File: BamIO.py

package info (click to toggle)
python-pbcore 1.2.11%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 18,612 kB
  • ctags: 5,336
  • sloc: python: 22,160; xml: 2,667; makefile: 239
file content (461 lines) | stat: -rw-r--r-- 17,247 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
#################################################################################
# Copyright (c) 2011-2015, Pacific Biosciences of California, Inc.
#
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are met:
# * Redistributions of source code must retain the above copyright
#   notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above copyright
#   notice, this list of conditions and the following disclaimer in the
#   documentation and/or other materials provided with the distribution.
# * Neither the name of Pacific Biosciences nor the names of its
#   contributors may be used to endorse or promote products derived from
#   this software without specific prior written permission.
#
# NO EXPRESS OR IMPLIED LICENSES TO ANY PARTY'S PATENT RIGHTS ARE GRANTED BY
# THIS LICENSE.  THIS SOFTWARE IS PROVIDED BY PACIFIC BIOSCIENCES AND ITS
# CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
# PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL PACIFIC BIOSCIENCES OR
# ITS CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
# EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
# PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
# BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER
# IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
# ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
#################################################################################

# Author: David Alexander

__all__ = [ "BamReader", "IndexedBamReader" ]

from pysam import AlignmentFile
from pbcore.io import FastaTable
from pbcore.chemistry import decodeTriple, ChemistryLookupError

import numpy as np
from itertools import groupby
from functools import wraps
from os.path import abspath, expanduser, exists

from ..base import ReaderBase
from .PacBioBamIndex import PacBioBamIndex
from .BamAlignment import *
from ._BamSupport import *
from ._AlignmentMixin import AlignmentReaderMixin, IndexedAlignmentReaderMixin


def requiresBai(method):
    @wraps(method)
    def f(bamReader, *args, **kwargs):
        if not bamReader.peer.has_index():
            raise UnavailableFeature, "this feature requires an standard BAM index file (bam.bai)"
        else:
            return method(bamReader, *args, **kwargs)
    return f


class _BamReaderBase(ReaderBase):
    """
    The BamReader class provides a high-level interface to PacBio BAM
    files.  If a PacBio BAM index (bam.pbi file) is present and the
    user instantiates the BamReader using the reference FASTA as the
    second argument, the BamReader will provide an interface
    compatible with CmpH5Reader.
    """
    def _loadReferenceInfo(self):
        refRecords = self.peer.header["SQ"]
        refNames   = [r["SN"] for r in refRecords]
        refLengths = [r["LN"] for r in refRecords]
        refMD5s    = [r["M5"] for r in refRecords]
        refIds = map(self.peer.get_tid, refNames)
        nRefs = len(refRecords)

        if nRefs > 0:
            self._referenceInfoTable = np.rec.fromrecords(zip(
                refIds,
                refIds,
                refNames,
                refNames,
                refLengths,
                refMD5s,
                np.zeros(nRefs, dtype=np.uint32),
                np.zeros(nRefs, dtype=np.uint32)),
                dtype=[('ID', '<i8'), ('RefInfoID', '<i8'),
                       ('Name', 'O'), ('FullName', 'O'),
                       ('Length', '<i8'), ('MD5', 'O'),
                       ('StartRow', '<u4'), ('EndRow', '<u4')])
            self._referenceDict = {}
            self._referenceDict.update(zip(refIds, self._referenceInfoTable))
            self._referenceDict.update(zip(refNames, self._referenceInfoTable))
        else:
            self._referenceInfoTable = None
            self._referenceDict = None

    def _loadReadGroupInfo(self):
        rgs = self.peer.header["RG"]
        readGroupTable_ = []

