File: correspondence_grouping.py

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (600 lines) | stat: -rw-r--r-- 25,854 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
# -*- coding: utf-8 -*-
# 3D Object Recognition based on Correspondence Grouping
# http://pointclouds.org/documentation/tutorials/correspondence_grouping.php#correspondence-grouping
# python correspondence_grouping.py milk.pcd milk_cartoon_all_small_clorox.pcd
# python correspondence_grouping.py milk.pcd milk_cartoon_all_small_clorox.pcd milk.pcd milk_cartoon_all_small_clorox.pcd -r --model_ss 7.5 --scene_ss 20 --rf_rad 10 --descr_rad 15 --cg_size 10
import pcl
import numpy as np
import random
import argparse
import sys

# typedef pcl::PointXYZRGBA PointType;
# typedef pcl::Normal NormalType;
# typedef pcl::ReferenceFrame RFType;
# typedef pcl::SHOT352 DescriptorType;

# string model_filename_ = 'milk.pcd'
# string scene_filename_ = 'milk_cartoon_all_small_clorox.pcd'

model_filename_ = ''
scene_filename_ = ''

# Algorithm params
# bool show_keypoints_ (false)
# bool show_correspondences_ (false)
# bool use_cloud_resolution_ (false)
# bool use_hough_ (true)
# float model_ss_ (0.01f)
# float scene_ss_ (0.03f)
# float rf_rad_ (0.015f)
# float descr_rad_ (0.02f)
# float cg_size_ (0.01f)
# float cg_thresh_ (5.0f)
show_keypoints_ = False
show_correspondences_ = False
use_cloud_resolution_ = False
use_hough_ = True
model_ss_ = 0.01
scene_ss_ = 0.03
rf_rad_ = 0.015
descr_rad_ = 0.02
cg_size_ = 0.01
cg_thresh_ = 5.0

# void showHelp (char *filename)
# {
#   std::cout << std::endl;
#   std::cout << "***************************************************************************" << std::endl;
#   std::cout << "*                                                                         *" << std::endl;
#   std::cout << "*             Correspondence Grouping Tutorial - Usage Guide              *" << std::endl;
#   std::cout << "*                                                                         *" << std::endl;
#   std::cout << "***************************************************************************" << std::endl << std::endl;
#   std::cout << "Usage: " << filename << " model_filename.pcd scene_filename.pcd [Options]" << std::endl << std::endl;
#   std::cout << "Options:" << std::endl;
#   std::cout << "     -h:                     Show this help." << std::endl;
#   std::cout << "     -k:                     Show used keypoints." << std::endl;
#   std::cout << "     -c:                     Show used correspondences." << std::endl;
#   std::cout << "     -r:                     Compute the model cloud resolution and multiply" << std::endl;
#   std::cout << "                             each radius given by that value." << std::endl;
#   std::cout << "     --algorithm (Hough|GC): Clustering algorithm used (default Hough)." << std::endl;
#   std::cout << "     --model_ss val:         Model uniform sampling radius (default 0.01)" << std::endl;
#   std::cout << "     --scene_ss val:         Scene uniform sampling radius (default 0.03)" << std::endl;
#   std::cout << "     --rf_rad val:           Reference frame radius (default 0.015)" << std::endl;
#   std::cout << "     --descr_rad val:        Descriptor radius (default 0.02)" << std::endl;
#   std::cout << "     --cg_size val:          Cluster size (default 0.01)" << std::endl;
#   std::cout << "     --cg_thresh val:        Clustering threshold (default 5)" << std::endl << std::endl;
# }
# 

