1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111
|
# -*- coding: utf-8 -*-
# http://pointclouds.org/documentation/tutorials/planar_segmentation.php#planar-segmentation
import pcl
import numpy as np
import random
# int main (int argc, char** argv)
# {
# pcl::PointCloud<pcl::PointXYZ>::Ptr cloud(new pcl::PointCloud<pcl::PointXYZ>);
#
# // Fill in the cloud data
# cloud->width = 15;
# cloud->height = 1;
# cloud->points.resize (cloud->width * cloud->height);
#
# // Generate the data
# for (size_t i = 0; i < cloud->points.size (); ++i)
# {
# cloud->points[i].x = 1024 * rand () / (RAND_MAX + 1.0f);
# cloud->points[i].y = 1024 * rand () / (RAND_MAX + 1.0f);
# cloud->points[i].z = 1.0;
# }
#
# // Set a few outliers
# cloud->points[0].z = 2.0;
# cloud->points[3].z = -2.0;
# cloud->points[6].z = 4.0;
###
cloud = pcl.PointCloud()
points = np.zeros((15, 3), dtype=np.float32)
RAND_MAX = 1024.0
for i in range(0, 15):
points[i][0] = 1024 * random.random () / (RAND_MAX + 1.0)
points[i][1] = 1024 * random.random () / (RAND_MAX + 1.0)
points[i][2] = 1.0
points[0][2] = 2.0
points[3][2] = -2.0
points[6][2] = 4.0
cloud.from_array(points)
# std::cerr << "Point cloud data: " << cloud->points.size () << " points" << std::endl;
# for (size_t i = 0; i < cloud->points.size (); ++i)
# std::cerr << " " << cloud->points[i].x << " "
# << cloud->points[i].y << " "
# << cloud->points[i].z << std::endl;
#
print ('Point cloud data: ' + str(cloud.size) + ' points')
for i in range(0, cloud.size):
print ('x: ' + str(cloud[i][0]) + ', y : ' + str(cloud[i][1]) + ', z : ' + str(cloud[i][2]))
# pcl::ModelCoefficients::Ptr coefficients (new pcl::ModelCoefficients);
# pcl::PointIndices::Ptr inliers (new pcl::PointIndices);
# // Create the segmentation object
# pcl::SACSegmentation<pcl::PointXYZ> seg;
# // Optional
# seg.setOptimizeCoefficients (true);
# // Mandatory
# seg.setModelType (pcl::SACMODEL_PLANE);
# seg.setMethodType (pcl::SAC_RANSAC);
# seg.setDistanceThreshold (0.01);
#
# seg.setInputCloud (cloud);
# seg.segment (*inliers, *coefficients);
###
# http://www.pcl-users.org/pcl-SACMODEL-CYLINDER-is-not-working-td4037530.html
# NG?
# seg = cloud.make_segmenter()
# seg.set_optimize_coefficients(True)
# seg.set_model_type(pcl.SACMODEL_NORMAL_PLANE)
# seg.set_method_type(pcl.SAC_RANSAC)
# seg.set_distance_threshold(0.01)
# indices, coefficients = seg.segment()
seg = cloud.make_segmenter_normals(ksearch=50)
seg.set_optimize_coefficients(True)
seg.set_model_type(pcl.SACMODEL_NORMAL_PLANE)
seg.set_method_type(pcl.SAC_RANSAC)
seg.set_distance_threshold(0.01)
seg.set_normal_distance_weight(0.01)
seg.set_max_iterations(100)
indices, coefficients = seg.segment()
# if (inliers->indices.size () == 0)
# {
# PCL_ERROR ("Could not estimate a planar model for the given dataset.");
# return (-1);
# }
# std::cerr << "Model coefficients: " << coefficients->values[0] << " "
# << coefficients->values[1] << " "
# << coefficients->values[2] << " "
# << coefficients->values[3] << std::endl;
###
if len(indices) == 0:
print('Could not estimate a planar model for the given dataset.')
exit(0)
print('Model coefficients: ' + str(coefficients[0]) + ' ' + str(coefficients[1]) + ' ' + str(coefficients[2]) + ' ' + str(coefficients[3]))
# std::cerr << "Model inliers: " << inliers->indices.size () << std::endl;
# for (size_t i = 0; i < inliers->indices.size (); ++i)
# std::cerr << inliers->indices[i] << " " << cloud->points[inliers->indices[i]].x << " "
# << cloud->points[inliers->indices[i]].y << " "
# << cloud->points[inliers->indices[i]].z << std::endl;
###
print('Model inliers: ' + str(len(indices)))
for i in range(0, len(indices)):
print (str(indices[i]) + ', x: ' + str(cloud[indices[i]][0]) + ', y : ' + str(cloud[indices[i]][1]) + ', z : ' + str(cloud[indices[i]][2]))
|