File: range_image_visualize.py

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (212 lines) | stat: -rw-r--r-- 9,466 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# -*- coding: utf-8 -*-
# How to visualize a range image
# http://www.pointclouds.org/documentation/tutorials/range_image_visualization.php#range-image-visualization

import pcl
import numpy as np
import random
import argparse

import pcl.pcl_visualization

# -----Parameters-----
angular_resolution_x = 0.5
angular_resolution_y = 0.5
coordinate_frame = pcl.CythonCoordinateFrame_Type.CAMERA_FRAME
live_update = False

# -----Help-----
# void printUsage (const char* progName)
# {
#   std::cout << "\n\nUsage: "<<progName<<" [options] <scene.pcd>\n\n"
#             << "Options:\n"
#             << "-------------------------------------------\n"
#             << "-r <float>   angular resolution in degrees (default "<<angular_resolution<<")\n"
#             << "-c <int>     coordinate frame (default "<< (int)coordinate_frame<<")\n"
#             << "-m           Treat all unseen points to max range\n"
#             << "-h           this help\n"
#             << "\n\n";
# }

# void setViewerPose (pcl::visualization::PCLVisualizer& viewer, const Eigen::Affine3f& viewer_pose)
# {
#   Eigen::Vector3f pos_vector = viewer_pose * Eigen::Vector3f(0, 0, 0);
#   Eigen::Vector3f look_at_vector = viewer_pose.rotation () * Eigen::Vector3f(0, 0, 1) + pos_vector;
#   Eigen::Vector3f up_vector = viewer_pose.rotation () * Eigen::Vector3f(0, -1, 0);
#   viewer.setCameraPosition (pos_vector[0], pos_vector[1], pos_vector[2],
#                             look_at_vector[0], look_at_vector[1], look_at_vector[2],
#                             up_vector[0], up_vector[1], up_vector[2]);
# }

# -----Main-----
# int main (int argc, char** argv)
# // -----Parse Command Line Arguments-----
#   if (pcl::console::find_argument (argc, argv, "-h") >= 0)
#   {
#     printUsage (argv[0]);
#     return 0;
#   }
#   if (pcl::console::find_argument (argc, argv, "-l") >= 0)
#   {
#     live_update = true;
#     std::cout << "Live update is on.\n";
#   }
#   if (pcl::console::parse (argc, argv, "-rx", angular_resolution_x) >= 0)
#     std::cout << "Setting angular resolution in x-direction to "<<angular_resolution_x<<"deg.\n";
#   if (pcl::console::parse (argc, argv, "-ry", angular_resolution_y) >= 0)
#     std::cout << "Setting angular resolution in y-direction to "<<angular_resolution_y<<"deg.\n";
#   int tmp_coordinate_frame;
#   if (pcl::console::parse (argc, argv, "-c", tmp_coordinate_frame) >= 0)
#   {
#     coordinate_frame = pcl::RangeImage::CoordinateFrame (tmp_coordinate_frame);
#     std::cout << "Using coordinate frame "<< (int)coordinate_frame<<".\n";
#   }
#   angular_resolution_x = pcl::deg2rad (angular_resolution_x);
#   angular_resolution_y = pcl::deg2rad (angular_resolution_y);

parser = argparse.ArgumentParser(description='StrawPCL example: How to visualize a range image')
parser.add_argument('--UnseenToMaxRange', '-m', default=True, type=bool,
                    help='Setting unseen values in range image to maximum range readings')
parser.add_argument('--CoordinateFrame', '-c', default=-1, type=int,
                    help='Using coordinate frame = ')
parser.add_argument('--AngularResolution', '-r', default=0, type=int,
                    help='Setting angular resolution to = ')
parser.add_argument('--Help',
                    help='Usage: narf_keypoint_extraction.py [options] <scene.pcd>\n\n'
                    'Options:\n'
                    '-------------------------------------------\n'
                    '-r <float>   angular resolution in degrees (default = angular_resolution)\n'
                    '-c <int>     coordinate frame (default = coordinate_frame)\n'
                    '-m           Treat all unseen points as max range\n'
                    '-h           this help\n\n\n;')

args = parser.parse_args()