# void parseCommandLine (int argc, char *argv[])
# {
#   //Show help
#   if (pcl::console::find_switch (argc, argv, "-h"))
#   {
#     showHelp (argv[0]);
#     exit (0);
#   }
# 
#   //Model & scene filenames
#   std::vector<int> filenames;
#   filenames = pcl::console::parse_file_extension_argument (argc, argv, ".pcd");
#   if (filenames.size () != 2)
#   {
#     std::cout << "Filenames missing.\n";
#     showHelp (argv[0]);
#     exit (-1);
#   }
#
#   model_filename_ = argv[filenames[0]];
#   scene_filename_ = argv[filenames[1]];
# 
#   //Program behavior
#   if (pcl::console::find_switch (argc, argv, "-k"))
#   {
#     show_keypoints_ = true;
#   }
#   if (pcl::console::find_switch (argc, argv, "-c"))
#   {
#     show_correspondences_ = true;
#   }
#   if (pcl::console::find_switch (argc, argv, "-r"))
#   {
#     use_cloud_resolution_ = true;
#   }
# 
#   std::string used_algorithm;
#   if (pcl::console::parse_argument (argc, argv, "--algorithm", used_algorithm) != -1)
#   {
#     if (used_algorithm.compare ("Hough") == 0)
#     {
#       use_hough_ = true;
#     }else if (used_algorithm.compare ("GC") == 0)
#     {
#       use_hough_ = false;
#     }
#     else
#     {
#       std::cout << "Wrong algorithm name.\n";
#       showHelp (argv[0]);
#       exit (-1);
#     }
#   }
# 
#   //General parameters
#   pcl::console::parse_argument (argc, argv, "--model_ss", model_ss_);
#   pcl::console::parse_argument (argc, argv, "--scene_ss", scene_ss_);
#   pcl::console::parse_argument (argc, argv, "--rf_rad", rf_rad_);
#   pcl::console::parse_argument (argc, argv, "--descr_rad", descr_rad_);
#   pcl::console::parse_argument (argc, argv, "--cg_size", cg_size_);
#   pcl::console::parse_argument (argc, argv, "--cg_thresh", cg_thresh_);
# }

# def double computeCloudResolution (const pcl::PointCloud<PointType>::ConstPtr &cloud)
#     double res = 0.0
#     int n_points = 0
#     int nres
#     std::vector<int> indices (2);
#     std::vector<float> sqr_distances (2);
#     pcl::search::KdTree<PointType> tree;
#     tree.setInputCloud (cloud);
# 
#     for (size_t i = 0; i < cloud->size (); ++i)
#         if (! pcl_isfinite ((*cloud)[i].x))
#             continue;
#         end
# 
#         //Considering the second neighbor since the first is the point itself.
#         nres = tree.nearestKSearch (i, 2, indices, sqr_distances);
#         if (nres == 2)
#             res += sqrt (sqr_distances[1]);
#             ++n_points;
#         end
#     end
# 
#     if (n_points != 0)
#         res /= n_points
#     end
# 
#     return res
# end

# main
# int main (int argc, char *argv[])
# parse
# parseCommandLine (argc, argv);
argvs = sys.argv  # R}hCi[Xg̎擾
argc = len(argvs) # ̌

# string model_filename_ = 'milk.pcd'
# string scene_filename_ = 'milk_cartoon_all_small_clorox.pcd'
model_filename_ = argvs[1]
scene_filename_ = argvs[2]

