File: features.rst

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (74 lines) | stat: -rw-r--r-- 3,239 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
Features Tutorials
==================

How 3D Features work in PCL
~~~~~~~~~~~~~~~~~~~~~~~~~~~
This document presents a basic introduction to the 3D feature estimation methodologies in PCL.

* `Original <http://pointclouds.org/documentation/tutorials/how_features_work.php>`_ \
* TestCode : None


Estimating Surface Normals in a PointCloud
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This tutorial discusses the theoretical and implementation details of the surface normal estimation module in PCL.

* `Original <http://pointclouds.org/documentation/tutorials/normal_estimation.php#normal-estimation>`_ \
* TestCode : None


Normal Estimation Using Integral Images
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this tutorial we will learn how to compute normals for an organized point cloud using integral images.

* `Original <http://pointclouds.org/documentation/tutorials/normal_estimation_using_integral_images.php#normal-estimation-using-integral-images>`_ \
* TestCode : examples/official/Features/NormalEstimationUsingIntegralImages.py


Point Feature Histograms (PFH) descriptors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This tutorial introduces a family of 3D feature descriptors called PFH (Point Feature Histograms) and discusses their implementation details from PCLfs perspective.

* `Original <http://pointclouds.org/documentation/tutorials/pfh_estimation.php#pfh-estimation>`_ \
* TestCode : None


Fast Point Feature Histograms (FPFH) descriptors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This tutorial introduces the FPFH (Fast Point Feature Histograms) 3D descriptor and discusses their implementation details from PCLfs perspective.

* `Original <http://pointclouds.org/documentation/tutorials/fpfh_estimation.php#fpfh-estimation>`_ \
* TestCode : None


Estimating VFH signatures for a set of points
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
This document describes the Viewpoint Feature Histogram (VFH) descriptor, a novel representation for point clusters for the problem of Cluster (e.g., Object) Recognition and 6DOF Pose Estimation.

* `Original <http://pointclouds.org/documentation/tutorials/vfh_estimation.php#vfh-estimation>`_ \
* TestCode : None


How to extract NARF features from a range image
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this tutorial, we will learn how to extract NARF features from a range image.

* `Original <http://pointclouds.org/documentation/tutorials/narf_feature_extraction.php#narf-feature-extraction>`_ \
* TestCode : None

Moment of inertia and eccentricity based descriptors
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this tutorial we will learn how to compute moment of inertia and eccentricity of the cloud. In addition to this we will learn how to extract AABB and OBB.

* `Original <http://pointclouds.org/documentation/tutorials/moment_of_inertia.php#moment-of-inertia>`_ \
* TestCode : examples/official/Features/moment_of_inertia.py


RoPs (Rotational Projection Statistics) feature
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
In this tutorial we will learn how to compute RoPS feature.

* `Original <http://pointclouds.org/documentation/tutorials/how_features_work.php>`_ \
* TestCode : examples/official/Features/rops_feature.py