start_index = int(samplegff.loc[samplegff['name'] == genename, 'start'])
elif strand == '-':
direction = -1
start_index = int(samplegff.loc[samplegff['name'] == genename, 'stop'])
for i in range(len(final_indices)):
if final_seq[i] != '-':
final_indices[i] = start_index
start_index = start_index + (1 * direction)
seqs_list[samplename] = final_seq
if args.center_on:
center_coord = int(args.samplenames[samplename].features.loc[args.samplenames[samplename].features['name'] == args.center_on, 'center'])
indices_list[samplename] = np.array(final_indices) - center_coord
else:
indices_list[samplename] = final_indices
thisFeatType = featType
seqs_dict[genename] = {"featType": thisFeatType,
"seqs": seqs_list,
"indices": indices_list}
return seqs_dict
def plot_synteny(seq1, ind1, seq2, ind2, y1, y2,
featType, matrix, cm, seqname):
"""This function plots all the lines for each"""
print("PLOTTING SYNTENY")
myPatches = []
colormap = {"COX1": '#c0d9ef',
"L": '#e8f1df',
"I": '#f7dedc',
"16S": '#ff2e00',
"12S": '#ffc239',
"cal": '#ffff54',
"COX2": "#7fce66",
"ND2": "#00ae60",
"COX3": "#00aeec",
"ND1": "#006fbb",
"*": "#ffffff",
"(": "#ded9c5",
"Q": "#ffc294",
"?": "#b5a2c4",
"ND4": "#968b5a",
"ND3": "#00fc65",
"ND4L": "#00dcf0",
"ND6": "#ff994e",
"ND5": "#dc31e6",
"X": "#d8d8d8",
"G": "#abdce7",
"CYTB": "#ff0059"}
for i in range(len(seq1)):
feat1 = seq1[i]
feat2 = seq2[i]
if feat1 != '-' and feat2 != '-':
xs = []
ys = []
xs.append(ind1[i]) # top left
ys.append(y1)
xs.append(ind1[i] + 1) # top right
ys.append(y1)
xs.append(ind2[i] + 1) # bottom right
ys.append(y2)
xs.append(ind2[i]) #bottom left
ys.append(y2)
xs.append(ind1[i]) #top left
ys.append(y1)
alpha = 0.5
if featType in ['CDS', 'gene']:
try:
val = matrix[(feat1, feat2)]
except:
val = matrix[(feat2, feat1)]
color = cm[val]
alpha = color[-1]
elif featType == 'rRNA':
if feat1 != feat2:
alpha=0
color = colormap[seqname]
stack1 = np.column_stack([xs, ys])
myPatches.append(patches.Polygon(stack1, closed=True,
color = color,
alpha = alpha,
lw=0))
return myPatches
def synplot(args):
rc.update_rcParams()
print(args)
GFFs = []
for i in range(len(args.gff_paths)):
gffpath = args.gff_paths[i]
species = ""
if args.gff_labels:
species = args.gff_labels[i]
GFFs.append(GFFParse(gffpath, args.stop_codons, species))
# find the optimum shuffling pattern
# and add a list of samplenames to the args
optGFFs = shuffle_optimize_gffs(args, GFFs)
# Make a sandwich for a circular comparison
setattr(args, 'samplenames', {gff.samplename:gff for gff in optGFFs})
# now get the cms and normalize
#cms, normalize = gen_colormaps()
cm = black_colormap()
## and we get the protein alignment objects
# {seqname: {"featType": featType,
# "seqs": {samplename: seq},
# "indices": {samplename: indices}}
print("getting alignments")
seqs_dict = get_alignments(args)
print("done getting alignments")
print("seqs_dict is:")
print(seqs_dict)
# set the figure dimensions
if args.ratio:
figWidth = args.ratio[0] + 1
figHeight = args.ratio[1] + 1
#set the panel dimensions
panelWidth = args.ratio[0]
panelHeight = args.ratio[1]
else:
figWidth = 2.5*4
figHeight = 5
#set the panel dimensions
panelWidth = 2.5 * 3
panelHeight = 1.75
figure = plt.figure(figsize=(figWidth,figHeight))
#find the margins to center the panel in figure
leftMargin = (figWidth - panelWidth)/2
bottomMargin = ((figHeight - panelHeight)/2) + 0.25
panel0=plt.axes([leftMargin/figWidth, #left
bottomMargin/figHeight, #bottom
panelWidth/figWidth, #width
panelHeight/figHeight]) #height
panel0.tick_params(axis='both',which='both',\
bottom='on', labelbottom='off',\
left='off', labelleft='off', \
right='off', labelright='off',\
top='off', labeltop='off')
#turn off some of the axes
panel0.spines['top'].set_visible(False)
panel0.spines['right'].set_visible(False)
panel0.spines['left'].set_visible(False)
# {seqname: {"featType": featType,
# "seqs": {samplename: seq},
# "indices": {samplename: indices}}
allPatches = []
for seqname in seqs_dict:
#go through in order
print(seqname)
for i in range(0, len(optGFFs) - 1):
samplei = optGFFs[i].samplename
samplej = optGFFs[i+1].samplename
if samplei in seqs_dict[seqname]["seqs"].keys() and\
samplej in seqs_dict[seqname]["seqs"].keys():
featType = seqs_dict[seqname]["featType"]
seq1 = seqs_dict[seqname]["seqs"][samplei]
ind1 = seqs_dict[seqname]["indices"][samplei]
seq2 = seqs_dict[seqname]["seqs"][samplej]
ind2 = seqs_dict[seqname]["indices"][samplej]
# this is the top one, just leave it at the actual value since
# the base of the annotations start on the integer
y1 = len(optGFFs) - 1 - i
# this needs to be increased by the bar_thickness (0.9 * track_width in this case, or 0.09)
y2 = len(optGFFs) - 2 - i
myPatches = plot_synteny(seq1, ind1, seq2, ind2, y1, y2,
featType,
substitution_matrices.load("BLOSUM62"),
cm, seqname)
for patch in myPatches:
allPatches.append(patch)
#print("len allPatches", len(allPatches))