parser = argparse.ArgumentParser(description='PointCloudLibrary example: correspondence_grouping correspondence_grouping')
parser.add_argument('--UnseenToMaxRange', '-m', default=True, type=bool,
                    help='Setting unseen values in range image to maximum range readings')
parser.add_argument('--algorithm', '-algorithm', choices=('Hough', 'GC'), default='',
                    help='Using algorithm Hough|GC.')
parser.add_argument('--model_ss', '-s', default=0.01, type=double,
                    help='Model uniform sampling radius (default 0.01)')
parser.add_argument('--scene_ss', '-s', default=0.03, type=double,
                    help='Scene uniform sampling radius (default 0.03)')
parser.add_argument('--rf_rad', '-rf', default=0.01, type=double,
                    help='Reference frame radius (default 0.015)\n')
parser.add_argument('--descr_rad', '-s', default=0.02, type=double,
                    help='Descriptor radius (default 0.02)\n')
parser.add_argument('--cg_size', '-s', default=0.01, type=double,
                    help='Descriptor radius (default 0.02)\n')
parser.add_argument('--cg_thresh', '-cg_thresh', default=5, type=int,
                    help='Clustering threshold (default 5)\n')
parser.add_argument('--Help', 
                    help='Usage: model_filename.pcd scene_filename.pcd [Options]\n\n'
                    'Options:\n'
                    '------------------------------------------\n'
                    '-h:                     Show this help.\n'
                    '-k:                     Show used keypoints.\n'
                    '-c:                     Show used correspondences.\n'
                    '-r:                     Compute the model cloud resolution and multiply\n'
                    '                        each radius given by that value.\n'
                    '--rf_rad val:           Reference frame radius (default 0.015)\n'
                    '--descr_rad val:        Descriptor radius (default 0.02)\n'
                    '--cg_size val:          Cluster size (default 0.01)\n'
                    '--cg_thresh val:        Clustering threshold (default 5)\n\n;')

args = parser.parse_args()

# Program behavior
# if (pcl::console::find_switch (argc, argv, "-k"))
#   show_keypoints_ = true;
#
# if (pcl::console::find_switch (argc, argv, "-c"))
#   show_correspondences_ = true;
#
# if (pcl::console::find_switch (argc, argv, "-r"))
#   use_cloud_resolution_ = true;
show_keypoints_ = args.show_keypoints_;
# show_correspondences_ = args.
use_cloud_resolution_ = args.use_cloud_resolution
use_hough_  = args.use_hough
model_ss_  = args.model_ss
scene_ss_ = args.scene_ss
rf_rad_ = args.rf_rad
descr_rad_ = args.descr_rad
cg_size_ = args.cg_size
cg_thresh_ = args.cg_thresh


# settings
model = pcl.PointCloud_XYZRGBA()
model_keypoints = pcl.PointCloud_XYZRGBA()
scene = pcl.PointCloud_XYZRGBA()
scene_keypoints = pcl.PointCloud_XYZRGBA()
model_normals = pcl.PointCloud_Normal()
scene_normals = pcl.PointCloud_Normal()
model_descriptors = pcl.PointCloud_SHOT352()
scene_descriptors = pcl.PointCloud_SHOT352()


# Load clouds
model = pcl.load_XYZRGBA(model_filename_)
scene = pcl.load_XYZRGBA(scene_filename_)

# Set up resolution invariance
if use_cloud_resolution_ == True:
    # float resolution = static_cast<float> (computeCloudResolution (model))
    resolution = 0.0

    if resolution != 0.0:
        model_ss_   *= resolution;
        scene_ss_   *= resolution;
        rf_rad_     *= resolution;
        descr_rad_  *= resolution;
        cg_size_    *= resolution;

    print('Model resolution:       ' + resolution )
    print('Model sampling size:    ' + model_ss_ )
    print('Scene sampling size:    ' + scene_ss_ )
    print('LRF support radius:     ' + rf_rad_ )
    print('SHOT descriptor radius: ' + descr_rad_ )
    print('Clustering bin size:    ' + cg_size_ )


# Compute Normals
# pcl::NormalEstimationOMP<PointType, NormalType> norm_est;
# norm_est.setKSearch (10);
# norm_est.setInputCloud (model);
# norm_est.compute (*model_normals);
# model_normals = norm_est.`
norm_est = model.make_segmenter_normals(10)
norm_est.setKSearch
model_normals = 

# scene_normals = norm_est2.`
# norm_est.setInputCloud (scene);
# norm_est.compute (*scene_normals);
norm_est = norm_est.set_InputCloud(scene)
scene_normals =  norm_est.make_segmenter_normals(10)

