File: extract_indices.py

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (86 lines) | stat: -rw-r--r-- 3,488 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
# -*- coding: utf-8 -*-
# Extracting indices from a PointCloud
# http://pointclouds.org/documentation/tutorials/extract_indices.php#extract-indices
# PCLPointCloud2 is 1.7.2

import pcl

# int main (int argc, char** argv)
# pcl::PCLPointCloud2::Ptr cloud_blob (new pcl::PCLPointCloud2), cloud_filtered_blob (new pcl::PCLPointCloud2);
# pcl::PointCloud<pcl::PointXYZ>::Ptr cloud_filtered (new pcl::PointCloud<pcl::PointXYZ>), cloud_p (new pcl::PointCloud<pcl::PointXYZ>), cloud_f (new pcl::PointCloud<pcl::PointXYZ>);

# cloud_filtered = pcl.

# Fill in the cloud data
# pcl::PCDReader reader;
# reader.read ("table_scene_lms400.pcd", *cloud_blob);
# std::cerr << "PointCloud before filtering: " << cloud_blob->width * cloud_blob->height << " data points." << std::endl;
cloud_blob = pcl.load('./examples/pcldata/tutorials/table_scene_lms400.pcd')
print("PointCloud before filtering: " + str(cloud_blob.width * cloud_blob.height) + " data points.")

# Create the filtering object: downsample the dataset using a leaf size of 1cm
# pcl::VoxelGrid<pcl::PCLPointCloud2> sor;
# sor.setInputCloud (cloud_blob);
# sor.setLeafSize (0.01f, 0.01f, 0.01f);
# sor.filter (*cloud_filtered_blob);
sor = cloud_blob.make_voxel_grid_filter()
sor.set_leaf_size(0.01, 0.01, 0.01)
cloud_filtered_blob = sor.filter()

# Convert to the templated PointCloud
# pcl::fromPCLPointCloud2 (*cloud_filtered_blob, *cloud_filtered);
# std::cerr << "PointCloud after filtering: " << cloud_filtered->width * cloud_filtered->height << " data points." << std::endl;
cloud_filtered = pcl.PCLPointCloud2(cloud_filtered_blob.to_array())
print('PointCloud after filtering: ' + str(cloud_filtered.width * cloud_filtered.height) + ' data points.')

# Write the downsampled version to disk
# pcl::PCDWriter writer;
# writer.write<pcl::PointXYZ> ("table_scene_lms400_downsampled.pcd", *cloud_filtered, false);
pcl.save("table_scene_lms400_downsampled.pcd", cloud_filtered)

# pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients ());
# pcl::PointIndices::Ptr inliers (new pcl::PointIndices ());
# // Create the segmentation object
# pcl::SACSegmentation<pcl::PointXYZ> seg;
# // Optional
# seg.setOptimizeCoefficients (true);
# // Mandatory
# seg.setModelType (pcl::SACMODEL_PLANE);
# seg.setMethodType (pcl::SAC_RANSAC);
# seg.setMaxIterations (1000);
# seg.setDistanceThreshold (0.01);

# // Create the filtering object
# pcl::ExtractIndices<pcl::PointXYZ> extract;
# 
# int i = 0, nr_points = (int) cloud_filtered->points.size ();
# // While 30% of the original cloud is still there
# while (cloud_filtered->points.size () > 0.3 * nr_points)
# {
# // Segment the largest planar component from the remaining cloud
# seg.setInputCloud (cloud_filtered);
# seg.segment (*inliers, *coefficients);
# if (inliers->indices.size () == 0)
# {
#   std::cerr << "Could not estimate a planar model for the given dataset." << std::endl;
#   break;
# }
# 
# // Extract the inliers
# extract.setInputCloud (cloud_filtered);
# extract.setIndices (inliers);
# extract.setNegative (false);
# extract.filter (*cloud_p);
# std::cerr << "PointCloud representing the planar component: " << cloud_p->width * cloud_p->height << " data points." << std::endl;
# 
# std::stringstream ss;
# ss << "table_scene_lms400_plane_" << i << ".pcd";
# writer.write<pcl::PointXYZ> (ss.str (), *cloud_p, false);
# 
# // Create the filtering object
# extract.setNegative (true);
# extract.filter (*cloud_f);
# cloud_filtered.swap (cloud_f);
# i++;
# }