File: normal_distributions_transform.py

package info (click to toggle)
python-pcl 0.3.0~rc1%2Bdfsg-14
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 31,828 kB
  • sloc: python: 3,094; cpp: 283; makefile: 181; sh: 24; ansic: 12
file content (119 lines) | stat: -rw-r--r-- 5,489 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
# -*- coding: utf-8 -*-
# How to use Normal Distributions Transform
# http://pointclouds.org/documentation/tutorials/normal_distributions_transform.php#normal-distributions-transform

import pcl
import pcl_visualization

# int main (int argc, char** argv)
def main():
    # // Loading first scan of room.
    # pcl::PointCloud<pcl::PointXYZ>::Ptr target_cloud (new pcl::PointCloud<pcl::PointXYZ>);
    # if (pcl::io::loadPCDFile<pcl::PointXYZ> ("room_scan1.pcd", *target_cloud) == -1)
    # {
    # PCL_ERROR ("Couldn't read file room_scan1.pcd \n");
    # return (-1);
    # }
    # std::cout << "Loaded " << target_cloud->size () << " data points from room_scan1.pcd" << std::endl;
    target_cloud = pcl.load('room_scan1.pcd')
    print('Loaded ' + str(target_cloud.size) + ' data points from room_scan1.pcd')

    # // Loading second scan of room from new perspective.
    # pcl::PointCloud<pcl::PointXYZ>::Ptr input_cloud (new pcl::PointCloud<pcl::PointXYZ>);
    # if (pcl::io::loadPCDFile<pcl::PointXYZ> ("room_scan2.pcd", *input_cloud) == -1)
    # {
    # PCL_ERROR ("Couldn't read file room_scan2.pcd \n");
    # return (-1);
    # }
    # std::cout << "Loaded " << input_cloud->size () << " data points from room_scan2.pcd" << std::endl;
    input_cloud = pcl.load('room_scan2.pcd')
    print('Loaded ' + str(input_cloud.size) + ' data points from room_scan2.pcd')
    
    # // Filtering input scan to roughly 10% of original size to increase speed of registration.
    # pcl::PointCloud<pcl::PointXYZ>::Ptr filtered_cloud (new pcl::PointCloud<pcl::PointXYZ>);
    # pcl::ApproximateVoxelGrid<pcl::PointXYZ> approximate_voxel_filter;
    # approximate_voxel_filter.setLeafSize (0.2, 0.2, 0.2);
    # approximate_voxel_filter.setInputCloud (input_cloud);
    # approximate_voxel_filter.filter (*filtered_cloud);
    # std::cout << "Filtered cloud contains " << filtered_cloud->size () << " data points from room_scan2.pcd" << std::endl;
    ##
    approximate_voxel_filter = input_cloud.make_ApproximateVoxelGrid()
    approximate_voxel_filter.set_leaf_size (0.2, 0.2, 0.2)
    filtered_cloud = approximate_voxel_filter.filter ()
    print('Filtered cloud contains ' + str(filtered_cloud.size) + ' data points from room_scan2.pcd')
    
    # pcl version 1.7.2
    # // Initializing Normal Distributions Transform (NDT).
    # pcl::NormalDistributionsTransform<pcl::PointXYZ, pcl::PointXYZ> ndt;
    # 
    # // Setting scale dependent NDT parameters
    # // Setting minimum transformation difference for termination condition.
    # ndt.setTransformationEpsilon (0.01);
    # // Setting maximum step size for More-Thuente line search.
    # ndt.setStepSize (0.1);
    # //Setting Resolution of NDT grid structure (VoxelGridCovariance).
    # ndt.setResolution (1.0);
    # 
    # // Setting max number of registration iterations.
    # ndt.setMaximumIterations (35);
    # 
    # // Setting point cloud to be aligned.
    # ndt.setInputSource (filtered_cloud);
    # Setting point cloud to be aligned to.
    # ndt.setInputTarget (target_cloud);
    ##
    
    # Set initial alignment estimate found using robot odometry.
    # Eigen::AngleAxisf init_rotation (0.6931, Eigen::Vector3f::UnitZ ());
    # Eigen::Translation3f init_translation (1.79387, 0.720047, 0);
    # Eigen::Matrix4f init_guess = (init_translation * init_rotation).matrix ();
    ##
    
    # Calculating required rigid transform to align the input cloud to the target cloud.
    # pcl::PointCloud<pcl::PointXYZ>::Ptr output_cloud (new pcl::PointCloud<pcl::PointXYZ>);
    # ndt.align (*output_cloud, init_guess);
    ##
    
    # std::cout << "Normal Distributions Transform has converged:" << ndt.hasConverged () << " score: " << ndt.getFitnessScore () << std::endl;
    ##
    
    # // Transforming unfiltered, input cloud using found transform.
    # pcl::transformPointCloud (*input_cloud, *output_cloud, ndt.getFinalTransformation ());
    ##
    
    # // Saving transformed input cloud.
    # pcl::io::savePCDFileASCII ("room_scan2_transformed.pcd", *output_cloud);
    ##
    
    # // Initializing point cloud visualizer
    # boost::shared_ptr<pcl::visualization::PCLVisualizer>
    # viewer_final (new pcl::visualization::PCLVisualizer ("3D Viewer"));
    # viewer_final->setBackgroundColor (0, 0, 0);
    ## 
    
    # // Coloring and visualizing target cloud (red).
    # pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>
    # target_color (target_cloud, 255, 0, 0);
    # viewer_final->addPointCloud<pcl::PointXYZ> (target_cloud, target_color, "target cloud");
    # viewer_final->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "target cloud");
    ##
    
    # // Coloring and visualizing transformed input cloud (green).
    # pcl::visualization::PointCloudColorHandlerCustom<pcl::PointXYZ>
    # output_color (output_cloud, 0, 255, 0);
    # viewer_final->addPointCloud<pcl::PointXYZ> (output_cloud, output_color, "output cloud");
    # viewer_final->setPointCloudRenderingProperties (pcl::visualization::PCL_VISUALIZER_POINT_SIZE, 1, "output cloud");
    ## 
    
    # // Starting visualizer
    # viewer_final->addCoordinateSystem (1.0, "global");
    # viewer_final->initCameraParameters ();
    ## 
    
    # // Wait until visualizer window is closed.
    # while (!viewer_final->wasStopped ())
    # {
    # viewer_final->spinOnce (100);
    # boost::this_thread::sleep (boost::posix_time::microseconds (100000));
    # }