# Downsample Clouds to Extract keypoints
# pcl::UniformSampling<PointType> uniform_sampling;
# uniform_sampling = pcl.UniformSampling_XYZRGBA()
# uniform_sampling.setInputCloud (model);
# uniform_sampling.setRadiusSearch (model_ss_);
# uniform_sampling.filter (*model_keypoints);
# std::cout << "Model total points: " << model->size () << "; Selected Keypoints: " << model_keypoints->size () << std::endl;
uniform_sampling = pcl.UniformSampling_XYZRGBA()
uniform_sampling.set_RadiusSearch (model_ss_);
model_keypoints = uniform_sampling.filter()
print("Model total points: " + str(model.size()) + "; Selected Keypoints: " + str(model_keypoints.size()) + "\n")

# uniform_sampling.setInputCloud (scene)
# uniform_sampling.setRadiusSearch (scene_ss_)
# uniform_sampling.filter (*scene_keypoints)
# std::cout << "Scene total points: " << scene->size () << "; Selected Keypoints: " << scene_keypoints->size () << std::endl;
uniform_sampling.setInputCloud (scene)
uniform_sampling.setRadiusSearch (scene_ss_)
scene_keypoints = uniform_sampling.filter ()
print("Model total points: " + str(scene.size()) + "; Selected Keypoints: " + str(scene_keypoints.size()) + "\n")

# Compute Descriptor for keypoints
# pcl::SHOTEstimationOMP<PointType, NormalType, DescriptorType> descr_est;
# descr_est.setRadiusSearch (descr_rad_);
# descr_est.setInputCloud (model_keypoints);
# descr_est.setInputNormals (model_normals);
# descr_est.setSearchSurface (model);
# descr_est.compute (*model_descriptors);
descr_est = model_keypoints.make_SHOTEstimationOMP()
descr_est.setRadiusSearch (descr_rad_)
descr_est.setSearchSurface (model)
model_descriptors = descr_est.compute()

# descr_est.setInputCloud (scene_keypoints);
# descr_est.setInputNormals (scene_normals);
# descr_est.setSearchSurface (scene);
# descr_est.compute (*scene_descriptors)
descr_est.setInputCloud (scene_keypoints)
descr_est.setInputNormals (scene_normals)
descr_est.setSearchSurface (scene)
scene_descriptors = descr_est.compute ()

# Find Model-Scene Correspondences with KdTree
# pcl::CorrespondencesPtr model_scene_corrs (new pcl::Correspondences ());
model_scene_corrs = pcl.Correspondences()

# pcl::KdTreeFLANN<DescriptorType> match_search;
# match_search.setInputCloud (model_descriptors);
match_search = model_descriptors.make_KdTreeFLANN()

# For each scene keypoint descriptor, find nearest neighbor into the model keypoints descriptor cloud and add it to the correspondences vector.
# for (size_t i = 0; i < scene_descriptors->size (); ++i)
# {
#     std::vector<int> neigh_indices (1);
#     std::vector<float> neigh_sqr_dists (1);
#     if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs
#     {
#         continue;
#     }
#     int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
#     if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) //  add match only if the squared descriptor distance is less than 0.25 (SHOT descriptor distances are between 0 and 1 by design)
#     {
#         pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
#         model_scene_corrs->push_back (corr);
#     }
# }

for i in range(i, scene_descriptors.size):
    pass
#     std::vector<int> neigh_indices (1);
#     std::vector<float> neigh_sqr_dists (1);
#     if (!pcl_isfinite (scene_descriptors->at (i).descriptor[0])) //skipping NaNs
#     {
#         continue;
#     }
#     int found_neighs = match_search.nearestKSearch (scene_descriptors->at (i), 1, neigh_indices, neigh_sqr_dists);
#     if(found_neighs == 1 && neigh_sqr_dists[0] < 0.25f) //  add match only if the squared descriptor distance is less than 0.25 (SHOT descriptor distances are between 0 and 1 by design)
#     {
#         pcl::Correspondence corr (neigh_indices[0], static_cast<int> (i), neigh_sqr_dists[0]);
#         model_scene_corrs->push_back (corr);
#     }


