1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200
|
# -*- coding: utf-8 -*-
# Interactive Iterative Closest Point
# http://pointclouds.org/documentation/tutorials/interactive_icp.php#interactive-icp
# #include <iostream>
# #include <string>
#
# #include <pcl/io/ply_io.h>
# #include <pcl/point_types.h>
# #include <pcl/registration/icp.h>
# #include <pcl/visualization/pcl_visualizer.h>
# #include <pcl/console/time.h> // TicToc
#
# typedef pcl::PointXYZ PointT;
# typedef pcl::PointCloud<PointT> PointCloudT;
impiort pcl
# import pcl.visualization
# bool next_iteration = false;
next_iteration = false
# def print4x4Matrix (const Eigen::Matrix4d & matrix)
# {
# printf ("Rotation matrix :\n");
# printf (" | %6.3f %6.3f %6.3f | \n", matrix (0, 0), matrix (0, 1), matrix (0, 2));
# printf ("R = | %6.3f %6.3f %6.3f | \n", matrix (1, 0), matrix (1, 1), matrix (1, 2));
# printf (" | %6.3f %6.3f %6.3f | \n", matrix (2, 0), matrix (2, 1), matrix (2, 2));
# printf ("Translation vector :\n");
# printf ("t = < %6.3f, %6.3f, %6.3f >\n\n", matrix (0, 3), matrix (1, 3), matrix (2, 3));
# }
# void keyboardEventOccurred (const pcl::visualization::KeyboardEvent& event, void* nothing)
# {
# if (event.getKeySym () == "space" && event.keyDown ())
# next_iteration = true;
# }
### main
# // The point clouds we will be using
# PointCloudT::Ptr cloud_in (new PointCloudT); // Original point cloud
# PointCloudT::Ptr cloud_tr (new PointCloudT); // Transformed point cloud
# PointCloudT::Ptr cloud_icp (new PointCloudT); // ICP output point cloud
#
# // Checking program arguments
# if (argc < 2)
# {
# printf ("Usage :\n");
# printf ("\t\t%s file.ply number_of_ICP_iterations\n", argv[0]);
# PCL_ERROR ("Provide one ply file.\n");
# return (-1);
# }
#
# int iterations = 1; // Default number of ICP iterations
# if (argc > 2)
# {
# // If the user passed the number of iteration as an argument
# iterations = atoi (argv[2]);
# if (iterations < 1)
# {
# PCL_ERROR ("Number of initial iterations must be >= 1\n");
# return (-1);
# }
# }
#
# pcl::console::TicToc time;
# time.tic ();
# if (pcl::io::loadPLYFile (argv[1], *cloud_in) < 0)
# {
# PCL_ERROR ("Error loading cloud %s.\n", argv[1]);
# return (-1);
# }
# std::cout << "\nLoaded file " << argv[1] << " (" << cloud_in->size () << " points) in " << time.toc () << " ms\n" << std::endl;
#
# // Defining a rotation matrix and translation vector
# Eigen::Matrix4d transformation_matrix = Eigen::Matrix4d::Identity ();
#
# // A rotation matrix (see https://en.wikipedia.org/wiki/Rotation_matrix)
# double theta = M_PI / 8; // The angle of rotation in radians
# transformation_matrix (0, 0) = cos (theta);
# transformation_matrix (0, 1) = -sin (theta);
# transformation_matrix (1, 0) = sin (theta);
# transformation_matrix (1, 1) = cos (theta);
#
# // A translation on Z axis (0.4 meters)
# transformation_matrix (2, 3) = 0.4;
#
# // Display in terminal the transformation matrix
# std::cout << "Applying this rigid transformation to: cloud_in -> cloud_icp" << std::endl;
# print4x4Matrix (transformation_matrix);
#
# // Executing the transformation
# pcl::transformPointCloud (*cloud_in, *cloud_icp, transformation_matrix);
# *cloud_tr = *cloud_icp; // We backup cloud_icp into cloud_tr for later use
#
# // The Iterative Closest Point algorithm
# time.tic ();
# pcl::IterativeClosestPoint<PointT, PointT> icp;
# icp.setMaximumIterations (iterations);
# icp.setInputSource (cloud_icp);
# icp.setInputTarget (cloud_in);
# icp.align (*cloud_icp);
# icp.setMaximumIterations (1); // We set this variable to 1 for the next time we will call .align () function
# std::cout << "Applied " << iterations << " ICP iteration(s) in " << time.toc () << " ms" << std::endl;
#
# if (icp.hasConverged ())
# {
# std::cout << "\nICP has converged, score is " << icp.getFitnessScore () << std::endl;
# std::cout << "\nICP transformation " << iterations << " : cloud_icp -> cloud_in" << std::endl;
# transformation_matrix = icp.getFinalTransformation ().cast<double>();
# print4x4Matrix (transformation_matrix);
# }
# else
# {
# PCL_ERROR ("\nICP has not converged.