File: rangeQueries.py

package info (click to toggle)
python-pbcore 1.6.5%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: buster
  • size: 19,168 kB
  • sloc: python: 25,497; xml: 2,846; makefile: 251; sh: 24
file content (153 lines) | stat: -rw-r--r-- 5,211 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
from __future__ import absolute_import

import numpy as np
import bisect

def rightmostBinSearch(vec, val):
    """
    Return the rightmost position in the vector vec of val. If val is
    absent then we return the leftmost position of the value:
    min(vec[vec > val]). If val is greater than all elements in vec we
    return len(vec).
    """
    assert(len(vec) > 0)

    i = bisect.bisect_left(vec, val)

    if (len(vec) == i):
        return(i)

    while (i + 1 < len(vec) and vec[i + 1] == val):
        i += 1

    return(i)

def leftmostBinSearch(vec, val):
    """
    Return the leftmost position in the vector vec of val. If val is
    absent then we return the lefternmost position for the value:
    max(vec[vec < val]). The time complexity here is potentially worse
    than log(n) because of the extra step of walking backwards.
    """
    assert(len(vec) > 0)
    i = bisect.bisect_left(vec, val)

    if (i == 0):
        return(i)
    elif (i == len(vec)):
        v = vec[i-1]
        i -= 1
    else:
        v = vec[i]

    if (v > val):
        i -= 1

    while (i > 0 and vec[i-1] == vec[i]):
        i -= 1

    return(i)


def getOverlappingRanges(tStart, tEnd, nBack, nOverlap, rangeStart, rangeEnd):
    """
    Return indices overlapping the range defined by [rangeStart,
    rangeEnd). Here tStart, tEnd, nBack, nOverlap are vectors of
    length n sorted according to tStart and tEnd. The vectors nBack
    and nOverlap are typically produced by computeIndices[DP].
    """
    assert(rangeEnd > rangeStart and
           len(tStart) == len(tEnd) == len(nBack) == len(nOverlap))

    lM = leftmostBinSearch(tStart, rangeStart)
    lM = lM - nBack[lM]
    rM = rightmostBinSearch(tStart, rangeEnd - .5)

    assert(rM >= lM and rM >= 0 and lM >= 0)

    if (lM == rM):
        return(np.array([], dtype = "uint32"))
    else:
        # We only keep the reads in the range lM .. rM that
        # actually overlap the range, as determined by
        # tEnd > rangeStart
        idxs   = np.arange(lM, rM, dtype = "uint32")   # lM .. rM
        toKeep = tEnd[idxs] > rangeStart
        return(idxs[toKeep])

def projectIntoRange(tStart, tEnd, winStart, winEnd):
    """
    Find coverage in the range [winStart, winEnd) implied by tStart,
    tEnd vectors.  Coverage can be most efficiently calculated by
    first obtaining all reads overlapping the range using the
    getOverlappingRanges function then projecting them into the same
    or smaller range
    """
    assert(len(tStart) == len(tEnd))
    res = np.zeros(shape=winEnd-winStart, dtype=np.uint)
    # Clip to window and translate.
    # Be careful to avoid underflow!
    tStart_ = np.clip(tStart, winStart, winEnd) - winStart
    tEnd_   = np.clip(tEnd,   winStart, winEnd) - winStart
    for (s, e) in zip(tStart_, tEnd_):
        res[s:e] += 1
    return res

def makeReadLocator(cmpH5, refSeq):
    """
    Return a function which can be called iteratively to find reads
    quickly.
    """
    if not cmpH5.isSorted: raise Exception("CmpH5 is not sorted")
    refInfo = cmpH5.referenceInfo(refSeq)
    offStart, offEnd = refInfo.StartRow, refInfo.EndRow

    if (offEnd - offStart > 0):
        refAlignIdx = cmpH5.alignmentIndex[offStart:offEnd, ]
        returnEmpty = False
    else:
        refAlignIdx = cmpH5.alignmentIndex[1:2, ]
        returnEmpty = True

    def f(rangeStart, rangeEnd, justIndices = False):
        if returnEmpty:
            ## This looks strange, but the idea is that a rowless matrix
            ## still has columns and these are what I want to preserve --
            ## h5py objects cannot be subset by a vector of length 0,
            ## however, numpy allows this.
            idxs = np.array([], dtype = 'uint32')
        else:
            idxs = getOverlappingRanges(refAlignIdx.tStart, refAlignIdx.tEnd,
                                        refAlignIdx.nBackRead, refAlignIdx.nReadOverlap,
                                        rangeStart, rangeEnd)
        if justIndices:
            return(idxs + offStart)
        else:
            return(refAlignIdx[idxs,])
    return f

def getReadsInRange(cmpH5, coords, justIndices = False):
    """
    Return an ndarray representing the portion of the reads which
    overlap the range specfied by coords, where coords is a
    three-tuple composed of (refSeqID, rangeStart, rangeEnd).  Here,
    cmpH5 is an hdf5 object representing a pointer to a sorted cmp.h5
    file.
    """
    if not cmpH5.isSorted: raise Exception("CmpH5 is not sorted")
    return makeReadLocator(cmpH5, coords[0])(coords[1], coords[2], justIndices)

def getCoverageInRange(cmpH5, coords, rowNumbers=None):
    """
    Return a vector of length: coords[2] - coords[1] where each
    element represents the number of reads overlapping that position
    in the cmp.h5 file.
    """
    if not cmpH5.isSorted: raise Exception("CmpH5 is not sorted")
    if rowNumbers==None:
        rowNumbers  = getReadsInRange(cmpH5, coords, justIndices=True)
    if (len(rowNumbers))==0:
        return np.array([0]*(coords[2] - coords[1]))
    else:
        return(projectIntoRange(cmpH5.tStart[rowNumbers], cmpH5.tEnd[rowNumbers], coords[1], coords[2]))