# std::cout << "Correspondences found: " << model_scene_corrs->size () << std::endl
print ("Correspondences found: " + str(model_scene_corrs.size))

# //  Actual Clustering
# std::vector<Eigen::Matrix4f, Eigen::aligned_allocator<Eigen::Matrix4f> > rototranslations;
# std::vector<pcl::Correspondences> clustered_corrs;

# Using Hough3D
# if use_hough_ == True:
#     # Compute (Keypoints) Reference Frames only for Hough
#     pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
#     pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ());
# 
#     pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est;
#     rf_est.setFindHoles (true);
#     rf_est.setRadiusSearch (rf_rad_);
# 
#     rf_est.setInputCloud (model_keypoints);
#     rf_est.setInputNormals (model_normals);
#     rf_est.setSearchSurface (model);
#     rf_est.compute (*model_rf);
# 
#     rf_est.setInputCloud (scene_keypoints);
#     rf_est.setInputNormals (scene_normals);
#     rf_est.setSearchSurface (scene);
#     rf_est.compute (*scene_rf);
# 
#     //  Clustering
#     pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
#     clusterer.setHoughBinSize (cg_size_);
#     clusterer.setHoughThreshold (cg_thresh_);
#     clusterer.setUseInterpolation (true);
#     clusterer.setUseDistanceWeight (false);
# 
#     clusterer.setInputCloud (model_keypoints);
#     clusterer.setInputRf (model_rf);
#     clusterer.setSceneCloud (scene_keypoints);
#     clusterer.setSceneRf (scene_rf);
#     clusterer.setModelSceneCorrespondences (model_scene_corrs);
# 
#     //clusterer.cluster (clustered_corrs);
#     clusterer.recognize (rototranslations, clustered_corrs);
# else: 
#     // Using GeometricConsistency
#     pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer;
#     gc_clusterer.setGCSize (cg_size_);
#     gc_clusterer.setGCThreshold (cg_thresh_);
# 
#     gc_clusterer.setInputCloud (model_keypoints);
#     gc_clusterer.setSceneCloud (scene_keypoints);
#     gc_clusterer.setModelSceneCorrespondences (model_scene_corrs);
# 
#     //gc_clusterer.cluster (clustered_corrs);
#     gc_clusterer.recognize (rototranslations, clustered_corrs);

# Using Hough3D
if use_hough_ == True:
    # Compute (Keypoints) Reference Frames only for Hough
    # pcl::PointCloud<RFType>::Ptr model_rf (new pcl::PointCloud<RFType> ());
    # pcl::PointCloud<RFType>::Ptr scene_rf (new pcl::PointCloud<RFType> ());
    
    # 1.7.2
    pcl::BOARDLocalReferenceFrameEstimation<PointType, NormalType, RFType> rf_est
    rf_est.setFindHoles (True)
    rf_est.setRadiusSearch (rf_rad_)
    
    rf_est.setInputCloud (model_keypoints)
    rf_est.setInputNormals (model_normals)
    rf_est.setSearchSurface (model)
    model_rf = rf_est.compute ()
    
    rf_est.setInputCloud (scene_keypoints)
    rf_est.setInputNormals (scene_normals)
    rf_est.setSearchSurface (scene)
    scene_rf = rf_est.compute ()
    
    # Clustering
    # pcl::Hough3DGrouping<PointType, PointType, RFType, RFType> clusterer;
    clusterer.setHoughBinSize (cg_size_)
    clusterer.setHoughThreshold (cg_thresh_)
    clusterer.setUseInterpolation (True)
    clusterer.setUseDistanceWeight (False)
    
    clusterer.setInputCloud (model_keypoints)
    clusterer.setInputRf (model_rf)
    clusterer.setSceneCloud (scene_keypoints)
    clusterer.setSceneRf (scene_rf)
    clusterer.setModelSceneCorrespondences (model_scene_corrs)
    