\n");
# return (-1);
# }
#
# // Visualization
# pcl::visualization::PCLVisualizer viewer ("ICP demo");
# // Create two verticaly separated viewports
# int v1 (0);
# int v2 (1);
# viewer.createViewPort (0.0, 0.0, 0.5, 1.0, v1);
# viewer.createViewPort (0.5, 0.0, 1.0, 1.0, v2);
#
# // The color we will be using
# float bckgr_gray_level = 0.0; // Black
# float txt_gray_lvl = 1.0 - bckgr_gray_level;
#
# // Original point cloud is white
# pcl::visualization::PointCloudColorHandlerCustom<PointT> cloud_in_color_h (cloud_in, (int) 255 * txt_gray_lvl, (int) 255 * txt_gray_lvl,
# (int) 255 * txt_gray_lvl);
# viewer.addPointCloud (cloud_in, cloud_in_color_h, "cloud_in_v1", v1);
# viewer.addPointCloud (cloud_in, cloud_in_color_h, "cloud_in_v2", v2);
#
# // Transformed point cloud is green
# pcl::visualization::PointCloudColorHandlerCustom<PointT> cloud_tr_color_h (cloud_tr, 20, 180, 20);
# viewer.addPointCloud (cloud_tr, cloud_tr_color_h, "cloud_tr_v1", v1);
#
# // ICP aligned point cloud is red
# pcl::visualization::PointCloudColorHandlerCustom<PointT> cloud_icp_color_h (cloud_icp, 180, 20, 20);
# viewer.addPointCloud (cloud_icp, cloud_icp_color_h, "cloud_icp_v2", v2);
#
# // Adding text descriptions in each viewport
# viewer.addText ("White: Original point cloud\nGreen: Matrix transformed point cloud", 10, 15, 16, txt_gray_lvl, txt_gray_lvl, txt_gray_lvl, "icp_info_1", v1);
# viewer.addText ("White: Original point cloud\nRed: ICP aligned point cloud", 10, 15, 16, txt_gray_lvl, txt_gray_lvl, txt_gray_lvl, "icp_info_2", v2);
#
# std::stringstream ss;
# ss << iterations;
# std::string iterations_cnt = "ICP iterations = " + ss.str ();
# viewer.addText (iterations_cnt, 10, 60, 16, txt_gray_lvl, txt_gray_lvl, txt_gray_lvl, "iterations_cnt", v2);
#
# // Set background color
# viewer.setBackgroundColor (bckgr_gray_level, bckgr_gray_level, bckgr_gray_level, v1);
# viewer.setBackgroundColor (bckgr_gray_level, bckgr_gray_level, bckgr_gray_level, v2);
#
# // Set camera position and orientation
# viewer.setCameraPosition (-3.68332, 2.94092, 5.71266, 0.289847, 0.921947, -0.256907, 0);
# viewer.setSize (1280, 1024); // Visualiser window size
#
# // Register keyboard callback :
# viewer.registerKeyboardCallback (&keyboardEventOccurred, (void*) NULL);
#
# // Display the visualiser
# while (!viewer.wasStopped ())
# {
# viewer.spinOnce ();
#
# // The user pressed "space" :
# if (next_iteration)
# {
# // The Iterative Closest Point algorithm
# time.tic ();
# icp.align (*cloud_icp);
# std::cout << "Applied 1 ICP iteration in " << time.toc () << " ms" << std::endl;
#
# if (icp.hasConverged ())
# {
# printf ("\033[11A"); // Go up 11 lines in terminal output.
# printf ("\nICP has converged, score is %+.0e\n", icp.getFitnessScore ());
# std::cout << "\nICP transformation " << ++iterations << " : cloud_icp -> cloud_in" << std::endl;
# transformation_matrix *= icp.getFinalTransformation ().cast<double>(); // WARNING /!\ This is not accurate! For "educational" purpose only!
# print4x4Matrix (transformation_matrix); // Print the transformation between original pose and current pose
#
# ss.str ("");
# ss << iterations;
# std::string iterations_cnt = "ICP iterations = " + ss.str ();
# viewer.updateText (iterations_cnt, 10, 60, 16, txt_gray_lvl, txt_gray_lvl, txt_gray_lvl, "iterations_cnt");
# viewer.updatePointCloud (cloud_icp, cloud_icp_color_h, "cloud_icp_v2");
# }
# else
# {
# PCL_ERROR ("\nICP has not converged.\n");
# return (-1);
# }
# }
# next_iteration = false;
# }
|