# this bit plots the simplified lines in the centers
## first we plot all the lines from the centers of matching genes.
## This is temporary. Or maybe it should be a feature
#verts = []
#for i in range(len(optGFFs) - 1):
# j = i + 1
# coords = optGFFs[i].couple(optGFFs[j], this_y = len(optGFFs) - i, other_y = len(optGFFs) - i - 1)
# for coord in coords:
# verts.append(coord)
#for vert in verts:
# xxyy = list(zip(*vert))
# panel0.plot(xxyy[0], xxyy[1])
# now we plot horizontal lines showing the length of the mitochondrial sequence
maxseqlen = 0
# this is a heuristic for trackwidth of what looks good in my experience
track_multiplier = 0.08
if args.ratio:
track_width = track_multiplier * panelWidth
else:
#0.032 if only 3
#0.062 if 6
track_width = track_multiplier * panelWidth
for i in range(len(optGFFs)):
gff = optGFFs[i]
#print(" - Plotting panels of {}".format(gff), file = sys.stderr)
x_offset = 0
#print(" - Detecting if centering is on.".format(gff), file = sys.stderr)
if args.center_on:
x_offset = -1 * int(gff.features.loc[gff.features['name'] == args.center_on, 'center'])
gff = gfftools.x_offset_gff(gff, x_offset)
#print(" - Centering is on.".format(gff), file = sys.stderr)
#print(" - Plotting horizontal portions with gffplot_horizontal.".format(gff), file = sys.stderr)
panel0, patches = gfftools.gffplot_horizontal(
figure, panel0, args, gff,
track_width = track_width,
start_y = len(optGFFs) - i - 1 - ((0.9 * track_width)/2),
x_offset = x_offset)
#print("{} patches came out of gffplot_horizontal()".format(len(patches)))
seq_name = gff.features['sequence'].unique()[0]
if args.gff_labels:
seq_name = r"$\it{{{0}}}$".format(gff.species)
panel0.text(0 + x_offset, len(optGFFs) - i - 1 + (0.18/2),
seq_name, fontsize = 12,
ha='left', va='bottom',
color = 'black',
zorder = 100)
if gff.seqlen > maxseqlen:
maxseqlen = gff.seqlen
xs = (1 + x_offset, gff.seqlen + x_offset)
#ys = [len(optGFFs) - i - 1 + (0.09/2)]*2
ys = [len(optGFFs) - i - 1]*2
#print(" - Plotting lines.".format(gff), file = sys.stderr)
panel0.plot(xs, ys, color='black', zorder = -9)
#print(" - Adding patches.".format(gff), file = sys.stderr)
#print("Right before adding patches there are {} patches.".format(len(patches)))
for i in range(len(patches)):
patch = patches[i]
allPatches.append(patch)
for patch in allPatches:
panel0.add_patch(patch)
panel0.set_xlabel("position (bp)")
#panel0.set_xlim([-15000, int(np.ceil(maxseqlen/1000)*1000)])
panel0.set_ylim([ 0 - ( (track_width/2) * 1.1 ),
len(optGFFs) - 1 + ( (track_width/2) * 1.1 )])
# This removes the text labels from the plot
labels = [item.get_text() for item in panel0.get_xticklabels()]
empty_string_labels = ['']*len(labels)
print(" - Setting tick labels.".format(gff), file = sys.stderr)
panel0.set_xticklabels(empty_string_labels)
# Print image(s)
print(" - Running print_images.".format(gff), file = sys.stderr)
if args.BASENAME is None:
file_base = "synteny"
else:
file_base = args.BASENAME
print_images(
base=file_base,
image_formats=args.fileform,
no_timestamp = args.no_timestamp,
dpi=args.dpi,
transparent=args.transparent)
def run(args):
synplot(args)
|