    # //clusterer.cluster (clustered_corrs)
    clusterer.recognize (rototranslations, clustered_corrs)
else: 
    # // Using GeometricConsistency
    pcl::GeometricConsistencyGrouping<PointType, PointType> gc_clusterer
    gc_clusterer.setGCSize (cg_size_)
    gc_clusterer.setGCThreshold (cg_thresh_)
    
    gc_clusterer.setInputCloud (model_keypoints)
    gc_clusterer.setSceneCloud (scene_keypoints)
    gc_clusterer.setModelSceneCorrespondences (model_scene_corrs)
    
    # //gc_clusterer.cluster (clustered_corrs)
    gc_clusterer.recognize (rototranslations, clustered_corrs)
    

# Output results
# std::cout << "Model instances found: " << rototranslations.size () << std::endl;
print("Model instances found: " + str(rototranslations.size()) + "\n")

# for (size_t i = 0; i < rototranslations.size (); ++i)
# {
#     std::cout << "\n    Instance " << i + 1 << ":" << std::endl;
#     std::cout << "        Correspondences belonging to this instance: " << clustered_corrs[i].size () << std::endl;
# 
#     // Print the rotation matrix and translation vector
#     Eigen::Matrix3f rotation = rototranslations[i].block<3,3>(0, 0);
#     Eigen::Vector3f translation = rototranslations[i].block<3,1>(0, 3);
# 
#     printf ("\n");
#     printf ("            | %6.3f %6.3f %6.3f | \n", rotation (0,0), rotation (0,1), rotation (0,2));
#     printf ("        R = | %6.3f %6.3f %6.3f | \n", rotation (1,0), rotation (1,1), rotation (1,2));
#     printf ("            | %6.3f %6.3f %6.3f | \n", rotation (2,0), rotation (2,1), rotation (2,2));
#     printf ("\n");
#     printf ("        t = < %0.3f, %0.3f, %0.3f >\n", translation (0), translation (1), translation (2));
# }

for i in range(i, rototranslations.size)
    print('\n    Instance ' + str(i + 1) + ':')
    print('        Correspondences belonging to this instance: ' + str(clustered_corrs[i].size) )
    
    # Print the rotation matrix and translation vector
    eigen3.Matrix3f rotation = rototranslations[i].block<3, 3>(0, 0)
    eigen3.Vector3f translation = rototranslations[i].block<3, 1>(0, 3)
    
    printf ('\n')
    printf ('            | %6.3f %6.3f %6.3f | \n', rotation (0,0), rotation (0,1), rotation (0,2))
    printf ('        R = | %6.3f %6.3f %6.3f | \n', rotation (1,0), rotation (1,1), rotation (1,2))
    printf ('            | %6.3f %6.3f %6.3f | \n', rotation (2,0), rotation (2,1), rotation (2,2))
    printf ('\n')
    printf ('        t = < %0.3f, %0.3f, %0.3f >\n', translation (0), translation (1), translation (2))


# Visualization
# pcl::visualization::PCLVisualizer viewer ("Correspondence Grouping");
# viewer.addPointCloud (scene, "scene_cloud");
viewer = pcl.PCLVisualizer('Correspondence Grouping')
viewer.AddPointCloud (scene, 'scene_cloud')

# pcl::PointCloud<PointType>::Ptr off_scene_model (new pcl::PointCloud<PointType> ());
# pcl::PointCloud<PointType>::Ptr off_scene_model_keypoints (new pcl::PointCloud<PointType> ());
# if (show_correspondences_ || show_keypoints_)
# {
#     # We are translating the model so that it doesn't end in the middle of the scene representation
#     pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0));
#     pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0));
# 
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_color_handler (off_scene_model, 255, 255, 128);
#     viewer.addPointCloud (off_scene_model, off_scene_model_color_handler, "off_scene_model");
# }
if (show_correspondences_ || show_keypoints_) == True:
    # We are translating the model so that it doesn't end in the middle of the scene representation
    pcl::transformPointCloud (*model, *off_scene_model, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0));
    pcl::transformPointCloud (*model_keypoints, *off_scene_model_keypoints, Eigen::Vector3f (-1,0,0), Eigen::Quaternionf (1, 0, 0, 0));