        # RGID -> ("abstract feature name" -> actual feature name)
        self._baseFeatureNameMappings = {}
        self._pulseFeatureNameMappings = {}

        for rg in rgs:
            rgID = rgAsInt(rg["ID"])
            rgName = rg["PU"]
            ds = dict([pair.split("=") for pair in rg["DS"].split(";") if pair != ""])
            # spec: we only consider first two components of basecaller version
            # in "chem" lookup
            basecallerVersion = ".".join(ds["BASECALLERVERSION"].split(".")[0:2])
            triple = ds["BINDINGKIT"], ds["SEQUENCINGKIT"], basecallerVersion
            rgChem = decodeTriple(*triple)
            rgReadType = ds["READTYPE"]
            rgFrameRate = ds["FRAMERATEHZ"]

            # Look for the features manifest entries within the DS tag,
            # and build an "indirection layer", i.e. to get from
            # "Ipd"  to "Ipd:Frames"
            # (This is a bit messy.  Can we separate the manifest from
            # the rest of the DS content?)
            baseFeatureNameMapping  = { key.split(":")[0] : key
                                        for key in ds.keys()
                                        if key in BASE_FEATURE_TAGS }
            pulseFeatureNameMapping = { key.split(":")[0] : key
                                        for key in ds.keys()
                                        if key in PULSE_FEATURE_TAGS }
            self._baseFeatureNameMappings[rgID]  = baseFeatureNameMapping
            self._pulseFeatureNameMappings[rgID] = pulseFeatureNameMapping

            readGroupTable_.append((rgID, rgName, rgReadType, rgChem, rgFrameRate,
                                    frozenset(baseFeatureNameMapping.iterkeys())))

        self._readGroupTable = np.rec.fromrecords(
            readGroupTable_,
            dtype=[("ID"                 , np.int32),
                   ("MovieName"          , "O"),
                   ("ReadType"           , "O"),
                   ("SequencingChemistry", "O"),
                   ("FrameRate",           float),
                   ("BaseFeatures",        "O")])
        assert len(set(self._readGroupTable.ID)) == len(self._readGroupTable), \
            "First 8 chars of read group IDs must be unique!"

        self._readGroupDict = { rg.ID : rg
                                for rg in self._readGroupTable }

        # The base/pulse features "available" to clients of this file are the intersection
        # of features available from each read group.
        self._baseFeaturesAvailable = set.intersection(
            *[set(mapping.keys()) for mapping in self._baseFeatureNameMappings.values()])
        self._pulseFeaturesAvailable = set.intersection(
            *[set(mapping.keys()) for mapping in self._pulseFeatureNameMappings.values()])

    def _loadProgramInfo(self):
        pgRecords = [ (pg["ID"], pg.get("VN", None), pg.get("CL", None))
                      for pg in self.peer.header.get("PG", []) ]

        if len(pgRecords) > 0:
            self._programTable = np.rec.fromrecords(
                pgRecords,
                dtype=[("ID"     ,     "O"),
                       ("Version",     "O"),
                       ("CommandLine", "O")])
        else:
            self._programTable = None

    def _loadReferenceFasta(self, referenceFastaFname):
        ft = FastaTable(referenceFastaFname)
        # Verify that this FASTA is in agreement with the BAM's
        # reference table---BAM should be a subset.
        fastaIdsAndLens = set((c.id, len(c)) for c in ft)
        bamIdsAndLens   = set((c.Name, c.Length) for c in self.referenceInfoTable)
        if not bamIdsAndLens.issubset(fastaIdsAndLens):
            raise ReferenceMismatch, "FASTA file must contain superset of reference contigs in BAM"
        self.referenceFasta = ft

    def _checkFileCompatibility(self):
        # Verify that this is a "pacbio" BAM file of version at least
        # 3.0.1
        badVersionException = IncompatibleFile(
                "This BAM file is incompatible with this API " +
                "(only PacBio BAM files version >= 3.0.1 are supported)")
        checkedVersion = self.version
        if "b" in checkedVersion:
            raise badVersionException
        else:
            major, minor, patch = checkedVersion.split('.')
            if not (major, minor, patch) >= (3, 0, 1):
                raise badVersionException

    def __init__(self, fname, referenceFastaFname=None):
        self.filename = fname = abspath(expanduser(fname))
        self.peer = AlignmentFile(fname, "rb", check_sq=False)
        self._checkFileCompatibility()

        self._loadReferenceInfo()
        self._loadReadGroupInfo()
        self._loadProgramInfo()

        self.referenceFasta = None
        if referenceFastaFname is not None:
            if self.isUnmapped:
                raise ValueError, "Unmapped BAM file--reference FASTA should not be given as argument to BamReader"
            self._loadReferenceFasta(referenceFastaFname)