#   // -----Read pcd file or create example point cloud if not given-----
#   pcl::PointCloud<PointType>::Ptr point_cloud_ptr (new pcl::PointCloud<PointType>);
#   pcl::PointCloud<PointType>& point_cloud = *point_cloud_ptr;
#   Eigen::Affine3f scene_sensor_pose (Eigen::Affine3f::Identity ());
#   std::vector<int> pcd_filename_indices = pcl::console::parse_file_extension_argument (argc, argv, "pcd");
#   if (!pcd_filename_indices.empty ())
#   {
#     std::string filename = argv[pcd_filename_indices[0]];
#     if (pcl::io::loadPCDFile (filename, point_cloud) == -1)
#     {
#       std::cout << "Was not able to open file \""<<filename<<"\".\n";
#       printUsage (argv[0]);
#       return 0;
#     }
#     scene_sensor_pose = Eigen::Affine3f (Eigen::Translation3f (point_cloud.sensor_origin_[0],
#                                                              point_cloud.sensor_origin_[1],
#                                                              point_cloud.sensor_origin_[2])) *
#                         Eigen::Affine3f (point_cloud.sensor_orientation_);
#   }
#   else
#   {
#     std::cout << "\nNo *.pcd file given => Genarating example point cloud.\n\n";
#     for (float x=-0.5f; x<=0.5f; x+=0.01f)
#     {
#       for (float y=-0.5f; y<=0.5f; y+=0.01f)
#       {
#         PointType point;  point.x = x;  point.y = y;  point.z = 2.0f - y;
#         point_cloud.points.push_back (point);
#       }
#     }
#     point_cloud.width = (int) point_cloud.points.size ();  point_cloud.height = 1;
#   }
pcd_filename_indices = ''
if len(pcd_filename_indices) != 0:
    # point_cloud = pcl.load(argv[0])
    point_cloud = pcl.load('./examples/official/IO/test_pcd.pcd')
    far_ranges_filename = 'test_pcd.pcd'

    far_ranges = pcl.load_PointWithViewpoint(far_ranges_filename)
else:
    setUnseenToMaxRange = True
    print ('No *.pcd file given = Genarating example point cloud.\n')

    count = 0
    points = np.zeros((100 * 100, 3), dtype=np.float32)

    # float NG
    for x in range(-50, 50, 1):
        for y in range(-50, 50, 1):
            points[count][0] = x * 0.01
            points[count][1] = y * 0.01
            points[count][2] = 2.0 - y * 0.01
            count = count + 1
    
    point_cloud = pcl.PointCloud()
    point_cloud.from_array(points)
    
    far_ranges = pcl.PointCloud_PointWithViewpoint()

# // -----------------------------------------------
# // -----Create RangeImage from the PointCloud-----
# // -----------------------------------------------
# float noise_level = 0.0;
# float min_range = 0.0f;
# int border_size = 1;
# boost::shared_ptr<pcl::RangeImage> range_image_ptr(new pcl::RangeImage);
# pcl::RangeImage& range_image = *range_image_ptr;   
# range_image.createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y,
#                                 pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
#                                 scene_sensor_pose, coordinate_frame, noise_level, min_range, border_size);
noise_level = 0.0
min_range = 0.0
border_size = 1
range_image = point_cloud.make_RangeImage()
range_image.CreateFromPointCloud (point_cloud, 
                        angular_resolution_x, pcl.deg2rad (360.0), pcl.deg2rad (180.0), 
                        coordinate_frame, noise_level, min_range, border_size)
print ('range_image::integrateFarRanges.\n')

# // --------------------------------------------
# // -----Open 3D viewer and add point cloud-----
# // --------------------------------------------
# pcl::visualization::PCLVisualizer viewer ("3D Viewer");
# viewer.setBackgroundColor (1, 1, 1);
# pcl::visualization::PointCloudColorHandlerCustom<pcl::PointWithRange> range_image_color_handler (range_image_ptr, 0, 0, 0);
# viewer.addPointCloud (range_image_ptr, range_image_color_handler, "range image");
# viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "range image");
# //viewer.addCoordinateSystem (1.0f, "global");
# //PointCloudColorHandlerCustom<PointType> point_cloud_color_handler (point_cloud_ptr, 150, 150, 150);
# //viewer.addPointCloud (point_cloud_ptr, point_cloud_color_handler, "original point cloud");
# viewer.initCameraParameters ();
# setViewerPose(viewer, range_image.getTransformationToWorldSystem ());
viewer = pcl.pcl_visualization.PCLVisualizering()
viewer.SetBackgroundColor (1.0, 1.0, 1.0)
range_image_color_handler = pcl.pcl_visualization.PointCloudColorHandleringCustom (point_cloud, 0, 0, 0)
cloudname = str('cloud')
viewer.AddPointCloud (range_image, range_image_color_handler, cloudname)
viewer.SetPointCloudRenderingProperties (pcl.pcl_visualization.PCLVISUALIZER_POINT_SIZE, 1, cloudname)


# // --------------------------
# // -----Show range image-----
# // --------------------------
# pcl::visualization::RangeImageVisualizer range_image_widget ("Range image");
# range_image_widget.showRangeImage (range_image);
range_image_widget = pcl.pcl_visualization.RangeImageVisualization()
range_image_widget.ShowRangeImage (range_image)


#   //--------------------
#   // -----Main loop-----
#   //--------------------
#   while (!viewer.wasStopped ())
#   {
#     range_image_widget.spinOnce ();
#     viewer.spinOnce ();
#     pcl_sleep (0.01);
#     
#     if (live_update)
#     {
#       scene_sensor_pose = viewer.getViewerPose();
#       range_image.createFromPointCloud (point_cloud, angular_resolution_x, angular_resolution_y,
#                                         pcl::deg2rad (360.0f), pcl::deg2rad (180.0f),
#                                         scene_sensor_pose, pcl::RangeImage::LASER_FRAME, noise_level, min_range, border_size);
#       range_image_widget.showRangeImage (range_image);
#     }
#   }