# if (show_keypoints_)
# {
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> scene_keypoints_color_handler (scene_keypoints, 0, 0, 255);
#     viewer.addPointCloud (scene_keypoints, scene_keypoints_color_handler, "scene_keypoints");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "scene_keypoints");
# 
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> off_scene_model_keypoints_color_handler (off_scene_model_keypoints, 0, 0, 255);
#     viewer.addPointCloud (off_scene_model_keypoints, off_scene_model_keypoints_color_handler, "off_scene_model_keypoints");
#     viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "off_scene_model_keypoints");
# }

if show_keypoints_ == True:
    # scene_keypoints_color_handler = pcl::visualization::PointCloudColorHandlerCustom<PointType>(scene_keypoints, 0, 0, 255)
    viewer.addPointCloud (scene_keypoints, scene_keypoints_color_handler, "scene_keypoints")
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "scene_keypoints")
	
    off_scene_model_keypoints_color_handler = pcl::visualization::PointCloudColorHandlerCustom<PointType>(off_scene_model_keypoints, 0, 0, 255)
    viewer.addPointCloud (off_scene_model_keypoints, off_scene_model_keypoints_color_handler, "off_scene_model_keypoints")
    viewer.setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 5, "off_scene_model_keypoints")
	

# for (size_t i = 0; i < rototranslations.size (); ++i)
# {
#     pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
#     pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
# 
#     std::stringstream ss_cloud;
#     ss_cloud << "instance" << i;
# 
#     pcl::visualization::PointCloudColorHandlerCustom<PointType> rotated_model_color_handler (rotated_model, 255, 0, 0);
#     viewer.addPointCloud (rotated_model, rotated_model_color_handler, ss_cloud.str ());
# 
#     if (show_correspondences_)
#     {
#         for (size_t j = 0; j < clustered_corrs[i].size (); ++j)
#         {
#             std::stringstream ss_line;
#             ss_line << "correspondence_line" << i << "_" << j;
#             PointType& model_point = off_scene_model_keypoints->at (clustered_corrs[i][j].index_query);
#             PointType& scene_point = scene_keypoints->at (clustered_corrs[i][j].index_match);
# 
#             //  We are drawing a line for each pair of clustered correspondences found between the model and the scene
#             viewer.addLine<PointType, PointType> (model_point, scene_point, 0, 255, 0, ss_line.str ());
#         }
#     }
# }

for i = 0 in range(i, rototranslations.size):
    pcl::PointCloud<PointType>::Ptr rotated_model (new pcl::PointCloud<PointType> ());
    pcl::transformPointCloud (*model, *rotated_model, rototranslations[i]);
    
    print('instance' + str(i))
    
    pcl::visualization::PointCloudColorHandlerCustom<PointType> rotated_model_color_handler (rotated_model, 255, 0, 0);
    viewer.addPointCloud (rotated_model, rotated_model_color_handler, ss_cloud.str ());
    
    if show_correspondences_ == True:
        for j = 0 in range(j, clustered_corrs[i].size)
            # ss_line << "correspondence_line" << i << "_" << j;
            # PointType& model_point = off_scene_model_keypoints->at (clustered_corrs[i][j].index_query);
            # PointType& scene_point = scene_keypoints->at (clustered_corrs[i][j].index_match);
            # //  We are drawing a line for each pair of clustered correspondences found between the model and the scene
            # viewer.addLine<PointType, PointType> (model_point, scene_point, 0, 255, 0, ss_line.str ());
            pass


# while (!viewer.wasStopped ())
# {
#     viewer.spinOnce ();
# }

while viewer.wasStopped() == True:
    viewer.spinOnce ()