    @property
    def isIndexLoaded(self):
        return self.index is not None

    @property
    def isReferenceLoaded(self):
        return self.referenceFasta is not None

    @property
    def isUnmapped(self):
        return not(self.isMapped)

    @property
    def isMapped(self):
        return len(self.peer.header["SQ"]) > 0

    @property
    def alignmentIndex(self):
        raise UnavailableFeature("BAM has no alignment index")

    @property
    def movieNames(self):
        return set([mi.MovieName for mi in self.readGroupTable])

    @property
    def readGroupTable(self):
        return self._readGroupTable

    def readGroupInfo(self, readGroupId):
        return self._readGroupDict[readGroupId]

    @property
    def sequencingChemistry(self):
        """
        List of the sequencing chemistries by movie.  Order is
        unspecified.
        """
        return list(self.readGroupTable.SequencingChemistry)

    @property
    def referenceInfoTable(self):
        return self._referenceInfoTable

    #TODO: standard?  how about subread instead?  why capitalize ccs?
    # can we standardize this?  is cDNA an additional possibility
    @property
    def readType(self):
        """
        Either "standard", "CCS", "mixed", or "unknown", to represent the
        type of PacBio reads aligned in this BAM file.
        """
        readTypes = self.readGroupTable.ReadType
        if all(readTypes == "SUBREAD"):
            return "standard"
        elif all(readTypes == "CCS"):
            return "CCS"
        elif all((readTypes == "CCS") | (readTypes == "SUBREAD")):
            return "mixed"
        else:
            return "unknown"

    @property
    def version(self):
        return self.peer.header["HD"]["pb"]

    def versionAtLeast(self, minimalVersion):
        raise Unimplemented()

    def softwareVersion(self, programName):
        raise Unimplemented()

    @property
    def isSorted(self):
        return self.peer.header["HD"]["SO"] == "coordinate"

    @property
    def isBarcoded(self):
        raise Unimplemented()

    @property
    def isEmpty(self):
        return (len(self) == 0)

    def referenceInfo(self, key):
        return self._referenceDict[key]

    def atOffset(self, offset):
        self.peer.seek(offset)
        return BamAlignment(self, next(self.peer))

    def hasBaseFeature(self, featureName):
        return featureName in self._baseFeaturesAvailable

    def baseFeaturesAvailable(self):
        return self._baseFeaturesAvailable

    def hasPulseFeature(self, featureName):
        return featureName in self._pulseFeaturesAvailable

    def pulseFeaturesAvailable(self):
        return self._pulseFeaturesAvailable

    def hasPulseFeatures(self):
        """
        Is this BAM file a product of running analysis with the
        PacBio-internal analysis mode enabled?
        """
        return self.hasPulseFeature("PulseCall")

    @property
    def barcode(self):
        raise Unimplemented()

    @property
    def barcodeName(self):
        raise Unimplemented()

    @property
    def barcodes(self):
        raise Unimplemented()

    @requiresBai
    def __len__(self):
        return self.peer.mapped + self.peer.unmapped

    def close(self):
        if hasattr(self, "file") and self.file is not None:
            self.file.close()
            self.file = None

    def __enter__(self):
        return self

    def __exit__(self, exc_type, exc_value, traceback):
        self.close()


class BamReader(_BamReaderBase, AlignmentReaderMixin):
    """
    Reader for a BAM with a bam.bai (SAMtools) index, but not a
    bam.pbi (PacBio) index.  Supports basic BAM operations.
    """
    def __init__(self, fname, referenceFastaFname=None):
        super(BamReader, self).__init__(fname, referenceFastaFname)

    @property
    def index(self):
        return None

    def __iter__(self):
        self.peer.reset()
        for a in self.peer:
            yield BamAlignment(self, a)

    def readsInRange(self, winId, winStart, winEnd, justIndices=False):
        # PYSAM BUG: fetch doesn't work if arg 1 is tid and not rname
        if not isinstance(winId, str):
            winId = self.peer.get_reference_name(winId)
        if justIndices == True:
            raise UnavailableFeature("BAM is not random-access")
        else:
            return ( BamAlignment(self, it)
                     for it in self.peer.fetch(winId, winStart, winEnd, multiple_iterators=False) )

    def __getitem__(self, rowNumbers):
        raise UnavailableFeature("Use IndexedBamReader to get row-number based slicing.")



class IndexedBamReader(_BamReaderBase, IndexedAlignmentReaderMixin):
    """
    A `IndexedBamReader` is a BAM reader class that uses the
    ``bam.pbi`` (PacBio BAM index) file to enable random access by
    "row number" and to provide access to precomputed semantic
    information about the BAM records
    """
    def __init__(self, fname, referenceFastaFname=None, sharedIndex=None):
        super(IndexedBamReader, self).__init__(fname, referenceFastaFname)
        if sharedIndex is None:
            self.pbi = None
            pbiFname = self.filename + ".pbi"
            if exists(pbiFname):
                self.pbi = PacBioBamIndex(pbiFname)
            else:
                raise IOError("IndexedBamReader requires bam.pbi index file "+
                              "to read {f}".format(f=fname))
        else:
            self.pbi = sharedIndex

    @property
    def index(self):
        return self.pbi

    def atRowNumber(self, rn):
        offset = self.pbi.virtualFileOffset[rn]
        self.peer.seek(offset)
        return BamAlignment(self, next(self.peer), rn)

    def readsInRange(self, winId, winStart, winEnd, justIndices=False):
        if isinstance(winId, str):
            winId = self.referenceInfo(winId).ID
        ix = self.pbi.rangeQuery(winId, winStart, winEnd)
        if justIndices:
            return ix
        else:
            return self[ix]

    def __iter__(self):
        self.peer.reset()
        for (rowNumber, peerRecord) in enumerate(self.peer):
            yield BamAlignment(self, peerRecord, rowNumber)

    def __len__(self):
        return len(self.pbi)

    def __getitem__(self, rowNumbers):
        if (isinstance(rowNumbers, int) or
            issubclass(type(rowNumbers), np.integer)):
            return self.atRowNumber(rowNumbers)
        elif isinstance(rowNumbers, slice):
            return ( self.atRowNumber(r)
                     for r in xrange(*rowNumbers.indices(len(self))))
        elif isinstance(rowNumbers, list) or isinstance(rowNumbers, np.ndarray):
            if len(rowNumbers) == 0:
                return []
            else:
                entryType = type(rowNumbers[0])
                if entryType == int or issubclass(entryType, np.integer):
                    return ( self.atRowNumber(r) for r in rowNumbers )
                elif entryType == bool or issubclass(entryType, np.bool_):
                    return ( self.atRowNumber(r) for r in np.flatnonzero(rowNumbers) )
        raise TypeError, "Invalid type for IndexedBamReader slicing"

    def __getattr__(self, key):
        if key in self.pbi.columnNames:
            return getattr(self.pbi, key)
        else:
            raise AttributeError, "no such column in pbi index"

    def __dir__(self):
        basicDir = dir(self.__class__)
        return basicDir + self.pbi.columnNames

    @property
    def identity(self):
        """
        Fractional alignment sequence identities as numpy array.
        """
        if len(self.pbi) == 0:
            return np.array([])
        if not "nMM" in self.pbi.columnNames:
            raise AttributeError("Identities require mapped BAM.")
        return 1 - ((self.pbi.nMM + self.pbi.nIns + self.pbi.nDel) /
            (self.pbi.aEnd.astype(float) - self.pbi.aStart.astype(float)))